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Abstract
Climate strongly influences agricultural profitability. Climate risks on agriculture can be managed by moving production to other
areas, but this may be costly and reduce profitability if climatic conditions are dynamic. Here, we test whether integrating spatial
diversification and climate information could minimize climate risk, while not sacrificing profitability. We use 27 years of farm
business profit and climate data (1991–2018) from four of Australia’s most climatically diverse regions where grazing underpins
socioeconomic activity. We show that spatial diversification coupled with seasonal climate information from El Niño-Southern
Oscillation (ENSO) provides better estimates of optimized risk-profit tradeoffs in different ENSO years compared to estimates
without climate information. Conditional Value-at-Risk (CVaR) (ameasure of financial risk) is lower when climate information is
used in El Niño (1.23 $/ha), La Niña (1.19 $/ha), and Neutral years (1.22 $/ha), compared to when no climate information (1.57
$/ha) is used. When targeting high profits, CVaR is reduced by 15, 86, and 22% in El Niño, La Niña, and Neutral years,
respectively, compared to a 5% reduction when no climate information is used. When aiming to minimize CVaR in drought
(El Niño), profit is higher using climate-informed spatial diversification (expected profits of 2.71 $/ha), relative to when it is not
(expected profits of 2.30 $/ha). Climate-informed spatial diversification also provides options to graziers to achieve much higher
gains (expected profits of up to ~ 4.13 $/ha) under La Niña versus 2.62 $/ha when no climate information is used. Here, we show
for the first time that seasonal climate information coupled with spatial diversification can provide strategies to help graziers
reduce risk and increase profitability. Our approach is applicable to other parts of the world and could be used to decrease climate
risk and increase profitability for other agricultural sectors exposed to variable climatic conditions.

Keywords Copula . Portfolio optimization . Conditional value-at-risk . Agricultural risk management . Geographical
diversification . Australia . Grazing . ENSO

1 Introduction

Climate variability and extreme events (e.g., droughts and
heat waves) drive losses in livestock production systems
worldwide (Godde et al. 2019). Drought events (1983/1984
and 1991/1992) have been identified as the single most im-
portant factor causing population changes in cattle herds in

northern Kenya (Oba 2001). Consecutive droughts from
1999 to 2004, accounted for 30% of production losses suf-
fered by farms and ranches in Utah, USA, corresponding to
cumulative losses of around $133 million (Coppock 2011). In
Texas (USA), the 2011 drought resulted in losses of over $2.6
billion in livestock production (Allred et al. 2014). Likewise
in Australia, gross farm production has dropped by 27% on
average during drought events over the past 50 years (Eslake
2018). More recently, the 2009–10 drought reduced the gross
value of beef and veal production by 8.7% in southern
Australia (Keogh et al. 2015). Figure 1 shows an example of
drought impacts on grazing cattle across northeastern
Australia (adapted from Marty et al. (2015)). Developing
strategies to manage the influence of climate variability and
drought on livestock production is therefore a major
challenge.
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There are several strategies that can be used to manage the
impact of climate risks on agriculture; the use of different
crops or crop varieties, planting trees, soil conservation,
changing planting dates, and irrigation (Bryan et al. 2009).
In addition to these, spatial diversification, which is the spatial
allocation of production to spread risk, is another strategy that
is receiving increasing attention as a means of managing un-
favorable climatic conditions on agriculture (Larsen et al.
2015; Nguyen-Huy et al. 2018; Akponikpe et al. 2011).
Spatial diversification can be an effective strategy for manag-
ing farm production risk associated with climate variability
and other factors (e.g., price fluctuations) in commodity mar-
kets (Bradshaw et al. 2004).

Larsen et al. (2015) evaluated the effectiveness of spatial
diversification and showed that wheat producers in Texas can
increase average profit margins by 3.7% in the worst 5% sea-
sons (i.e., reduce their downside risk) by allocating 15% of
production to Kansas. The reallocation of land to Kansas only
minimally impacted (−0.72%) expected profits. In Australia,
spatial diversification has also been shown to reduce risks for
wheat producers by 3.2% in the worst 5% of cases with a
reduction of just 0.3% in expected profit margins (Nguyen-
Huy et al. 2018). These findings indicate that spatial diversi-
fication is a viable risk management strategy for farmers. At
smaller scales, Akponikpe et al. (2011) analyzed a spatial
fields’ spreading strategy to reduce agro-climatic risk at the
household level in pearl millet-based farming systems in the

Sahel. The results indicated that increasing dispersion of mil-
let fields could reduce yield variation.

