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Abstract
Zinc (Zn) deficiency is a well-documented worldwide problem for crops and humans. Although phosphorus (P) fertilizer
application achieves high grain yield in intensive agricultural systems, it can reduce Zn availability in cereal grains. Therefore,
a quantitative evaluation of the P–Zn antagonism is needed. A global meta-analysis of 51 publications with wheat, maize, and rice
was performed to quantitatively analyze the effect of P application on grain Zn concentration. Phosphorus application reduced
grain Zn concentration by 16.6% for wheat, 20.2% for maize, and 0% for rice. Phosphorus application did not affect soil available
Zn concentration but, averaged across the three crops, significantly decreased root Zn concentration by 9.94%; the reduction was
associated with a reduction in colonization of roots by arbuscular mycorrhizal fungi. Phosphorus application did not affect shoot-
to-root or grain-to-straw ratios of Zn concentration, indicating that Zn translocation and remobilization within the plant were not
reduced by P application. Especially for wheat and maize, the P–Zn antagonism was explained by a “dilution effect” and the
suppression of Zn uptake efficiency by roots rather than by a suppression of translocation and remobilization. In addition to
partially explaining the cause of the P–Zn antagonism, this is the first study using meta-analysis method to quantitatively
demonstrate a P–Zn antagonism for Zn concentration in wheat and maize. Biofortification for increasing the grain Zn concen-
tration may benefit from an increased understanding of how P application affects rhizosphere and root processes.
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1 Introduction

As an essential micronutrient, zinc (Zn) is required for the
health of both crops and humans, but Zn deficiency is current-
ly a widespread problem in human nutrition (Stein 2010;
Cakmak and Hoffland 2012; Gibson 2012). This is especially
true for the populations in developing countries, who rely on
cereal grains as staple foods (Rengel et al. 1999; Palmgren
et al. 2008; Cakmak 2009). Achieving a sufficient Zn intake
from consumption of cereal grains is therefore important.
Phosphorus (P) fertilizer application has increased cereal grain
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yield in the last few decades (Roy et al. 2016), but has globally
reduced grain Zn concentration irrespective of crop species
(Christensen and Jackson 1981; Verma and Minhas 1987;
Biswapati and Mandal 1990; Abbas et al. 2007; Amanullah
2016; Chen et al. 2017; Zhang et al. 2017a). As a conse-
quence, any attempts to increase grain Zn availability should
consider the potentially negative effect of P fertilizer.

Previous studies have evaluated the influence of P fertilizer
application on cereal grain Zn concentrations, usually with
specific conditions and single experiments (Friesen et al.
1980; Debnath et al. 2015; Drissi et al. 2015; Dang et al.
2016; Coetzee et al. 2017; Iqbal et al. 2017; Sánchez-
Rodríguez et al. 2017). The conclusions regarding the P–Zn
relationship have sometimes been quite different. Besides
finding an antagonistic effect of P on cereal grain Zn concen-
trations, researchers have found a non-effect (Su et al. 2018)
or a slightly synergistic effect (Iqbal et al. 2017; Naeem et al.
2018), and these differences might be due to variation in soil
texture, pH, or other soil properties (Haldar and Mandal 1981;
Goh et al. 1997; Grant et al. 2002; Gao et al. 2011; Ghasemi-
Fasaei and Mayel 2012; Hagh et al. 2016). In recent years, a
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number of studies on the effects of P application on cereal
grain Zn have greatly increased. This increase has made it
feasible to use a meta-analysis to quantify the negative/
positive effect of P application on grain Zn concentration
and to identify the underlying mechanisms.

