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Abstract
Global trends in demand for biomass-based food, feed, energy, and fiber call for a sustainable intensification of agricultural
production. From the perspective of sustaining soil functions, this implies the integration of soil productivity with the other soil
functions and services, namely carbon sequestration, water purification and retention, and nutrient and matter cycling as well as
biodiversity. Soil management is the key to this integration. The proper anticipation of future opportunities and challenges for
sustainable soil management requires an analysis of drivers and trends affecting soil management. Here, we review drivers and
trends of soil management and their relevance for soil functions taking Germany as an example of industrialized agricultural
systems with low yield gaps. We analyzed socio-economic, biophysical and technological drivers and identified two types of
future management changes: (1) Quantitative changes, i.e., more or less of the same input factors, such as fertilizers, as part of a
moderate intensification. (2) Qualitative changes: There, we found the strongest signals for the following practices: higher
precision and lightweight machines triggered by information and communication technology (ICT) and robotics; diversification
of crop rotations, including the integration of lignocellulosic crops; inoculation with biota; and new crop varieties. Positive
practices may be reinforced by a behavioral trend towards sustainable soil management, driven by increasing awareness,
knowledge, and consumer demand. They offer opportunities for relieving mechanical pressures from weight and contact stress,
chemical pressures from pesticides and fertilizers and promoting soil biodiversity without compromising the soil’s production
function. We also found threats, such as increased removal of organic residues and potentially harmful organisms. This foresight
study is the first to delineate opportunities and challenges for sustainable soil management and intensification. It informs
researchers who intend to improve the knowledge base for reinforcement of positive and mitigation of negative trends of soil
management.
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1 Introduction

The sustainable management of agricultural soils is a global
concern. Soils are the basis for producing the greatest quantity
of food and feed and contribute an increasing share of biomass
for energetic and industrial purposes. Agricultural soils also
fulfill fundamental functions for ecosystem services, such as
water and nutrient regulation and carbon storage, and they
contribute essentially to biodiversity. But at the same time,
soil functions are threatened by degradation processes, and
approximately one quarter of global cropland may already
be degrading due to human pressures (Le et al. 2016).

While intensive agriculture is generally associated with
promoting soil degradation, the reality is more complex
(FAO and ITPS 2015). The occurrence and rate of soil degra-
dation depend on the combination of soil management deci-
sions and their interrelations with local geo-biophysical,
socio-economic, and climatic conditions. The terms “sustain-
able intensification” (Garnett et al. 2013) and “ecological in-
tensification” (Tittonell 2014) initiated the challenge for agri-
cultural management to increase the production while mini-
mizing the resource use, intensifying ecological interaction,
exploiting the inherent capacity of the soils to produce, and
maintaining all other soil functions and ecosystem services.
This indicates that the multifunctionality of soils (Schulte et al.
2014) must be managed and improved.

Taking appropriate actions for sustainable intensification
requires the analysis of drivers of soil management and the
challenges and opportunities they entail. This is especially true
for research; being an important driver, it has the potential to
reinforce positive and mitigate negative developments regard-
ing soil management. As research often takes many years
before the results may become applicable in the field
(Colinet et al. 2014, similar Alston et al. 2008), foresight on
the drivers of soil management is important to inform research
directions.

For Europe, a number of foresight studies on agriculture
exist. Important examples include Last et al. (2015) with a
foresight study on the Swiss food system, Teagasc (2016) on
the Irish agri-food sector, and Foresight (2011) and
Alexandratos and Bruinsma (2012) on the future of food and
farming on a global scale. Schindler et al. (2014) and EU

SCAR (2016) addressed information and communication
technologies (ICT) and robotics in European agriculture in
their broader foresight studies. Other types of studies, such
as forecasts and projections (cited in Section 3.1), address
the demand side of products from agricultural soils. None of
these studies directly addresses soil management, but together,
they anticipate an intensification of agricultural production at
the global level, which poses threats to soil functions. But the
studies also imply opportunities for improved soil manage-
ment. However, to date, no foresight or similar study has fo-
cused directly and comprehensively on the management of
agricultural soils. Nevertheless, soil management is the key
pressure shaping soil multifunctionality.

This paper presents a review of the drivers of soil manage-
ment for the exemplary case of Germany as one of the highly
industrialized countries with very low yield gaps. The aimwas
to analyze the existing evidence of emerging trends in soil
management practices (Fig. 1) and to identify upcoming and
future opportunities and challenges for soil functions that are
relevant to be addressed, among others, in experimental re-
search and scenario modeling. This study was conducted in

Fig. 1 Technological development is a key driver of change in soil
management. The example is one of the first agricultural robots being
close to commercialization, which are small and lightweight, so that they
can reduce weight and contact stresses and facilitate smaller-scaled field
patterns. As its main task, this robot can make weed control much more
efficient. It identifies the weeds with a sensor and sprays each plant
individually. The developers are also working on an implement for
organic farming. (photo credits: Ecorobotix autonomous robot weeder,
2016)
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the frame of the German research program “BonaRes—soil as
a sustainable resource for the bioeconomy” (www.bonares.de/
en/) to inform research and modeling activities. Its
implications are also relevant for the wider research
community.

2 Materials and methods

2.1 Analytical framework

The conceptual starting point of the analysis was the
DPSIR (Driver-Pressure-State-Impact-Response) frame-
work introduced by the European Environment Agency
(Smeets and Weterings 1999). “Drivers” are defined as
social, economic, or environmental developments that
lead to “pressures” being exerted on the environment
(Tscherning et al. 2012). In our case, “pressures” are
exerted by soil management leading to changes in the
“states” of soils regarding their processes and functions.
These changes, in turn, lead to different social, economic,
or environmental “impacts,” such as climate change mit-
igation, and may lead to different societal “responses,”
e.g., mitigation policies. It is important to note that “pres-
sure” in this context is not necessarily connected to neg-
ative outcomes but to any activity that causes changes in
soil functions, negatively or positively.

The analytical framework of this study (Fig. 2) builds upon
the DPS part of DPSIR. We identified the type of soil

management changes (pressures) that may emerge in response
to the identified drivers. The drivers were clustered into socio-
economic, biophysical, and technological categories. Drivers
acted upon pressures (soil management) in two ways, quanti-
tatively and qualitatively:

1) Quantitative changes affect soil management in terms of
decreased or increased biomass production. Ceteris
paribus, the quantities of production factors are changed,
e.g., adding less/more of the same fertilizer with the same
application technology as before.