Although the benefits of spatial diversification have been
shown for a range of crops, its effectiveness has not been
assessed for grazing systems. There are also no studies, in
either grazing or cropping systems, that have coupled spatial
diversification and seasonal climate information, despite the
fact that (i) the livestock industries profitability is highly ex-
posed to climate risk and especially drought and (ii) in many
parts of the world, year-to-year variability in rainfall is high,
with shifts in ENSO often being the main cause (Stone et al.
1996). ENSO is defined as a warming/cooling of Pacific equa-
torial Sea Surface Temperatures (El Niño/La Niña) associated
with a dipole of mean sea level atmospheric pressure anoma-
lies between Darwin and Tahiti (the Southern Oscillation) and
with a marked periodicity of 2–7 years (Trenberth 1997).

Coupling spatial diversification with climate information,
such as ENSO, is expected to help graziers to manage climate
risks by providing information about when and where they
should shift production in order to spread their risk under
different climatic conditions. In particular, this could inform
graziers when to shift livestock production systems to other
areas, with anticipated more favorable climatic conditions, so
they could minimize exposure to drought. This study evalu-
ates the potential benefit of spatial diversification coupled
with seasonal climate information for livestock business prof-
itability in Australia. Australia exhibits a high degree of

Fig. 1 Map of four study sites. These locations are important livestock
regions with different climate conditions. The background represents the
correlation coefficients (p value < 0.05) between 6-month average SOI
and SPI. Six-month average SOI used to classified ENSO years is
computed between June and March, starting in June and ending in any
month between November and March, e.g., June–November, July–

December, and so on. Six-month average SPI is computed for the
period of October–March. Drought impacts on a pasture at Catumnal
Station in northeastern Australia. (a) Mustering healthy cattle in 2012
(during La Niña). (b) The same paddock can only support about 20
cows in 2015 (during El Niño) (adapted from Marty et al. (2015))
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spatiotemporal climate variability, with ENSO the main factor
influencing rainfall variability in many areas (Chowdhury and
Beecham 2010). Australia was also the third-largest beef and
veal exporter in 2017, accounting for approximate 2% of the
world cattle herd, and 3% of world beef production in 2016
(MLA 2018). The cattle herd was 26.2 million head (2017
June) operated by 48,000 businesses and 192,000 laborers.
The gross value of cattle production was $11.4 billion, con-
tributing 19% of the total farm value of 60.5 billion (2017–8)
(MLA 2018).

In Australia, the notion of spatially diversifying grazing
properties to reduce the risk of drought can be traced back to
1890, when Sir Sydney Kidman established a chain of prop-
erties with the aim of becoming “drought proof.” Properties
were spread over large areas in an attempt to spread drought
risk. Nonetheless, Kidman was never able to achieve his goal
of having a drought-proof cattle company (Bowen 1987).
Currently, several large grazing companies have strategically
diversified their properties throughout Australia, e.g., the
Northern Australian Pastoral Company (NAPCO) and the
Australian Agricultural Company (AACo). Within these com-
panies, and others, there is a network of properties (there are
over 72 properties greater than 4000 km2) distributed across
the grazing lands of Australia. However, while many grazing
companies have spatially diversified their properties to spread
risk, they do not actively incorporate dynamic climate infor-
mation, such as ENSO, into their planning to inform the
movement of cattle between properties.

Given the extensive areas, frequent and long drought pe-
riods, and higher annual variability in the growth of pastures
occur in rangelands (Cobon et al. 2019), spatial diversification
coupled with seasonal climate information could be of great
benefit in making strategic and tactical adjustments to stock
numbers. Namely, spatial diversification informed by climate
information could provide guidance on how best to spread
production under different climate conditions could help gra-
ziers reduce downside losses and maximize profits. While
Australian’s grazing industry is the focus of this paper, the
proposed approach could be applicable to other industries
worldwide where the businesses operate in various locations
and climate impacts are dynamic and inhomogeneous, e.g.,
Anderson et al. (2019).

2 Materials and methods

2.1 Data

The four regions selected in this study are spread across north-
ern Australia and include the Kimberley (17.35° S, 125.92° E)
in Western Australia (WTK), Barkly Tablelands (19.00° S,
138.00° E) in the Northern Territory (NBT) and the Central
North (19.38° S, 143.85° E) (QCN) and Charleville-

Longreach region (24.33° S, 145.58° E) (QCL) in
Queensland. These regions are important grazing areas and
cover a range of climatic conditions, and so each is expected
to expose graziers to different risks at different times (Fig. 1).