Many studies have focused on the P–Zn antagonism and
have proposed various mechanisms to explain the antagonism
(Ragab 1980; Singh et al. 1986; Totawat and Saeed 1990; Zhao
et al. 2007; Zan 2012; Vafaei and Sarraf 2014; Smith et al.
2017). These proposed mechanisms include reductions in Zn
availability in soil, Zn concentration by roots, Zn translocation
from roots to other tissues, and Zn remobilization from vegeta-
tive organs to grain (Fig. 1a). As the main cereal crops, wheat,
maize, and rice play an important role in providing dietary Zn
intake for human (Fig. 1 b, c, and d). Some studies found that Zn
availability in soil was reduced by P application (Adnan 2016)
because P fertilizer additions enhanced Zn adsorption by in-
creasing the negative charges on the surface of the iron and
aluminum oxides (Saeed and Fox 1979). Other reports showed,
however, that Zn availability in soil was not affected or was even
slightly enhanced by P fertilizer application (Takkar et al. 1976;
Reddy andYadav 1994; Zhang et al. 2012). In a pot experiment,
the rate of Zn uptake per unit fresh weight of maize roots was
Fig. 1 The possible mechanism of P affecting Zn transportation from soil
to grain (a) in cereal crops: winter wheat (b), summer maize (c), and rice
(d). The crops of winter wheat and summer maize are planted in Quzhou
reduced by P application (Safaya 1976). Grain Zn accumulation
is also affected by the translocation and remobilization of Zn
within the plant (Haslett et al. 2001; Pearson and Rengel 1994).
Our previous field studies with wheat and maize on the North
China Plain indicated that root-to-shoot Zn translocation and
shoot-to-grain Zn remobilization efficiency from source to sink
tissues were not affected by P application (Zhang et al. 2015,
2016). Overall, these results suggest that a clear understanding
of the effects of P application on Zn uptake, translocation, and
remobilization is still missing.

Root concentration of Zn has been considered a key pro-
cess determining the Zn concentration in aboveground plant
parts (Zhang et al. 2017b). Root morphology and rhizosphere
processes can affect Zn acquisition. Zinc uptake efficiency in
rice cultivars, for example, is closely associated with root
length, root volume, and root surface area (Chen et al.
2009). In addition, a quantitative meta-analysis clearly
showed that root colonization by arbuscular mycorrhizal fungi
(AMF) can greatly increase crop Zn concentrations (Lehmann
et al. 2014). The mycorrhizal pathway of Zn uptake by roots
contributes to Zn accumulation in wheat grain (Coccina et al.
2019; Watts-Williams et al. 2015; Watts-Williams et al.
2014). Under P deficiency in maize, root exudation of organic
county in China, and rice is planted in Chongqing in China. Photographs
by Wei Zhang
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acids increased (Gaume et al. 2001; Hinsinger et al. 2003),
which can increase soil Zn availability (Duffner et al. 2012).
In contrast, a higher P fertilizer application, which exceeded
the critical P application for maximal value of root morphol-
ogy, can decrease root dry weight, root length, and root sur-
face area (Wen et al. 2017), as well as rhizosphere processes
including root colonization by AMF (Deng et al. 2017) and
root exudation (Shen et al. 2002; Gaume et al. 2001). It re-
mains unclear whether P application induces changes in root
morphology and physiology that further influence the uptake
and accumulation of Zn in the grain of cereal crops.

Crop species markedly differ in their capacity for Zn up-
take in response to P fertilizer addition perhaps because the
effect of P fertilization on root and rhizosphere properties
differs among crops. On a P-deficient soil, for example, a high
rate of root colonization by AMF increased P uptake by maize
(Itoh & Barber 1983; Jemo et al. 2014; Lyu et al. 2016; Deng
et al. 2017; Wen et al. 2017), whereas a large amount of root
dry weight was more important for P uptake by rice (Chin
et al. 2011). These root and rhizosphere traits in different crops
may further influence P and Zn uptake by roots. A quantitative
evaluation of the effect of P application on the Zn nutrition of
the major cereal crops is therefore necessary.

In the current study, we conducted a meta-analysis to test
two hypotheses: (1) P fertilizer application does not affect Zn
translocation efficiency or remobilization efficiency but re-
duces Zn uptake efficiency by roots and (2) especially in
wheat and maize, P fertilizer application reduces root Zn up-
take efficiency in part by reducing AMF colonization of roots.
To test these hypotheses, we conducted a meta-analysis in
order to quantitatively evaluate the effects of P fertilizer ap-
plication on grain Zn of the main cereal crops (wheat, maize,
and rice). We also used the analysis to explore the possible
mechanisms controlling Zn mobilization from soil to grain
and to explore the possible reasons for differences among
the three crops in P–Zn antagonism.
2 Materials and methods