2) Qualitative changes affect specific aspects of soil man-
agement qualitatively, for example, by making the crop
rotation more diverse.

We reviewed whether such soil management categories
affect soil functions. We refer to the five key soil func-
tions relevant to agricultural soils: (1) the production of
food, fiber, and biofuel; (2) water purification and reten-
tion; (3) carbon sequestration; (4) habitat for biodiversity;
and (5) recycling of nutrients and (agro)chemicals
(Schulte et al. 2014, complemented by the item water
retention). For quantitative changes (Section 3), we
contrasted the extensification and intensification of the
production with intensification prioritizing the production
function of soils and thus potentially threatening other soil
functions. For qualitative changes (Section 4), we

Fig. 2 Analytical framework: Drivers of soil management trigger
quantitative and/or qualitative changes in soil management (pressure).
Quantitative changes refer to in-/extensification without qualitative

changes in the system (more or less of the same input factors such as
fertilizers). The changed soil management may lead to changes in soil
functions (state)
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contrasted improving and threatening influences on soil
functions.

2.2 Literature and document analysis

The material analysis was conducted between January and
November 2016 and included a total of 267 sources that were
analyzed in the following three steps:

1) The first step was to analyze existing foresight stud-
ies, projections, and forecasts for their relevance for
agricultural soil management. In this process, we
identified drivers of soil management, how they are
developing and how they affect soil management.
This analysis was based on scientific literature. We
preferred peer-reviewed meta-studies and systematic
reviews over peer-reviewed reviews over peer-
reviewed research studies over gray literature
(Table 1). The latter was also included in the analysis
because foresight studies have mostly been published
as such and not as peer-reviewed literature. The lit-
erature search was initially performed with Google
Scholar and Web of Science. Because Google
Scholar returned more useful results, this search en-
gine was ultimately used.

2) The second step was to identify further drivers of agricul-
tural soil management beyond the future-oriented litera-
ture. Important examples are studies that identify correla-
tions between farmers’ attributes and soil conservation
behavior and studies that identify correlations between
exogenous factors such as dietary changes and global
land use changes. This step was fundamental, as docu-
ments analyzed in step one addressed agricultural produc-
tion in general, but none addressed soil management in
particular. The literature search followed the same process
as step one.

3) The third step was to assess what role the drivers of
agricultural soil management, identified in steps one
and two, play in Germany, i.e., what the characteristics
of drivers in Germany are, and what kind of changes in
soil management they may lead to. Sources included
scientific evidence, governmental sources, and other
sources (Table 1). Governmental sources were used to
analyze, if available, statistics and forecasts of some
drivers, for example, the changes in farmers’ attributes
such as age and education. For public debate on a driver
or pressure, the three most relevant German magazines
for this analysis (Top Agrar, DLG-Mitteilungen, Agra-
Europe), directed at different stakeholder groups, were
sighted and selected according to the analytics of the
readers of several magazines (Schleyerbach 2009), their
own descriptions of their target groups (DLG-
Mitteilungen 2016; Agra-Europe 2016e), and the au-
thors’ experiences. Other online information for differ-
ent stakeholders was taken into account to analyze ei-
ther the public debate (e.g., a statement of an important
lobby group) or to analyze the market and industry
trends when there was no current scientific analysis
available.

Most sources were analyzed qualitatively with a mixture of
an inductive and a deductive approach. For example, the pro-
cess started out with some knowledge and ideas of drivers. So
we looked for evidence of those drivers but also openly for
additional drivers. We extended or rearranged our categoriza-
tion (Fig. 3) of drivers when finding new drivers. Some offi-
cial statistics were evaluated quantitatively by, for example,
calculating percentages of farmers’ attributes in clusters of
age.

The approach was influenced by the fact that there is
very little literature available that specifically addresses

Table 1 Sources of the analyzed material and hierarchy of their selection

Type Analytical topics Hierarchical
level

Sources

Scientific evidence Foresight reviews, identification of drivers,
specification of drivers, public debate,
technological development

1 Peer-reviewed meta-studies/systematic reviews

2 Peer-reviewed other reviews

3 Peer-reviewed research articles

4 Gray literature

Governmental sources
(national and international)

Specification of drivers 1 Official statistics

1 Laws and legally binding commitments/treaties

2 Not legally binding strategies/goals and associated
communications

Other sources Public debate, technological development 1 Agricultural magazines

1 Online information on different stakeholders
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the drivers of soil management. The exception is literature
on the adoption of conservation behavior, but this is only
a small part in this overall analysis. This is one reason
why the study had to be explorative, taking very broad
and diverse material into account. Also, the foresight
character of the study made it necessary to capture media
discussion and to view sources that have not yet been
scientifically analyzed or been published in peer-
reviewed articles.

Important to note is that prices of agricultural prod-
ucts and market dynamics are, with exceptions, not
regarded as the main drivers. Prices are in the medium
and long term mainly a translation of the increased or
decreased demand for products into financial terms,
while the demand in terms of the amount of biomass is
the driver of interest here. Several studies, cited in
Section 3, have assessed the commodity demand with

economic models; thus, market dynamics underlie some
of the results.

3 Quantitative changes in pressures on soil
functions

A complex net of the drivers and trends of soil management
was identified, shown simplified in Fig. 3. Drivers evoking
quantitative changes in soil management (intensification and/
or extensification by using more or less of the same inputs in
the same manner) are listed in Table 2 and further outlined
with short narratives in this section. Ceteris paribus, intensifi-
cation, i.e., producing more biomass from the same land, is
connected to higher nutrient, pesticide, and water input and
higher harvest frequencies (FAO and ITPS 2015: 60ff.).