The pastoral industry, with an average of 13 million cattle,
is the largest agricultural industry in northern Australia. The
industry covers the whole of the Northern Territory and parts
of Western Australia and Queensland above the Tropic of
Capricorn (Mathew et al. 2018). Northern Australia accounts
for approximately 55% of the national herd. In 2017, the total
cattle number in the Northern Territory and Western Australia
was just over 4.3 million, while Queensland’s cattle herd was
around 11 million. Queensland accounts for about half of the
national cattle herd and is the largest beef producing state
(MLA 2018). The grazing area in Queensland occupies 80%
of the State and contributes over 30% of the total value of
agricultural products in terms of meat, live animals, and wool
(Johnston et al. 2000).

Aggregated farm business profit ($) and total farm area
operated (ha) datasets were collected from Meat and
Livestock Australia (MLA), Department of Agriculture and
Water Resources, Australian Government (http://apps.
agriculture.gov.au/mla/mla.asp) from 1991 to 92 to 2017–18.
The data are estimated according to the Australian financial
year dates, which are 1 July to 30 June. The farm business
profit of a farm is defined as the farm cash income plus
building up in trading stocks, less depreciation, less the
imputed value of the labor provided by the operator or
manager, partners, and family. The aggregated farm business
profit of each financial year is estimated based on the number
of sampled farms in that year in the selected region with units
in 2018–19 AUD. Similarly, the total farm area of each finan-
cial year is the operated area estimated from the number of
sampled farms in the selected regions on 30th June each year.
Table 1 shows the average number of farms, number of sam-
ple farms, area operated on 30 June, and average farm busi-
ness profit over the period of 1991–2018.

Monthly values of Southern Oscillation Index (SOI), an
ENSO indicator, were downloaded from the Australian
Bureau of Meteorology (www.bom.gov.au). Monthly SOI
data was used to classify ENSO events. El Niño (La Niña)
years are defined if the 6-month average value of the SOI
between June and March, starting in June and ending in any
month between November and March, is below (above) a
threshold value of negative (positive) 6.0. This means that if
the 6-month average value of the SOI for any of the periods
between June and November, July and December, August and
January, September and February, or October and March is
below (above) the threshold value of negative (positive) 6.0,
that year will be classified as an El Niño (a La Niña) year.
Neutral years are those which were not classified as either El
Niño or La Niña. The threshold of ± 6 was selected following
the ENSO classifications of Stone et al. (2019).
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2.2 Optimizing portfolio using spatial diversification

Suppose a producer operates his grazing system as a portfolio
consisting of n locations. Since across locations, the farm
business profit and farm area are different from each other
(Table 1), we standardized the data by dividing the farm busi-
ness profit ($) by the farm area (ha) to obtain the farm business
profit pi($/ha) of the location i, i = [1, n]. Henceforth, we use
this terminology, i.e., farm business profit ($/ha), and use this
data for all analyses.

It is assumed that, known and unknown climate infor-
mation, the producer wants to make an optimal decision
on how many percentages of the total production should
be allocated to each region to achieve a pre-defined ex-
pected profit (i.e., the average of all profits) while man-
aging the extent of potential loss in the expected profit
over a given period of time for a specific confidence level
(i.e., downside risk). This downside risk can be measured
by CVaR. CVaR is superior to variance since it does not
assume asset returns to be normally distributed. Further, it
is a coherent and convex risk measure (Rockafellar and
Uryasev 2000).

Let wi be the shared percent of the total production al-
located to the region i (i.e., the decision vector or weight).
The portfolio optimization problem is to maximize the ex-
pected profit margin given a target risk (CVaR) level ϕ and
confidence level a, which can be formulated as (Larsen
et al. 2015):

maximize ∑
n

i¼1
wipi; ð1Þ

subject to
CVaRα wið Þ≤ϕ
∑
n

i¼1
wi ¼ 1

8
<

:
: ð2Þ

Rockafellar and Uryasev (2000) proposed an approximated
sampling method to solve the CVaR function. Finally, the
portfolio optimization problem can be reformulated as a linear
programming problem. Readers are referred to Rockafellar
and Uryasev (2000) for more details.

2.3 Analysis methods—Vine copula model

A statistical copula method was used tomodel the dependence
structure between farm business profit and ENSO and gener-
ate data for the computation of the optimal portfolio model.
Copula approaches make no assumption about distributions of
variables (marginal) and the relationship between variables
and so are suitable for modeling the joint distribution of mul-
tiple random variables. Recent years have witnessed a broad
application of copula approaches in many fields such as fi-
nance and insurance (Fang and Madsen 2013), hydrology and
water resources (Chowdhary et al. 2011), and systemic risk
(Nguyen-Huy et al. 2019). The copula method has been also
used in the studies of spatial diversification (Larsen et al.
2013; Larsen et al. 2015; Nguyen-Huy et al. 2018).