2.1 Literature search

We conducted a literature search using the ISI Web of
Knowledge (http://apps.webofknowledge.com) and the
China National Knowledge Infrastructure database (CNKI,
http://www.cnki.net) to collect the peer-reviewed journal arti-
cles published before March 2019. By using search terms
phosphorus* AND zinc* AND (wheat OR maize OR corn
OR rice), we collected a total of 51 articles (46 in English
and 5 in Chinese), which were conducted at 43 locations glob-
ally. Among the 51 articles, 25, 16, and 6 solely concerned
wheat, maize, and rice crops, respectively; 3 considered both
wheat and maize crops; and 1 considered both rice and wheat
crops. Our analysis included reports concerning all types of
wheat (spring wheat, winter wheat, and durum wheat), maize,
and rice and reports from both field and reports greenhouse
experiments. Among the 51 articles, 28 described field stud-
ies, 22 described greenhouse studies, and 1 described a field
and greenhouse study. Data were further scrutinized and ex-
tracted using the following inclusion criteria: (1) studies
should include pair-wise control (no P fertilizer application)
and P treatments (P fertilizer added) such that the P treatments
have the same indicators as the control; (2) crop species were
wheat, maize, or rice; (3) if one paper reported multiple inde-
pendent experiments (e.g., two experiments at separate loca-
tions, years, and crops), each was considered an individual
study and was incorporated as an independent observation in
our dataset; and (4) Zn concentration in grain, straw, shoots, or
roots was reported. Zn and P concentrations in grain, straw,
and roots were measured as mg Zn kg−1 and g P kg−1, respec-
tively. In this report, Zn “content” is equal to Zn concentration
multiplied by the dry weight of the indicated plant part. Data,
i.e., means, standard deviations, standard errors, and number
of replicates were collected from tables and figures by using
GetData Graph Digitizer (version 2.25).

The following information was documented for each study:
crop; Zn concentrations and dry weights in grain, straw, and
roots; Zn content in grain and straw; AMF colonization; organ-
ic acid exudation; experiment site; experiment type; year; soil
type; soil P concentration (Olsen-P, Bray-P, total P); soil Zn
concentration (DTPA-Zn, total Zn, and water soluble Zn); and
Zn application. The term “shoot” refers to aboveground plant
parts. The term “shoot Zn content” refers to the sum of the
aboveground Zn content in grain and straw at crop maturity.

In this study, root Zn concentration was considered an
indicator of Zn uptake efficiency, and the shoot-to-root Zn
ratio and grain-to-straw Zn ratio are used to calculate the
translocation efficiency of Zn from roots to shoots and the
remobilization efficiency of Zn from straw to grain as shown
below:

shoot−to−root Zn ratio

¼ shoot Zn concentration=root Zn concentration

grain−to−straw Zn ratio
¼ grain Zn concentration=straw Zn concentration

ΔGrain Zn concentration and Δsoil Zn concentration

(DTPA-Zn, total Zn, and water soluble Zn) are calculated by
the following equations in order to analyze the change in
values caused by P application compared to the control:

Δgrain Zn concentration

¼ grain Zn concentration with P application−grain Zn
concentration without P application

http://apps.webofknowledge.com
http://www.cnki.net
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Δsoil available Zn concentration
¼ soil available Zn concentration with P application−
soil available Zn concentration without P application
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2.2 Data analysis

In the meta-analysis, the natural logarithm of the response
ratio (lnR) is calculated as the effect size (Hedges et al.,
1999), i.e., the effect of P treatments on Zn concentration in
crops, using the following equations:

R ¼ Xt

Xc

lnR ¼ ln
Xt

� �
¼ ln Xtð Þ−ln Xcð Þ
Xc

where Xt is the mean of Zn concentration in grain, straw, or

roots for the P treatment and Xc is the mean of those concen-
trations for the no P control. Mean effect sizes and bias-
corrected 95% confidence intervals (CIs) were generated
using a bootstrapping procedure (4999 iterations). To facili-
tate the interpretation, the percentage of change in Zn concen-
tration of crops in the P treatment relative to no P control is
calculated by the following equation:

Change in Zn concentration %ð Þ ¼ R−1ð Þ � 100%

¼ Xt−Xc
Xc

� �
� 100%

A positive value indicated an increase in Zn concentration

of crops under P treatment relative to the control, while a
negative value indicated a decrease. The mean percentage
changewas considered significantly positive or negative when
the 95%CI did not overlap with zero. In addition, the frequen-
cy distributions of effect sizes were plotted to reflect the dis-
tribution regularities of individual studies. The frequencies of
effect sizes were also fitted to a Gaussian distribution function
Changes in st
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Fig. 2 Changes in the dry weight of grain (a), straw (b), and roots (c) of
three cereal crops in response to P application compared to the control.
The values are means with 95% bootstrap confidence intervals, and
sample sizes are in parentheses. The zero point indicates no effect in
to test the homogeneity of observations. The effect of P fertil-
izer application was considered significant if the 95% CI did
not overlap with zero. Means of categorical variables were
considered significantly different if their 95% CIs did not
overlap with each other.

2.3 Statistical analysis

The effect sizes fit a normal distribution (range from − 1.28 to
0.44, P > 0.05) according to Kolmogorov-Smirnov analysis,
suggesting that the data were suitable for a meta-analysis.
Mean effect size, changes in Zn concentration, and corrected
bias (i.e., the 95% confidence intervals [CI]) for each category
generated using bootstrapping (10,000 iterations) were calcu-
lated using a mixed-effect model with SPSS 13.0 (SPSS Inc.,
Chicago, IL, USA) and SigmaPlot 12.5 (Systat, San Jose, CA,
USA) software. One-way analyses of variance (ANOVAs)
were conducted to evaluate the treatment effect in each figure,
and means were compared using the least significant differ-
ence (LSD) at a 5% level of probability, using SPSS 13.0
(SPSS Inc., Chicago, IL, USA).
3 Results and discussion

3.1 Effect of P application on dry weight and Zn
concentration in grain, straw, and roots

Phosphorus application increased the dry weight of grain,
straw, and roots (Fig. 2). Averaged across the three crops, P
application increased the dry weight relative to the control by
32.8% for grain, 39.2% for straw, and 49.5% for roots. For
grain dry weight, the increase caused by P application was
35.7% for wheat, 25.8% for maize, and 14.7% for rice (Fig.
2a). The increase in straw and root dry weight was greater for
wheat and maize than for rice (Fig. 2 b and c).

Table 1 showed that P fertilizer application decreased Zn
concentration in all tissues. The grain Zn concentrations were
raw dry weight (%)
40 60 80

Changes in root dry weight (%)
0 20 40 60 80

(n=56)

(n=63)

(n=6)

c
(n=125)

dry weight of grain, straw, and root of crops under P treatment relative
to the control. Means with confidence intervals that do not overlap zero
indicate that the dry weight was significantly affected by P application



Table 1 Effects of No P and P
application on Zn concentrations
in grain, straw, and root of wheat,
maize, and rice