Fig. 3 Overview of the identified drivers of soil management, categories
of soil management (pressures) changes, and soil functions (state) that are
affected by soil management. Socio-economic, biophysical, and
technological drivers affect soil management in terms of changing

intensity (quantitative changes) and in five categories of qualitative
changes. The pressures together affect soil processes, which in turn
affect the interaction between the soil productivity function and the
other soil functions
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Table 2 Drivers and trends of quantitative pressures on soil functions (intensity of soil management) at the global level and for Germany

Driver Direction Sources

Global

Consumer demand:

Increasing demand for food for more people and per capita ↑ United Nations 2015; FAO 2015a; FAO 2013a; Godfray and
Robinson 2015; Foresight 2011; Tilman et al. 2011; Valin et al.
2014; Alexander et al. 2015; Kastner et al. 2012

Increasing demand for animal products per capita ↑

Potential mitigation of increase in demand for animal products
per capita

↓

Increasing demand for biomass for bioenergy ↑ IEA 2015: 154; IEA 2012 in Popp et al. 2014; UNFCCC Secretariat
2015; REN21 2015; European Commission 2014; REN21 2013;
EU Renewable Energy Directive (2009/28/EC); Fuel Quality
Directive (2009/30/EC); Erneuerbare-Energien-Gesetz (EEG);
Laggner et al. 2014; Vollprecht et al. 2015; Bundesministerium für
Ernährung und Landwirtschaft 2014; Commission 2012;
Alexander et al. 2015; Foresight 2011

Increasing food losses and waste ↑ Gustavsson et al. 2011; FAO 2013b; Alexander et al. 2015

Potential mitigation of food losses and waste ↓ FAO 2016a; Chalak et al. 2016; European Commission 2015a;
European Commission 2011; General Assembly 2015

Consumer demand/biomass technology:
potentially decreasing demand for biomass for bioenergy because
of technological breakthroughs such as the integration of wind and
solar solutions in urban structures

↓ Foresight 2011; Kolokotsa 2017

Increasing industrial use of biomass ↑ Albrecht and Ettling 2014; Morrison and Golden 2015; OECD 2009;
Institute for Bioplastics and Biocomposites et al. 2015; European
Bioplastics 2015

Soil degradation threats:

Decreased soil production capacity of some soils (including
climate change impact)

↑ FAO and ITPS 2015; Bai et al. 2008; Le et al. 2016; IPCC 2014

Land availability:

Decreased land availability ↑ Gardi et al. 2015; Smith et al. 2016; Lambin et al. 2013;Watson et al.
2014; Alexandratos and Bruinsma 2012

No significant conversion of land to cropland → FAO 2013a; Hansen et al. 2013; Foley et al. 2011; Garnett et al.
2013; FAO and ITPS 2015; Ray et al. 2013; Laurance et al. 2014

Converting land to cropland ↓ Alexandratos and Bruinsma 2012

Technology:

Yield stagnation ↑ Wiesmeier et al. 2015; Ray et al. 2012

Closing yield gaps (and reallocating production) ↓ Alexander et al. 2015; Kastner et al. 2012; Foley et al. 2011; Mauser
et al. 2015

Overall globally ↑ to ↗

Germany

Factor costs:

Relatively low marginal utilities of inputs (price relations plus
low yield gaps and yield stagnation)

→ van Grinsven et al. 2015; Mauser et al. 2015; Wiesmeier et al. 2015;
European Commission 2015b

Climate change:
Narrower crop rotations (including double cropping) in some
regions in the long term

↑ Nendel et al. 2014; Troost and Berger 2015; Gutzler et al. 2015;
Peters and Gerowitt 2014

Policies:

Towards extensification ↓ Isermeyer 2014; Bundesministerium für Ernährung und
Landwirtschaft 2015b; Popp et al. 2015; Erjavec and Erjavec
2015; Wissenschaftlicher Beirat für Agrarpolitik beim BMELV
2010; Agra-Europe 2016b; Deutsche Bundesregierung 2016

Overall Germany ↗ to→

“↑” indicates intensification, and “↓” indicates extensification relative to the intensification trend
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Drivers were analyzed at the global and national levels
because, in a world of globalized trade, the worldwide de-
mand for agricultural products is relevant for overall produc-
tion intensities, while national characteristics shape the nation-
al reactions to global drivers, i.e., the translation into soil
management.

The need for intensification is often asserted by different
stakeholders simply due to the growing world population.
Many studies have attempted to assess the growing demand
for agricultural products. In particular, the studies aiming to
quantify future demand are faced with having to make simpli-
fications, such as considering only the most obvious and
strong drivers, making assumptions about selected factors or
using selected model approaches. In contrast, we abstained
from quantification in favor of drawing a multifaceted picture
of the drivers.

Globally, current projections of food demand suggest a
massive increase derived from population growth and chang-
ing diets towards more animal products, which require more
inputs from cropland and grassland per calorie than plant
products. Changing diets may even surpass the driver of in-
creasing calorie needs (Alexander et al. 2015, Kastner et al.
2012). These two drivers are the greatest in terms of quantita-
tive changes. For example, Godfray and Robinson (2015)
found that a range of different studies suggests increases in
food demand from approximately 2010 to 2050 of between 50
and 100%, involving a high degree of uncertainty. It is possi-
ble that developing countries will start campaigning for
healthy diets earlier in their development stages than industrial
countries, seeing for example how improving diets and pro-
moting sustainable lifestyles is a global endeavor with the
Sustainable Development Goals (United Nations 2015). The
digitalization of the world may support this by passing over
health and animal welfare trends to parts of the developing
world via non-governmental channels. Biomass demand for
energy is projected to increase over the long term. At the same
time, other energy sources and ways to use solar and wind
energy more effectively are likely to be developed, thereby
mitigating the increasing demand for biomass-based energy.
Demand for biomass for industrial purposes is still low, but
some segments grow fast. If the bioeconomy strategies in
place in many countries move the trend forward, this is likely
to significantly increase biomass demand. Food losses and
waste are accounting for the production on approximately
one third of agricultural land (FAO 2013b). This proportion
may increase with the increased adoption of “Western life-
styles,” but there are movements and policies aiming to reduce
food waste; thus, there may be waste reductions that relieve
the pressure on agricultural soils. Closing yield gaps means,
on the one hand, that production is intensified in some parts of
the world. On the other hand, in places in which this intensi-
fication starts from a very low level, it must not be associated
with soil degradation, but it may be more relevant that it

relieves pressure on soils elsewhere. Still, pressure on soils
is also likely to increase because less land will be available
due to competing land uses, and some land will have reduced
production capacities due to soil degradation, climate change,
or other factors accounting for yield stagnation. These reduced
capacities will place more pressure on the rest of the agricul-
tural soils. There are varying assessments of how much land
could be additionally converted to agricultural soils. However,
there is convincing evidence that this area is not large, and
such conversion should generally be avoided due to negative
environmental outcomes.

Overall, it seems that a strong force to increase the produc-
tion on agricultural land is occurring globally, with only little
indication that policymakers and civil societies will succeed to
relax biomass demand by addressing, for example, food losses
and nutrition habits.