The computation of CVaR requires knowledge of the cu-
mulative distribution function of all farm business profits of n
regions involved in the portfolio. Sklar (1959)’s theorem sug-
gests that the joint distribution function F(.) of n-dimensional
random variables can be expressed as:

Table 1 Summary statistics of data (1991–2018) at four regions: The
Kimberley in Western Australia (WTK), Barkly Tablelands in Northern
Territory (NBT), Central North (QCN), and Charleville-Longreach
(QCL) in Queensland, including averaged population, sample, area

operated at 30 June, farm business profit, and standardized farm
business profit with mean, maximum, minimum, and standard deviation
(SD). Kendall’s tau correlation coefficients between SOI and each
standardized farm business profit and the corresponding p values

WTK NBT QCN QCL

Averaged population (farms) 57 27 631 611

Averaged sample (farms) 9 11 35 31

Averaged area operated at 30 June (000′ ha) 304.0 (22.63) 673.2 (11.22) 42.6 (30.41) 20.9 (16.11)

Averaged farm business profit per year (000′) $438.6 (170.15) $1846.6 (87.74) $49.7 (214.96) $36.8 (77.56)

Standardized farm business profit ($/ha)

Mean 1.34 2.67 1.40 2.08

Maximum 7.49 7.80 8.30 8.14

Minimum − 1.34 − 1.15 − 5.16 − 7.87
SD 1.87 2.02 3.24 4.45

Kendall’s tau vs. SOI 0.12 − 0.06 0.23 0.29

p value 0.39 0.68 0.1 0.04

The figures in brackets () are relative standard errors. Financial figures are converted to 2018–19 dollars

Population estimated number of farms in the selected categories, Sample number of sampled farms in the selected categories, Area operated at 30 June
total farm area operated at 30 June, Farm business profit farm business profit-farm cash income plus build-up in trading stocks, less depreciation, less the
imputed value of the labor provided by the operator or manager, partners, and family
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F x1; :::; xnð Þ ¼ C F1 x1ð Þ; :::; Fn xnð Þ½ �; ð3Þ

where C : [0, 1]n→ [0, 1] is a copula function and Fi(xi) are
marginal distributions of variables of interest, which is the
profit of each farm in this case. It is clear that the dependence
between variables is measured separately to the estimate of
marginal distributions. Therefore, it does not restrict the dis-
tributions of each farm business profits and their distribution
to have an elliptical distribution.

The marginal distributions (i.e., the distributions of each
farm business profit and SOI) can be modeled using either
parametric or non-parametric methods. Since the parametric
copula functions are used in the later step, we estimate the
marginal distributions non-parametrically using a kernel
smoothing method to reduce the misspecification in the final
model. The results of marginal fitting are then checked with
histograms and quantile-quantile plots. This paper utilizes the
vine copula to model the joint distribution of farm business
profits and SOI since it enables us to build flexible depen-
dence models for an arbitrary number of variables using
Markov trees and bivariate building blocks (Bedford and
Cooke 2002).

The most appropriate vine copula model was selected
based on the Akaike Information Criterion (AIC). The cop-
ula parameters are estimated through maximum likelihood
estimation method. A random vector is generated using the
Monte Carlo method with the chosen copula model. In par-
ticular, SOI values are first randomly generated within [−
17, − 6] corresponding to El Niño, [− 6, 6] for Neutral, and
[6, 17] for La Niña events. The simulations of farm business
profits conditioned on the three phases of SOI are repeated
in 1000 times. The random data are then inversely trans-
formed to obtain the simulated realizations of profit for each
location using the quantile functions of the marginal distri-
butions. Finally, the above optimization problem is solved
using simulated realizations to derive the mean-CVaR effi-
cient frontier. Analyses were performed using the R-pack-
ages: ks (Version 1.11.4) (Duong et al. 2019), VineCopula
(Version 2.2.0) (Schepsmeier et al. 2018), and fPortfolio
(Version 3042.83) (Wuertz et al. 2017).