Characteristics Unit No P P application

Minimum Maximum Mean Minimum Maximum Mean

Grain Zn

Wheat mg kg-1 17.8 60.4 37.7 8.2 50.3 30.8

Maize mg kg-1 18.3 62.2 36.3 12.8 56.3 25.2

Rice mg kg-1 14.9 38.4 22.0 15.6 35.9 20.6

Straw Zn

Wheat mg kg-1 5.61 66.9 23.4 4.1 46.0 15.1

Maize mg kg-1 11.9 54.5 33.8 6.2 46.4 20.7

Rice mg kg-1 24.1 74.3 45.4 25.7 48.2 33.0

Root Zn

Wheat mg kg-1 15.2 97.9 41.7 13.5 100.2 36.5

Maize mg kg-1 3.52 53.0 33.5 3.33 55.0 19.2

Rice mg kg-1 36.7 89.5 63.3 27.1 59.3 44.1
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reducing from 37.7, 36.3, and 22.0 mg kg−1 under no P appli-
cation to 30.8, 25.2, and 20.6 mg kg−1 under P application of
wheat, maize, and rice, respectively. In terms of the Zn reduc-
tion degree, across all 51 studies, we found an overall negative
effect of P application on grain Zn concentration (− 16.0%, CI =
− 17.8% to − 14.2%; Fig. 3a). The reduction in grain Zn con-
centration caused by P application was 16.6% for wheat and
20.2% for maize; P application, however, did not significantly
affect the grain Zn concentration in rice. Phosphorus applica-
tion reduced straw Zn concentration by an average of 21.9%
across the three crops; the reduction was 24.2% for wheat and
28.2% for maize (Fig. 3b), but the P application did not signif-
icantly affect straw Zn concentration in rice. The reduction in
root Zn concentration caused by P application was 15.8% for
wheat and 8.22% for maize (Fig. 3c), and once again, P appli-
cation did not significantly affect the root Zn concentration for
rice. P application increased Zn content in grain, straw, and root
of wheat and rice, but had no effect or slightly decreasing ten-
dency on Zn content of maize (Fig. 3 d, e, and f). Compared
with the control, P application resulted in an overall increase of
6.75% in shoot Zn content for all crops; the increase was 12.5%
for wheat and 10.8% for rice (Fig. 3g); P application had no
effect on shoot Zn content for maize.

This global-scale meta-analysis provided quantitative evi-
dence that despite increasing grain yield, P application reduced
cereal grain Zn concentration. This negative effect of P fertilizer
application potentially hinders Zn biofortification progress
worldwide, especially for wheat and maize, for which the re-
duction in grain Zn was greater than for rice. The difference
between rice and the other two crops has several potential ex-
planations. First, the mobilization of P and Zn is greater in
paddy soil than in dryland soil (Faye et al. 2006). Second, the
decrease in AMF colonization due to P application was greater
for maize and wheat roots than for rice roots. A previous study
indicated that colonization of rice roots by AMF is rare due to
the anoxic environment under the flooded conditions (Ilag et al.
1987).

To our knowledge, this is the first study to use meta-analysis
method to quantitatively evaluate Zn concentration reduction
extent due to P fertilizer application in grain of wheat, maize,
and rice crops. We speculate that the reduction in grain Zn
concentration for wheat, maize, and rice by P application may
be influencing human health because high inputs of P fertilizer
have been extensively reported for the intensive production of
these three crops (Vitousek et al. 2009; MacDonald et al. 2011;
Conley and Likens 2009). This concern with human health is
particularly relevant for people who rely on wheat or maize as
staple crops. In the case of wheat, it is reported that an adult
human could consume 300 g grain d−1, and that only 20% of
whole grain Zn will be finally absorbed by the human intestine
(Rosado et al., 2009). On the basis of grain Zn concentration in
the present study (Table 1), 300 g d−1 of wheat grain with no P
application treatment could provide 2.26 mg Zn d−1; however,
humans who eat wheat grain from crops receiving P fertilizer as
main food only obtain 1.84 mg Zn d−1. This suggests that P
fertilizer application indirectly decreases human Zn intake by
19% compared to no P application. The study therefore indi-
cates that production areas with high rates of P fertilizer appli-
cation should pay close attention to P–Zn antagonism. With
respect to human nutrition and health, the consumption of
wheat flour as a staple food may result in higher risk of low
Zn intake than the consumption of rice.

3.2 Which factors determine grain Zn concentration?

Phosphorus application had no effect on the grain-to-straw Zn
ratio (Fig. 4 a, b, c, and d) or shoot-to-root Zn ratio (Fig. 4 e, f,
g, and h) for any of the three crops. Compared to the control, P
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application also had no effect on the soil available Zn concen-
tration for any of the three crops (Fig. 4 i, j, k, and l). P appli-
cation, however, reduced root colonization by AMF by 31.5%
for wheat and by 41.5% for maize, but did not affect AMF
colonization of rice (Fig. 5a). Phosphorus application generally
did not affect root exudation of organic acids (Fig. 5b).

For all crops, Δgrain Zn concentration was not related to
Δsoil available Zn concentration (Fig. 6a),Δshoot-to-root Zn
ratio (Fig. 6c), or Δgrain-to-straw Zn ratio (Fig. 6d). In con-
trast, Δgrain Zn concentration in wheat and maize increased
linearly with Δroot Zn concentration (Fig. 6b).