Whether and how this demand to produce more biomass is
realized is differentiated locally. Europe on the whole, and
Germany in particular, have very low yield gaps (van
Grinsven et al. 2015), and thus, very low potential biomass
production increases (Mauser et al. 2015: 4) compared to
many other world regions. Because of the low yield gap and
the yield stagnation in Central and Northern European coun-
tries (Wiesmeier et al. 2015), marginal utilities of additional
inputs are much lower than in other areas of the world, so the
economic incentives to intensify are low. Price relations be-
tween inputs and outputs are expected to decrease between
2015 and 2025 in the EU despite increased demand for agri-
cultural products due to higher resource prices (European
Commission 2015b). In addition, European agricultural poli-
cies include measures promoting extensification (agri-envi-
ronmental measures, “greening” of the Common
Agricultural Policy (CAP) of the EU). Such policies have a
mildly increasing trend, which may continue for the foresee-
able future (see Section 4.1). In conclusion, for Europe and
particularly for Germany, one of the countries with the most
industrialized and intensive agriculture, the trends for intensi-
fication may have less strength than in many other parts of the
world, at least in the coming years. In the long term, the further
promotion of the bioeconomy and the longer vegetation pe-
riods (climate change) may reinforce the trend towards inten-
sification after all.

4 Qualitative changes in pressures on soil
functions (changes in soil management)

This section is organized according to the categories of soil
management that were identified as being affected by drivers
and trends. Five categories of soil management pressures can
be differentiated: (i) general behavior concerning soil func-
tions, (ii) spatial patterns, (iii) crops and rotations, (iv) me-
chanical pressures, and (v) inputs into the soil (Fig. 3). The
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last three categories are in line with what Haddaway et al.
(2015) identified as relevant soil management pressures lead-
ing to different soil organic carbon (SOC) contents of soil
(crop rotations, tillage, amendments, and nitrogen fertilizer).
“Spatial patterns” were identified as another category, as they
are important for some soil functions (biodiversity), and they
affect soil degradation processes such as soil erosion. This
category supports the argument of Duru et al. (2015) regard-
ing the importance of the spatial organization of cropping
systems for ensuring the delivery and resilience of ecosystem
services. The first category was identified as an explicit super-
ordinate category because some drivers trigger changes in that
direction irrespective of the specific measures taken. Drivers
affecting qualitative changes to soil management are listed in
the tables together with their sources from the literature, and

an indication of whether these trends are expected to increase
or decrease soil multifunctionality is included. Short narra-
tives on the more complex interrelationships are given in the
subsections; drivers are written in bold italics.

4.1 Behavior concerning soil functions

There are drivers that generally influence whether the soil is
managed in favor of maintaining soil functions (Table 3). This
means that these drivers motivate or enable farmers to consid-
er taking actions to maintain soil functions in general (often
referred to as “conservation behavior”) or to neglect it. Which
specific soil management practices are considered is subject to
different circumstances.

Table 3 Drivers and trends of behavioral aspects concerning soil functions in Germany

Drivers Direction Sources

Behavior concerning soil functions

Consumer demand: trends towards more (perceived)
environmentally friendly (organic, local, non-GMO) products,
traceability, and transparency

↑ Hempel and Hamm 2016; Bund Ökologische Lebensmittelwirtschaft
2012, 2016; Emberger-Klein et al. 2016; Schindler et al. 2014;
Teagasc 2016; Last et al. 2015

Policies: weak trend towards more environmentally friendly
agricultural production (and with ICT, more opportunities
for soil management schemes)

↑ Glæsner et al. 2014; European Commission 2013; Isermeyer 2014;
Popp et al. 2015; Erjavec and Erjavec 2015; Hogan 2016;
Agra-Europe 2016b; Wissenschaftlicher Beirat für Agrarpolitik
beim BMELV 2010; Deutsche Bundesregierung 2016; Teagasc
2016; United Nations 2015; FAO 1982, 2015b; Montanarella
2015; Bundesministerium für Ernährung und Landwirtschaft
2015b; Pe'er et al. 2016; Zander et al. 2016b; Anon 2016 and more
specific policies in the subsections; Agra-Europe 2017; Vrebos
et al. 2017

Attributes of farm(er)s: most important: change in farmers’
age structure and younger farmers are better educated and
more accepting of ICT

↑ Gray et al. 2000; Werner et al. 2014; Wauters et al. 2010; Prager and
Curfs 2016; Norris and Batie 1987; Techen et al. 2015; Lynne et al.
1988; Smit and Smithers 1992; Baumgart-Getz et al. 2012;
Odening et al. 2016; Bundesministerium für Ernährung und
Landwirtschaft 2015a; European Commission 2015b; Offermann
et al. 2016; Parker et al. 2007; Soule et al. 2000; Sklenicka et al.
2015; Fraser 2004; Statistisches Bundesamt 2014a; Kay et al.
2015; Herre 2013; Techen 2015; Prokopy et al. 2008; Statistisches
Bundesamt 2014b; Statistisches Bundesamt 2011; Gindele et al.
2015; Agra-Europe 2016c

Soil degradation threats,
together with more information (ICT)
and improved knowledge (research), may drive soil sensitive
behavior, partially via policies pertaining to soil degradation
threats

↑ Jones et al. 2012; European Commission 2002; Marahrens et al.
2015; Techen 2015; Bundesministerium für Umwelt, Naturschutz,
Bau und Reaktorsicherheit 2007; Stone et al. 2016; Orgiazzi et al.
2016; Thiele-Bruhn et al. 2012; Postma-Blaauw et al. 2010;
Tsiafouli et al. 2015; Clermont-Dauphin et al. 2014; Teagasc 2016;
Deutsche Bundesregierung 2016; Griffiths et al. 2016; COP to the
CBD 2010a, b

Climate change, together with policies, drives mitigation and
adaptation measures, which concern several soil management
categories described in subsequent sections

↑ Buth et al. 2015; Gömann et al. 2015; Ministère de l'Agriculture
2015/2016; Deutsche Bundesregierung 2016; Wissenschaftlicher
Beirat Agrarpolitik et al. 2016; Paris Agreement 2015

Technology (ICT) improves traceability, transparency and
information on soil management impacts