3 Results and discussion

3.1 The influence of ENSO on grazing profit varies
across regions

Out of the four regions, the correlation coefficient between
SOI and QCL’s profit is highest (significant at the 95% level),
followed by QCN (significant at the 90% level) (Table 1). The
statistical test shows that the impact of ENSO on annual farm
business profit is insignificant in WTK and the correlation

coefficient is almost zero in NBT. This indicates that ENSO
has a different influence on beef industry profits across the
four regions. Figure 2 also shows that ENSO has a stronger
impact on farm business profits in Queensland regions (QCN
and QCL). In Queensland, El Niño years (e.g., 2002–03,
2014–15) are often associated with losses, while La Niña
years (e.g. 2000–01, 2010–12) are linked with above-
average profits (Fig. 2a). Figure 2b shows that the median
values of the farm business profits in Queensland regions to
be high (gain) in La Niña events and low (loss) in El Niño and
Neutral events. By contrast, the median values of the farm
business profit are higher in WTK and NBT than in QLD
regions in El Niño and Neutral events. Further, extended
droughts (1991–95) cause sequential losses of profits in
WTK and Queensland regions; however, this does not affect
NBT (Fig. 2a). During consecutive La Niña events (1998–
2001), QCL had the highest profit of all regions, though other
regions still had positive profit. Maximum and minimum
profits were often associated with different ENSO phases.
For example, QCL achieved the highest profit in 2010–11, a
La Niña year, while the lowest profits occurred in 2002–03, an
El Niño year (Fig. 2a).

The chief driver of changes in profitability in each of these
phases can be linked with changes in rainfall, which we map
using the Standardized Precipitation Index (SPI) (Fig. 1)
(Guttman 1999). Figure 1 indicates a strong relationship be-
tween the 6-month average SOI (used to classified ENSO
years) and SPI (October–March, approximating the northern
Australian wet season) in the QCN and QCL regions.
However, the correlation coefficients are not significant in half
of the NBT region, which may explain the weak relationship
between SOI and farm business profits here (Table 1). The
northern part of the WTK region exhibits a strong SOI-SPI
relationship, but a weak SOI-profit relationship. This is likely
because in the WTK most grazing occurs in the western and
southern parts of the region, where the SOI-SPI correlation is
lower. Differences in the strength of correlation between
ENSO and rainfall explain in part the variation in the correla-
tion between ENSO and grazing and profitability that we see
between each region. These results are also consistent with
previous research demonstrating the link between different
ENSO phases and precipitation, in Australia and globally
(Stone et al. 1996; Risbey et al. 2009; Cobon and Toombs
2013).

Variations in grassland communities between these re-
gions could also influence the strength of the correlation
between ENSO and profitability. Although we believe
these differences are less important than variations in pre-
cipitation because of the grassland communities across all
of the regions, our investigations are well adapted to arid
conditions (e.g., acacia shrub shortgrass and xerophytic
hummock grasslands) (Moore 1970). It should also be not-
ed that the time series of farm business profit (Fig. 2) has a
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slightly positive trend in two regions (WTK and NBT).
This is likely from, amongst other things, a combination
of technical advances, genetic improvements in cattle, and
more effective control of pests.

The QCL region has the widest range of annual business
profits and losses, ranging from losses of about 7.87 to profits
of about 8.14 $/ha corresponding with the largest standard
deviation (Table 1). By contrast, the annual profits of WTK
and NBTare more stable with standard deviations of 1.87 and
2.02 $/ha, respectively. This could be because the influence of
ENSO is weaker in the grazing areas of the WTK and NBT.
Further, the probability of having annual profit below zero is
relatively small in NBT, occurring in only two of the 27 years
examined. However, while WTK and NBT profits are more
stable than in QCN and QCL regions, maximum profits are
substantially lower, potentially indicating that they are unable
to capitalize on the favorable climate conditions associated
with La Niña (Fig. 2b).

The spatiotemporally different influences of ENSO on
annual beef business profit across these four regions sug-
gest allocating beef business based on ENSO information
could potentially optimize profits and reduce risk. Risbey
et al. (2009) showed that the correlation between SOI and
rainfall in the QCL region is significant in all seasons.
However, the correlations between SOI and rainfall in
NBT and QCN are not significant for the winter season
(June–August). In particular, there is no correlation be-
tween SOI and rainfall in WTK for both autumn
(March–May) and winter seasons. This relationship may
explain the impact of ENSO and annual beef business
profit, which is strong in the QCL, relatively equal in
the NBT and QCN, and almost zero in the WTK. These
results are consistent with research from Yuan and
Yamagata (2015), who reported that La Niña events often
bring more precipitation in eastern Australia; meanwhile,
El Niño often results in drought.