Previous attempts to explain the P–Zn relationship focused
on four processes affecting the movement of Zn from soil to
grain: availability of soil Zn, Zn uptake efficiency by roots, Zn
translocation from roots to shoots, and Zn remobilization from
vegetative organs to grain (Lambert et al. 1979; Lu and Miller
1989; Jain and Dahama 2006; Kizilgoz and Sakin 2010; Jin et
al. 2014; Khan et al. 2014; Imran et al. 2015; Li et al. 2015).
The interaction between P and Zn in the soil did not explain the
negative effect of P fertilizer on cereal grain Zn concentration in
the current global-scale meta-analysis. The level of soil avail-
able Zn was not affected by P application (Fig. 4 i, j, k, and l),
which was consistent with previous individual study
(Bogdanovic et al. 1999). In fact, the results indicated that the
soil P levels in the present agricultural systems were far lower
than the level required to decrease soil available Zn (Chen et al.
2019). Consistent with results of Zhang et al. (2016), our meta-
analysis revealed that P fertilizer application did not affect the
root-to-shoot transport of Zn, i.e., Zn transport from roots to
shoots does not appear to contribute to the decline of grain Zn
concentration in response to P application. The grain-to-straw
ratio of Zn was also not affected by P application, indicating
that P application did not affect Zn remobilization. That result
was consistent with our previous finding that Zn remobilization
efficiency was not affected by P application rate (Zhang et al.
2015).

In addition, in regarding to the reasons of P–Zn antagonis-
tic, the “dilution effect” also causes decrease in Zn concentra-
tion (Racz and Haluschak 1974; Moraghan 1984; Orabi et al.
1985; Maftoun and Moshiri. 2010; Lu et al. 2011; Mai et al.
2011a; Mai et al. 2011b; Zhang et al. 2017c). This study
showed that the dry weight and Zn contents were slightly
increasing with increasing P application, while Zn concentra-
tion was continually decreasing (Fig. 3). Under the low avail-
able P in soil, increasing P fertilizer rapidly enhances crops’
biomass or yield, and the “dilution effect” maybe plays an
important role in reduction of Zn concentrations, especially
when the amount of P fertilizer increases from less to
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appropriate, whereas increasing P fertilizer from optimal to
excessive has little or no effect on further improvement of
crops biomass or yield, but Zn concentration is continuous
declination (Zhang et al. 2012). Meanwhile, the increased
yield was associated with different trends in the concentra-
tions of Fe, Cu, and Mn in grain compared to Zn concentra-
tions (Zhang et al. 2012). This meant that it could not be only
Changes in AMF colonization (%)
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Fig. 5 The effects of P application relative to the control on changes in
AMF colonization (a) and on changes in root exudation of organic acid
(b) for wheat, maize, and rice. Values are means with 95% bootstrap
confidence intervals, and sample sizes are in parentheses. The zero
point indicates no effect in AMF colonization and organic acid of crops
explained by the “dilution effect” but the limitation of Zn
acquisition capability by root. Together, these results indicate
that the negative effect of P application on grain Zn concen-
tration is not due to reductions in available soil Zn or to trans-
location or remobilization of Zn within plants.
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treatment, application of P fertilizer increased wheat grain dry
weight by 35.7% and wheat shoot Zn content by 12.5%.
Together, the decrease in Zn concentration in wheat roots,
the substantial increase in wheat grain weight, and the smaller
increase in wheat shoot Zn content suggest that Zn uptake
efficiency by wheat roots is limited by P fertilizer application.
The results confirm that the reduction in root Zn concentration
caused by P application cannot be attributed to a restriction of
root growth but instead can be attributed to the “dilution ef-
fect” (an increase in root biomass without a concomitant in-
crease in root Zn content) and to a reduction in Zn uptake
efficiency. A previous study also indicated that P application
could restrict Zn concentration by roots (Zhang et al. 2016).
Some physiological factors, including root dry weight, root
colonization by AMF, and root exudation of organic acids,
have been reported to indirectly affect Zn concentrations fol-
lowing P application (Hoffland et al. 2006; Lambers et al.
2006; Cavagnaro et al. 2010; Tian et al. 2012). The current
global-scale meta-analysis is consistent with these previous
reports.