↑ Fountas et al. 2015a; Teagasc 2016

“↑” indicates management likely being beneficial to soil multifunctionality. “↓” indicates management likely being threatening to soil multifunctionality.
“?” indicates that no clear trend could be detected. Data in italics: drivers identified to affect soil management and soil functional changes
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Consumer demand in Germany and other European coun-
tries has trended towards increasing awareness of environ-
mental issues of food production (Table 3). This change is
reflected in the increasing demand for organic (Bund
Ökologische Lebensmittelwirtschaft 2012, 2016) and local
food products (Hempel and Hamm 2016) and the sustained
resistance against genetically modified organisms (Emberger-
Klein et al. 2016). Foresight studies predict that this trend and
the demand for more diverse and specialized food as well as
for the traceability and transparency in production will persist
(Schindler et al. 2014; Teagasc 2016; Last et al. 2015). At the
same time, new information and communication
technologies will enable more traceability and information
on the impacts of soil management on soil functions. This
may feed back towards more explicit demands from
consumers. Fountas et al. (2015a) found that emerging farm
management information systems may become commercial-
ized in the coming decades that respond to the increasing
demand for environmental integration. This improves the
technical basis for certification schemes that include aspects
of soil management. As a consequence, improved soil man-
agement schemes are expected in the future by Teagasc (2016:
63).

Soil management schemes may be realized as part of the
Common Agricultural Policy of the European Union
(policies) (Table 3), which already includes regulations and
funding measures with relevance to soil management. A fur-
ther “greening” of the CAP is to be expected but with unclear
impact. At the European level, better soil governance is not
directly underway after the proposal for the Soil Framework
Directive failed in 2014. However, soil protection is still a goal
of the EU (European Commission 2013), and there are a num-
ber of EU policy instruments relevant for soils (Vrebos et al.
2017; Glæsner et al. 2014). Prominently, under pressure of the
European Commission, the German government improved
the implementation of the Nitrates Directive in 2017 by
amending the fertilization law (Agra-Europe 2017)—a
several-year-long process showing that policy is going into
the direction of protecting natural resources, but with a strong
opposing lobby. For Germany, some signals of a movement
towards sustainable soil management are evident at national
and international policy levels. Most prominently, the UN
2030 Agenda with its Sustainable Development Goals
(SDGs) has recently given greater political attention to sus-
tainable soil use (United Nations 2015). The SDGs have been
integrated into the German sustainability strategy (Deutsche
Bundesregierung 2017) that now acknowledges a stronger
role of soils than before (Deutsche Bundesregierung 2002).
With the first and revised World Soil Charter, all members
of the FAO endorsed the aim to manage soils sustainably,
along with some principles and guidelines for action (FAO
1982, 2015b). However, its uptake in concrete policy action
remains uncertain (Montanarella 2015: 33). In the sections

about climate change and biodiversity loss, more relevant pol-
icies are mentioned in association withmore specific soil man-
agement categories.

There are some attributes of farms and farmers (farm(er)s’
attributes) that have been identified as influencing the ac-
knowledgment of soil functions in soil management
(Table 3). For Germany, a trend towards a higher education
level of farmers, together with the age structure, seems to be
the strongest identifiable trend of farms’ and farmers’ charac-
teristics that, together with technological advancements, may
lead to an improved consideration of soil multifunctionality.
The role of tenure issues, such as whether farmers manage
own or rented land, is not well investigated in the German
context. These issues may be relevant especially because of
the trend in some regions for large farms to be built up by
(domestic or foreign) financial investors with weak or short-
term bonds to the land.

Soil degradation threats may also drive farmers towards
an improved recognition of soil multifunctionality (Table 3).
This may be triggered by improved knowledge and informa-
tion about the extent of soil erosion, compaction, organic mat-
ter decline, and soil biodiversity loss and its feedback on
yields at specific sites (research, ICT) (Table 3). Especially
in the field of soil biodiversity, new insights from research and
monitoring are to be expected (Griffiths et al. 2016; Stone
et al. 2016).

Climate change (Buth et al. 2015; Gömann et al. 2015)
directly drives adaptation to higher temperatures, longer veg-
etation periods, and more extreme weather events, while mit-
igation measures, e.g., carbon sequestration, are primarily
driven by policies (Paris Agreement 2015; Deutsche
Bundesregierung 2016; Bundesministerium für Ernährung
und Landwirtschaft 2015b; Ministère de l’Agriculture 2015/
2016), which, in turn, incentivize farmers to change manage-
ment, affecting all categories of soil management described in
the following subsections.

In summary, consumer demand in combination with new
technologies, research, and the change in farmers’ attributes
are the strongest drivers towards improved recognition of soil
multifunctionality in soil management that have the potential
to counteract the intensification pressure driven by increasing
global biomass demands. Policies are not irrelevant, but they
do not seem to show strong trends towards or against sustain-
able soil management. The role of tenure issues is not ad-
dressed in the literature for the case of Germany but may be
worth investigating further given the fact that the share of
rented land was already 60% in Germany in 2013
(Statistisches Bundesamt 2014a).

4.2 Spatial patterns

Spatial patterns of cropping systems determine the spatial ex-
tent and distribution of fields and crops as well as the quality
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of field transition zones, e.g., between different crops, fields,
or land use types, including forests and grassland. Field tran-
sition zones affect erosion; agricultural biodiversity, likely in-
cluding soil biodiversity; and biological pest control, allowing
reduced pesticide application (Van Oost et al. 2000;
Heißenhuber et al. 2014; FAO 2016b; Médiène et al. 2011;
Haenke et al. 2014).

4.2.1 Field sizes, field patterns, and transition zones

The trend towards larger machinery for economic reasons
(factor costs, especially labor costs) has led to increased field
sizes (Björklund et al. 1999; Baessler and Klotz 2006)
(Table 4). This situation has destroyed field margins and land-
scape elements such as hedgerows or small transition zones
between crops. Although a trend reversal cannot be identified
yet, certainly not for labor costs (European Commission
2015b), field transition zones may increase again due to in-
creased knowledge and awareness about their positive impacts
on soil functions (soil degradation threats, research)
(Table 4). Due to the adverse short-term cost-benefit relation
for farmers, this alone will hardly suffice to motivate farmers
to introduce field margins. However, in the coming decades,

small, autonomous machines, for which the technology is cur-
rently being developed, may become implemented, among
others, because the cost of machine work would be decoupled
from labor costs (ICT and robotics, see Section 4.3). This
would open opportunities for more small-scaled field patterns,
especially if politicians create incentives to realize the possi-
bilities. Currently, the green direct payments of CAP (policies)
encourage landscape elements, although not very effectively
(Pe’er et al. 2016; Zander et al. 2016b), and many, if not all,
agri-environmental programs have been and are subsidizing
landscape elements, flower strips, or other biotopes (Freese
and Keelan 2016) (Table 4). Thus, drivers for smaller-scaled
field patterns are evolving but to what degree the chances for
this will be realized remains insecure.