Fig. 2 a Historical annual farm business profit (1991–2018) of four
regions: The Kimberley in Western Australia (WTK), Barkly
Tablelands in Northern Territory (NBT), Central North (QCN), and
Charleville-Longreach (QCL) in Queensland involving classified ENSO

phases: El Niño (EN), La Niña (LN), and Neutral (NT). b Classified
historical annual farm business profits according to different ENSO
phases
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3.2 Risk-return tradeoff options for a portfolio
through a climate-based spatial diversification
strategy

This section outlines options for livestock producers to bal-
ance expected profit and risk using an ENSO informed spatial
diversification strategy. The optimal portfolio models provide
information on the percentage of production that should be
allocated to each region with the corresponding expected busi-
ness profit and risk. Figure 3 describes the ratio of the tradeoff
between expected business profit and risk along the minimum
variance locus (from the lowest risk (dashed line) to the left)
and efficient frontier (from the lowest risk (dashed line) to the
right). Higher expected business profits, at an equivalent level
of risk, can be achieved along the efficient frontier (right-hand
side of the dashed line in Fig. 3) compared to the minimum
variance locus (left-hand side of the dashed line Fig. 3). Thus,
a rational producer will hold a portfolio only on the efficient
frontier (right-hand side of dashed line Fig. 3).

To reach the highest expected business profit, the results
suggest allocating all production to NBT in El Niño or Neutral
years (Fig. 3a–d), and toQCL in LaNiña years. The optimized
portfolio model offers options for graziers to reduce the risk by
adjusting the percentage of production under different ENSO
conditions. In particular, the model suggests one could shift
production from the NBT to the WTK with specific ratios to
satisfy both targets of expected business profit and risk when
ENSO information is not used, or it is in El Niño or Neutral
years. A similar strategy for risk reduction in La Niña years is
feasible by shifting appropriate ratios of production fromQCL
to NBT and WTK. These findings are consistent with the
analysis presented in Section 3.1 where the influence of
ENSO on NBT and WTK is not significant and thus results
in a small standard deviation (Table 1), and the median values
of the expected business profits are always positive in all
ENSO phases (Fig. 2b).

For example, a risk-taker portfolio manager may allocate
production to QCL in a La Niña year to reach the highest
expected business profit of 4.13 $/ha with the potential highest
risk (or CVaR) of 8.54 $/ha, which is the average of all ex-
treme losses lower or equal to the fifth percentile of the joint
distribution of all business profits of the portfolio (Fig. 3c).
However, in the same La Niña condition, a risk-averse farmer
could instead shift about 23 and 20% of their production to
WTK and NBT, respectively, for a risk reduction of 25%
(from 4.13 to 3.08 $/ha) and a reduction in expected business
profits of 41% (from 8.54 to 5.02 $/ha).

In general, the optimized portfolio models provide a wider
range of risk reduction and profit increasing options relative to
when ENSO information is used compared to when it is not.
Risk (CVaR) is reduced by 15, 86 and 22% from the highest
level in El Niño, La Niña, and Neutral years, respectively,
when using an ENSO-based optimization approach,

compared to only a 5% risk reduction when no ENSO infor-
mation is used. In all different phases, using ENSO-based
optimization achieves the level of risks lower than in the mod-
el without ENSO information. The lowest values of risk in El
Niño, La Niña, and Neutral years are, respectively, 1.23, 1.19,
and 1.22 $/ha compared to 1.57 $/ha in the non-ENSO based
optimization model. Further, in drought (i.e., El Niño), the
difference in expected business profit obtained at the lowest
level of risk between ENSO- and non-ENSO-based optimiza-
tion is particularly notable. Using ENSO-based optimization,
one can achieve an expected profit of 2.71 $/ha in contrast to
2.30 $/ha from the model without ENSO information. Also at
the lowest level of risk, the expected business profit derived
from the ENSO-based optimization is 1.68 and 2.06 $/ha dur-
ing wet and average rainfall periods (i.e., La Niña and
Neutral), respectively. Given the same values of expected
profits, however, the non-ENSO-based optimization results
in higher levels of risks, which are 1.81 (compared to La
Niña) and 1.61 $/ha (compared to Neutral).

The differences between ENSO- and non-ENSO-based op-
timization is seen when equivalent percentages of production
are allocated to the same regions. The optimized portfolio
models integrated with ENSO information have a higher esti-
mate of expected business profit and lower risk compared to
those derived from the optimized model without ENSO. For
example, allocating production as 80% NBT and 20% WTK,
the non-ENSO-based model estimates the expected business
profit and risk by 2.35 and 1.57 $/ha, respectively (Fig. 3a).
However, when an El Niño year is identified, i.e., the model
with ENSO information, the expected business profit and risk
are 3.01 and 1.27 $/ha, respectively (Fig. 3b).