Phosphorus application could potentially decrease root Zn
concentration by decreasing root colonization by AMF and by
decreasing root exudation of organic acids. Our meta-analysis
indicated that P application reduced AMF root colonization,
which is consistent with previous reports (Teng et al. 2013;
Thompson et al. 2013). According to previous reports, AMF
increase root uptake of P andmetal elements (e.g., Zn, Cu, and
Fe), which indicated that an increase in AMF root
colonization can increase root uptake of Zn and P (Kothari
et al. 1991; Smith 2003; Cavagnaro 2008; Ryan et al. 2008;
Smith et al. 2011). A previous meta-analysis also reported that
AMF increased Zn concentrations in various crops under P-
deficient conditions (Lehmann et al. 2014). In wheat, P-
deficient conditions caused the roots to increase their exuda-
tion of organic acids, which can increase P and Zn availability
in the rhizosphere (Khademi et al. 2010). It is well indicated
that organic acid exudation is able to mobilize Zn in soil. For
instance, Rose et al. (2011) proposed that for rice, enhanced
malate exudation was a response of Zn efficient rice geno-
types to Zn deficiency. Another study also proved that carbox-
ylates exuded by root increased Zn mobilization from a cal-
careous soil (Degryse et al., 2008), whereas the present study
showed that P application reduced total organic acid exuda-
tion which was consistent with Shen et al. (2002). The results
therefore indicated that P application could potentially affect
rhizosphere processes and thereby decrease root Zn
concentration.

3.3 Attaining both high grain yields and high grain Zn
concentrations

We therefore suggest that the negative effect of P application
on grain Zn concentration might be reduced by field manage-
ment practices that alter root and rhizosphere properties, i.e.,
that increase root dry weight, AMF colonization, and organic
acid exudation. In intensive agricultural production systems,
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the quantities of P fertilizer applied have frequently exceeded
crop requirements in some regions (Vitousek et al. 2009). The
quantity of P fertilizer applied, however, should be one that
achieves both high grain yield and high grain Zn concentra-
tion. An optimal level of P fertilizer should be established
based on soil P tests, crop requirements, and on data
concerning the effects of P supply on crop roots and rhizo-
sphere properties (Shen et al. 2013; Teng et al. 2013; Deng
et al. 2017; Zhang et al. 2018). Teng et al. (2013) found that
the optimal rate of P application for maximum grain yield was
at or near the rate that began to negatively affect root and
rhizosphere properties. In addition, crop breeding programs
should attempt to improve root and rhizosphere properties
(e.g., AMF colonization and organic acid exudation) so as to
achieve both a high P-use efficiency (Hinsinger et al. 2005;
Veneklaas et al. 2012) and a high grain Zn concentration. For
instance, over-expression of PSTOL1 (phosphorus-starvation
tolerance 1), which increases early root growth in rice, signif-
icantly increases grain yield in P-deficient soil by enabling
plants to acquire more P and other nutrients (Gamuyao et al.
2012). In another example, the genes STOP1 (a transcription
factor) and ALMT1 (a malate transporter) underlie a malate
exudation-dependent mechanism of Fe relocation in the root
apical meristem and are essential for reprogramming root
growth under low-P conditions (Mora-Macías et al. 2017).
The current meta-analysis clearly shows that biofortification
for increasing grain Zn concentration, whether via agronomic
management or breeding, should account for the effects of P
application on root and rhizosphere properties.
4 Conclusion

According to our meta-analysis, P fertilizer application result-
ed in an overall reduction of 16.0% in grain Zn concentration
of wheat, maize, and rice. Zn content in grain, straw, and root
of wheat and rice increased with increasing P application ex-
cept for maize. Zinc mobilization processes, including soil
available Zn, Zn translocation, and Zn remobilization, were
not affected by P fertilizer supply and did not contribute to the
reduction of grain Zn concentration. Root Zn concentration
was substantially reduced by P fertilizer application and
played an important role in decreasing grain Zn concentration.
Our analysis indicated that P application decreased root Zn
concentration by the “dilution effect” due to increasing root
dry weight, and by altering root and rhizosphere properties
including root colonization by AMF. P application increased
wheat and maize biomass more than rice biomass, partly
explaining why grain Zn concentration was reduced more in
wheat and maize than in rice. Our meta-analysis is the first to
assemble and assess quantitative data demonstrating a nega-
tive effect of P application on grain Zn concentration for
wheat, maize, and rice. Our analysis is also the first to use
meta-analysis to indicate that antagonism between P and Zn
can be explained by the “dilution effect” and root and rhizo-
sphere properties.
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