4.2.2 Intercropping and agroforestry

Intercropping uses the positive effects of transition zones
within the field by growing at least two crops simultaneously
on one field. Similar to intercropping, agroforestry combines
conventional agricultural crops or grassland with woody
plants. Meta-studies show that intercropping has the potential
for sustainable intensification by increasing both total yields

Table 4 Drivers and trends regarding spatial patterns of soil management in Germany

Drivers Direction Sources

4.2.1 Field sizes and transition zones

Factor costs (labor) and technology development: increasing field
sizes to accommodate larger machines

↓ Björklund et al. 1999; Baessler and Klotz 2006; European
Commission 2015b; Jones et al. 2012

Policies: CAP 1st and 2nd pillar measures already in place may be
extended and become more effective in connection with new
opportunities by ICT and robotics

↑ Freese and Keelan 2016, in connection with policies Section 4.1

Soil degradation threats: biodiversity loss, erosion, and new
research results may drive policies and adoption

↑ Björklund et al. 1999; Baessler and Klotz 2006; Van Oost et al. 2000;
Heißenhuber et al. 2014; FAO 2016b; Médiène et al. 2011

ICT and robotics: will facilitate smaller-scale management ↑ See Section 4.4.3

4.2.2 Intercropping and agroforestry

Factors costs: high investment costs and long return periods
(mainly agroforestry) likely to keep on impeding adoption

↓ Nerlich et al. 2013; Musshoff 2012

Policies: small steps towards rewarding these systems have been
made and may be taken further

↑ Bundesministerium für Ernährung und Landwirtschaft 2015b in
connection with policies Section 4.1

Climate change: opportunities in relation to mitigation and
adaptation may influence policy; policies for mitigation in
general already exist

↑ Yu et al. 2015; Smith et al. 2013; Nerlich et al. 2013; Torralba et al.
2016; Lorenz and Lal 2014; Altieri et al. 2015; Lin 2011; Richard
and El-Lakany 2015; Upson et al. 2016; Cardinael et al. 2017 in
connection with climate change Section 4.1

Research brings new insights, including positive impacts on soil
functions (against soil degradation threats); research on
agroforestry strongly increased

↑

El-Lakany 2015

Biomass technology: developments to use more lignocellulosic
feedstocks for energy and industry likely to bring opportunities
for agroforestry

↑ See Section 4.3.1

ICT and robotics: will facilitate smaller-scale management ↑ See Section 4.4.3

“↑” indicates management beneficial for soil functions. “↓” indicates management threatening soil functions. “?” indicates that there are no conclusions
on the direction of the impact. Data in italics—drivers identified to affect soil management and soil functional changes
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in terms of land equivalent ratios and other ecosystem ser-
vices, among others in temperate regions, including Europe
(Pelzer et al. 2014; Yu et al. 2015). This relates to the increas-
ing consumer demand for food and land availability con-
straints (Table 4). More research is needed to further substan-
tiate this finding, especially for cereal/cereal combinations (Yu
et al. 2015). In the case of agroforestry, a similar potential has
been detected in review studies and a meta-analysis for
Europe (Torralba et al. 2016; Nerlich et al. 2013) and for
temperate regions in general (Smith et al. 2013).

Research itself is a driver in this field, increasingly
uncovering the potential impacts of intercropping and agro-
forestry in temperate zones, including Germany (Fagerholm
et al. 2016 for agroforestry) (Table 4). Adoption of these prac-
tices will depend on their impact on farm income. This will
more easily become positive for intercropping than for agro-
forestry because the latter is connected to higher investment
costs (factor costs) and longer return rates (Table 4).

Because of the potential for sustainable intensification and
ecosystem services, these systems may get promoted in the
future by policies (Table 4). Since 2015, the CAP has recog-
nized agroforestry fields as agricultural land eligible for basic
payment from the first pillar, and it allows the financial pro-
motion of agroforestry via the second pillar, recognizing it as
an ecological focus area, which is currently not the case in
Germany (Bundesministerium für Ernährung und
Landwirtschaft 2015b). This shows an actual trend towards
these systems, not just in the research arena. Climate change
may also contribute to the adoption of both systems (Table 4).
Studies reported increased carbon sequestration by
intercropping (Yu et al. 2015) and agroforestry (Lorenz and
Lal 2014; Smith et al. 2013; Torralba et al. 2016; Nerlich et al.
2013; Upson et al. 2016; Cardinael et al. 2017).
Diversification, including measures such as intercropping
and agroforestry, is generally associated with making agricul-
tural systems more resilient to biophysical drivers such as
climate change (potential for climate change adaptation)
(Altieri et al. 2015; Lin 2011).

One of the strongest drivers for adopting intercropping
and agroforestry may be technological development in
the use of biomass for energy and industry (biomass
technology) towards lignocellulosic feedstocks (see
Section 4.3.1).

Finally, ICT and robotics may contribute as enabling
drivers to the adoption of intercropping and agroforestry
(Table 4). These drivers will enable much more precise and
small-scaled management with small agricultural robots (see
Section 4.4.3).

In summary, it is still very uncertain whether intercropping
and agroforestry will become widespread practices in the
coming decades. Still, there is a significant trend towards these
systems, propelled by several drivers, and upcoming drivers
may reinforce this trend.

4.3 Crops and rotations

The choice of crops and crop rotations affect soil functions be-
cause crops differ, for example, in their root systems, their
interacting biological soil processes, their potential to dissolve nu-
trients, the degree and duration to which they cover the soil, and
the residues they leave after harvest. Thus, they affect, for exam-
ple, soil organic matter, soil stability and erosion, and soil biota.

4.3.1 Integration of lignocellulosic crops

There are technological and political advancements triggering
the increase in lignocellulosic feedstocks for second-
generation bioenergy (biomass technology) (Allwright and
Taylor 2016; Stolarski et al. 2015; Chum et al. 2015)
(Table 5). Aside from integrating these feedstocks directly
with traditional crops such as grains or grass in agroforestry,
short-rotation coppices (SRCs) with trees and Miscanthus
monocultures are discussed and already implemented to a
small degree. In addition, the potential of paludiculture for
protecting organic soils from drainage and degradation is be-
ing discussed (Wissenschaftlicher Beirat Agrarpolitik et al.
2016; Wichmann 2016).