ENSO-based optimization also provides options to graziers
to achieve much higher gains (expected profits of up to ~ 4.13
$/ha), under La Niña, i.e., by allocating all production to QCL,
the region where ENSO has the highest influence (Table 1;
Fig. 3c). Shifting a part of the production to WTK and NBT
can reduce the downside risk by reducing the expected busi-
ness profit as well. However, the percentage of reduction for
risk is higher than for expected profit. For example, with per-
centages of 68% in QCL, 16% in NBT, and 16% inWTK, the
optimal portfolio model yields expected business profits of
3.34 $/ha and a CVaR of 5.89 $/ha (Fig. 3c). Relative to these
allocation proportions, when all production is allocated to
QCL, the profit is increased to 4.13 $/ha but the risk is also
increased to 8.54 $/ha.

This is the first time that seasonal climate information has
been coupled with a spatial diversification method to provide
information to help graziers simultaneously reduce risk and
increase profitability. These empirical findings highlight the
effectiveness of a spatial diversification strategy to mitigate
the impact of unfavorable ENSO conditions on agricultural
production. In analyzing the risk-return tradeoffs, a portfolio
manager must consider the business profit to diversification
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options and the CVaR. Portfolio managers differ in the degree
to which they take risk. Some managers are willing to take
more risk than others (risk-takers) and some try to avoid tak-
ing risk (risk-averse). From the available evidence (Hurley
2010; Harwood et al. 1999), it appears that risk aversion is
the most common attitude. The risk-averse managers are often
more watchful decision-makers with preferences for less risky
diversification options over maximizing business profit.
Often, they are willing to accept lower business profit by
choosing less risky portfolio diversification options (e.g., the
dashed lines in Fig. 3).

Realizing the benefits of climate-based spatial diversifica-
tion, of course, is predicated on production being moved rel-
atively easily. Several large grazing companies do this in
Australia already (e.g., NAPCO, AACO, CPC), but in a reac-
tive manner (once pastures have reduced beyond a certain
point). These companies own properties across multiple
states, often separated by thousands of kilometers and regu-
larly move cattle using large “road trains” between stations
depending on feed availability. For example, the northern
Australian Pastoral Company (NAPCO) owns multiple prop-
erties across the Northern Territory and Queensland and re-
cently moved half a million cattle in a few months (Carmen
et al. 2019). Moving livestock in response to ENSO informa-
tion is therefore entirely feasible in the Australian context. In
countries with well-developed transportation networks, the
practical application of a climate-informed spatial diversifica-
tion approach should also be feasible. In developing countries,
herding and mustering, while more time consuming than
transportation using trucks, could also be a viable option,
but we acknowledge future research is needed to investigate
this.

Additional to the financial benefits of climate-based spatial
diversification outlined above, there are also several broader
potential socioeconomic and environmental benefits. First, a
climate-informed spatial diversification strategy could assist
graziers to minimize the financial losses that often occur dur-
ing drought. Second, there may be socioeconomic benefits for

agricultural communities by spreading the benefits of agricul-
tural production across multiple regions. Third, the approach
offers a pro-active method for moving stock away from soon
to be drought-impacted pastures, and as such should minimize
land degradation from overgrazing. Overgrazing during
droughts has caused widespread land degradation globally
(Dregne 2002). Approaches that demonstrate the financial
benefit to graziers of moving stock, for example before or
during droughts, as we have here, could help reduce land
degradation. Finally, we also computed the lag correlations
between ENSO and farm business profits (cross-correlation)
across the four locations. The correlation coefficients in 1- and
2-years ahead are higher than the concurrent relationship, im-
plying a potentially prolonged impact of ENSO on farm busi-
ness profits in the next and following years. The benefit of a
climate-informed spatial diversification strategy could there-
fore economically benefit producers for multiple years.

3.3 Limitations and future directions

In this study, all analysis was carried out using ENSO infor-
mation from the year that grazing profitability was collected.
This was required to investigate the link between ENSO and
grazing profitability and to test the utility of our approach.
However, future research could adapt the method we outline
and test the benefit of linking spatial diversification ap-
proaches with forecasts of ENSO. Thirty-year hind casts of
ENSO for the 1981–2010 period yielded average correlation
skills of 0.65 with a 6-month lead time (Barnston et al. 2012),
suggesting it can be forecasted with some accuracy. Thus, the
linking of ENSO forecasts with spatial diversification ap-
proaches could provide producers with greater lead times to
adapt and spatially diversify their production systems, which
could be particularly important for non-livestock producers
that cannot move rapidly. This approach could be valuable
in many areas aside from Australia, as ENSO strongly influ-
ences agricultural productivity in many parts of the world
(e.g., eastern and southern Africa, Brazil, and large parts of
southern and western South America, India, and northern
China, Anderson et al. (2019)).