These systems are also considered to have some benefits
for soil functions (driver soil degradation threats), including
carbon sequestration (climate changemitigation) (Voigt 2015
forMiscanthus, Musshoff 2012 for SRC, Wichmann 2016 for
paludiculture) (Table 5). The stress tolerance of some second-
generation feedstocks such asMiscanthus (Quinn et al. 2015)
makes them also of interest for climate change adaptation
(Table 5). Responding to the potential for societal benefits,
SRC can be acknowledged as an ecological focus area in
Germany since the greening of the CAP, if certain specifica-
tions are implemented (Bundesministerium für Ernährung und
Landwirtschaft 2015b). Some German federal states subsidize
the establishment of SRC with up to 45% of investment costs
(Fachagentur Nachwachsende Rohstoffe e.V. 2016). Thus,
policies currently seem to be a driver for SRC though invest-
ment costs (factor costs), and the long payback periods are
still barriers (Musshoff 2012).

Thus, the widespread integration of woody crops into ag-
ricultural systems is more likely a long-term option rather than
a present trend.

4.3.2 Crop varieties

Farmers are expected to adapt to climate change-induced de-
velopments such as longer vegetation periods in the long term
(past 2040) (Olesen et al. 2011; Mitter et al. 2015) and
changed weed systems (Peters and Gerowitt 2014) by using
different plant varieties (climate change adaptation) (Table 5).
Developing plant varieties in terms of their pathogen tolerance
and their defense mechanisms below ground is a research
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topic that may also become more practically relevant in the
future once research has advanced (Johnson et al. 2016;
Rasmann et al. 2017) (Table 5). New breeding technologies,
such as CRISPR/cas9, can also lead to organisms, including
varieties of annual agricultural crops, which can bring risks,
such as harming ecosystems (Science for Environment Policy
2016) which could also have an impact on agricultural soils.

4.3.3 Crop rotations: diversity, cover crops, and legumes

For crop rotations, there are drivers in opposite directions:
On the one hand, diversifying crop rotations and/or in-
cluding non-harvested cover crops and legumes induce
improved soil functions in terms of nutrient cycling, soil
microbial biomass, and soil biota with relevance for plant

Table 5 Drivers and trends regarding crops and crop rotations in Germany

Drivers Direction Sources

4.3.1. Integrating lignocellulosic crops

Factor costs: without policy support and better frame conditions,
factor costs, especially investment costs, hinder implementation

↓ Musshoff 2012; Wichmann 2016; Nerlich et al. 2013

Policies: short-rotation coppices (SRCs) can be acknowledged as
ecological focus areas according to CAP; SRCs subsidized in
some German states; support for the bioeconomy; support for
biogas production has been reduced; official policy advisors
recommend support for lignocellulosic bioenergy and
consideration of paludicultures for protection of organic soils

↑ Bundesministerium für Ernährung und Landwirtschaft 2015b;
Fachagentur Nachwachsende Rohstoffe e.V. 2016; Vollprecht et al.
2015; Bundesministerium für Ernährung und Landwirtschaft
2014; Commission 2012; Fachagentur Nachwachsende Rohstoffe
e.V. 2015; Bioenergie e.V. et al. 2016b; Wissenschaftlicher Beirat
Agrarpolitik et al. 2016

Climate change and soil degradation threats: potential for
increasing SOC and other environmental benefits; climate
mitigation and adaption potential already impacting policies,
potentially further support with more evidence of positive
impacts

↑ Quinn et al. 2015; Voigt 2015; Musshoff 2012; Berndes et al. 2015;
Wichmann 2016

Biomass technology: developments to use more lignocellulosic
feedstocks for energy and industry, potential for growing such
feedstocks

↑ Stolarski et al. 2015; Chum et al. 2015; Allwright and Taylor 2016;
Quinn et al. 2015; Berndes et al. 2015; Long et al. 2015; Voigt
2015; Schorling et al. 2015; Statistisches Bundesamt 2016a;
Witzel and Finger 2016; Brosse et al. 2012; Musshoff 2012;
Keutmann et al. 2016; Fachagentur Nachwachsende Rohstoffe
e.V. 2014

4.3.2 Crop varieties

Climate change: adaptation with different crop varieties ↑ Olesen et al. 2011; Mitter et al. 2015; Peters and Gerowitt 2014

Research: developing varieties for better pathogen resistance ↑ Johnson et al. 2016; Rasmann et al., 2017

Research/technology: new breeding methods might lead to
organisms, such as varieties of agricultural annual crops, that
may harm ecosystems, thus also the soil ecosystem

↓ Science for Environment Policy 2016

4.3.3 Crop rotations: diversity, cover crops, and legumes

Policies: already a little support (CAP, agri-environmental
measures) for diversity, cover crops and legumes, debate on
further “greening” of the CAP

↑ Freese and Keelan 2016; Bundesministerium für Ernährung,
Landwirtschaft und Verbraucherschutz 2012; Statistisches
Bundesamt 2016b; Zander et al. 2016a; Reckling et al. 2016 in
connection with policies under 1

Policies: support for bioenergy has led to less diverse crop rotations
and grassland loss, incentives reduced but still an uncertain
process, especially considering potential changes in feedstocks

? Laggner et al. 2014; Bioenergie e.V. et al. 2016b; Fachagentur
Nachwachsende Rohstoffe e.V. 2015; Vollprecht et al. 2015;
Bundesministerium für Ernährung und Landwirtschaft 2014;
Bioenergie e.V. et al. 2016a in connection with Section 4.3.1

Soil degradation threats, climate change, and research showing
increasingly positive effects on soil functions and climate change
mitigation and adaptation potentially leading to changed
behavior, inter alia via policies

↑ Bronick and Lal 2005; Johnson et al. 2016; McDaniel et al. 2014;
Poeplau and Don 2015; Olesen et al. 2011; Techen 2015;
Friedrichsen 2016 in connection with policies

Climate change: adaptation with less diverse crop rotations in
some areas

↓ Nendel et al. 2014; Troost and Berger 2015; Gutzler et al. 2015;
Peters and Gerowitt 2014

Consumer demand: potentially increasing demand for
lignocellulosic crops

See Section 4.3.1

Consumer demand: increasing demand for organic, local and
diversified food

Bund Ökologische Lebensmittelwirtschaft 2012, 2016; Hempel and
Hamm 2016; Last et al. 2015; Schindler et al. 2014; Teagasc 2016