The benefit of ENSO-based spatial diversification ap-
proaches in practice would also need to carefully con-
sider the costs of transportation (in the case of moving
livestock) or switching production mode and crop (in
the case of cropping). Having a number of properties
spread across climatically different regions for graziers
to move stock between is also another important practi-
cal limitation. Some smaller-scale graziers may not have
the resources to purchase multiple properties. In
Australia, larger grazing companies regularly move live-
stock large distances in response to pasture availability.
However, for cropping enterprises, the costs of
switching production practices could be far greater and

�Fig. 3 Tradeoff analysis of optimized values between expected business
profit and Conditional Value-at-Risk (CVaR) (a measure of financial risk,
where higher values equate to more risk) in a spatial diversification in the
cases of unknown ENSO information (a), El Niño (b), La Niña (c), and
Neutral (d) phases with corresponding percentage of production allocated
to each region: The Kimberley in Western Australia (WTK), Barkly
Tablelands in Northern Territory (NBT), Central North (QCN), and
Charleville-Longreach (QCL) in Queensland. For example, in the
Neutral phase (d), WTK:20 and NBT:80 mean that allocating 20 and
80% of production to WTK and NBT, respectively, correspond with the
optimized expected business profit of 2.32 ($/ha) and risk (CVaR) of 1.31
($/ha). The dashed line indicates the position of the lowest risk. From this
line to the left is the minimum variance locus. From this line to the right is
the efficient frontier. CVaR measures the average of all extreme losses
lower or equal to fifth percentile of the joint distribution of all business
profits of the portfolio
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also require much more lead time because production is
typically more intense and expensive. As such for
cropping systems, climate-based spatial diversification
approaches may be less viable and/or perhaps only suit-
able when linked with sufficient ENSO forecasting lead
time. Future research is therefore needed to test the util-
ity of the approach we outline for non-livestock
production.

Climate change projections show increases in the frequen-
cy and severity of extreme climate events and drier conditions
in part of the world, particularly arid and semi-arid regions
where most of the four study sites are (Godde et al. 2019).
Alongside changing rainfall and temperature regimes that will
make grazingmore challenging, any alteration to ENSO under
climate change, which while uncertain, are also likely to have
widespread impacts (Vecchi and Wittenberg 2010). A method
for spreading production risk that takes into account shifting
or intensifying ENSO impacts could become increasingly im-
portant under climate change. The approach we outline is also
adaptable to inform longer-term planning. For example, the
risk spreading approach outlined could be used in combina-
tion with climate change projections to inform the optimal
spread of production under different possible climate futures.

Finally, to better assess the utility of the climate-based spa-
tial diversification approach we outline, higher resolution da-
ta, as well as information on other economic variables, such as
cattle prices and the cost of transportation, is needed. We use
aggregated spatial data on grazing profitability that covers
large areas, but data at finer scales, within each region, may
show different results—and thus different optimal solutions
for minimizing risk and increasing profitability may be found.
At these finer scales, data on cattle prices and the cost of
transportation could also be important factors influencing
climate-based spatial diversification. For example, if transport
costs are high, or cattle prices low, then the economic benefits
of diversification under different ENSO phases we show here
could be either higher or lower and thus the optimal allocation
of grazing lands could differ.

4 Conclusion

The benefit of spatial diversification has been shown for a range
of agricultural production systems, but ours is the first study to
demonstrate the benefit of coupling spatial diversification tech-
niques with dynamic climate information. We demonstrated that
by spatially diversifying production based on climate informa-
tion, Australian graziers can simultaneously reduce risk and in-
crease their profits. The optimal share of production allocated to
each region varies depending on the target of the expected profit
and risk for different climate conditions. The study also empha-
sizes the importance of involving ENSO information into the
optimal portfolio model, particularly during El Niño and La

Niña. Climate-informed spatial diversification offers higher ex-
pected profits in drought (El Niño) relative to the non-climate-
based model while minimizing risk (CVaR). Climate-informed
spatial diversification also provides options to graziers to achieve
much higher expected profits under La Niña in comparison to
when no climate information is used. The approach we outline is
applicable to other agricultural industries vulnerable to climate
variability and in the future could be used to inform a priori
seasonal climate risk management (e.g., strategic selling of stock
and/or increasing production in certain areas in preference of
others based on ENSO forecasts) to minimize (maximize)
climate-related losses (profits) from unfavorable (favorable) cli-
mate conditions.
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