“↑” indicates management beneficial for soil functions. “↓” indicates management threatening soil functions. “?” indicates that there are no conclusions
on the direction of the impact. Data in italics—drivers identified to affect soil management and soil functional changes
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health, soil carbon content (meta-studies by McDaniel
et al. 2014; Poeplau and Don 2015; review by Johnson
et al. 2016), and soil structure with relevance for soil
erosion (Bronick and Lal 2005). As such, these measures
are useful for counteracting soil degradation threats, in-
cluding soil biodiversity loss, and mitigating climate
change (Table 5). These positive aspects for soil functions
are the reason they are already subsidized by the CAP
green direct payment (Bundesministerium für Ernährung
und Landwirtschaft 2015b) and by agri-environmental
measures in some German states (Freese and Keelan
2016). The effectiveness of these policy measures is
contested, but the further development of agricultural pol-
icy may bring more relevant policy incentives (policies)
(Table 5). In addition, the German government’s “protein
crops strategy,” including influences on the CAP towards
the support of grain legumes (Bundesministerium für
Ernährung, Landwirtschaft und Verbraucherschutz 2012),
seems to be leading to higher shares of legumes on crop-
land, though currently affecting less than 1% of cropland
(Statistisches Bundesamt 2016b; Reckling 2016; Zander
et al. 2016a). The positive effects of enhanced crop rota-
tions on soil functions can also be driven by adaptations
to climate change because higher carbon contents of soils
and better soil structure make agricultural systems more
resilient to climate change (Olesen et al. 2011) (Table 5).
These circumstances are met by farmers with a general
awareness of the relevance of crop rotation for soil fertil-
ity (Friedrichsen 2016; Techen 2015).

On the other hand, the economics related to climate change
with longer vegetation periods and higher temperatures, if not
mitigated by policies, are expected to lead to less diverse/
narrower crop rotations in some areas in Germany (Gutzler
et al. 2015; Troost and Berger 2015; Peters and Gerowitt
2014) and double cropping, e.g., growing a summer barley
after a winter barley, will become possible in some regions
(Nendel et al. 2014).

A key driver of crop rotations is demand from
consumers, which determines which crops are economi-
cally feasible (Table 5). In that respect, the potentially
increasing demand for lignocellulosic plants for second-
generation bioenergy (biomass technology) seems to be
the main driver (see Section 4.3.1). From 2000 until re-
cently, the promotion of bioenergy with the Renewable
Energy Sources Act (EEG) (policies) was a driver of less
sustainable crop rotations, and presumably also of turning
grassland into cropland (Laggner et al. 2014), due to the
incentives for high shares of maize in the rotations.
Meanwhile, the EU has put a measure into place to stop
grassland loss in the context of cross-compliance, and the
reforms of the EEG in 2012 and 2014 have reduced in-
centives to produce maize as feedstock for biogas—and
biogas at all—while the 2016 reform (EEG 2017) will

likely lead to a stabilization of the policy incentives
(Bioenergie e.V. et al. 2016a, b). Additionally, if the de-
mand of consumers is significantly changing towards
more organic, more local, and more diverse food (see
Section 4.1), then this might already have a small but
increasing impact on crop diversity and crop rotations.

Most of these drivers are rather long term. A policy change
towards diversified crop rotations may be the fastest but not
the strongest driver.

4.4 Mechanical pressures on soil

Mechanical pressures on soil can damage soil structure, lead
to compaction and erosion, and disturb soil biota, all severely
damaging soil functions, including the production function
(Schjønning et al. 2015).

4.4.1 Tillage

Reduced tillage is a widespread practice in Germany with
38% of cropland having been under reduced tillage and 1%
under zero tillage in 2009/2010 (Statistisches Bundesamt
2010). More innovative and not yet widespread forms are
strip-tillage and controlled traffic farming (CTF) as well as
innovative methods of subsoil management, some of which
go beyond tillage (see Section 4.4.2).

High costs of labor and fossil fuels (factor costs) are
drivers of reduced tillage (Flessa et al. 2012; Techen
2015) (Table 6). Factor costs are likely to increase
(European Commission 2015b). In addition, awareness
of soil degradation threats (farmers’ attributes) is an in-
centive for farmers to reduce tillage (Techen 2015)
(Table 6). Both are likely established factors rather than
trends, but they may be drivers for the diffusion of new
(strip-till, CTF) or future technologies (ICT and robotics)
(Table 6). In addition, climate change adaptation is ex-
pected to drive reduced tillage because it is an important
water-saving practice in some European countries, includ-
ing the eastern half of Germany (Olesen et al. 2011).
Reduced tillage is also discussed in the context of climate
change mitigation because of its beneficial effect on car-
bon sequestration in the upper soil layer (e.g., Zandersen
et al. 2016), although this effect is strongly contested
(Powlson et al. 2014; Baker et al. 2007; Blanco-Canqui
and Lal 2008; VandenBygaart 2016). Reduced tillage had
been subsidized in some German states in the past
(Grajewski and Schmidt 2015). Currently, there are still
agri-environmental measures (policies) for reduced tillage
in 4 out of the 16 German states, all but one specifically
for strip-tillage and zero tillage (Freese and Keelan 2016).

One trend may potentially reduce the share of reduced
tillage. There are political debates on pesticide use
reflecting consumers’ concerns (consumers’ demand)
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(Table 6). The near ban of glyphosate and the ban of
neonicotinoids in neighboring France (policies) are exam-
ples. A ban of glyphosate would not just mean less pesti-
cide input, it would very likely lead to more frequent
tillage and an increased share of tillage with the plow, at

least until new pesticides will substitute glyphosate
(Kehlenbeck et al. 2015, Section 4.5.2).

Additionally, site-specific tillage (technology, ICT)
(Fig. 4), which determines the tillage depth according to fac-
tors such as soil type and moisture, has the potential to make

Table 6 Drivers and trends regarding mechanical pressures on soil management in Germany

Drivers Direction Sources

4.4.1 Tillage

Factor costs: less fuel and waiting time for reduced tillage ↑ Flessa et al. 2012; Techen 2015; Statistisches Bundesamt 2010;
European Commission 2015b

Farmers’ attributes and soil degradation threats: awareness is a
factor for the adoption of soil conserving tillage that may still
increase

↑ Techen 2015 in connection with soil threats and farm(er)s attributes
under 4.1

Policies: subsidizing with agri-environmental measures now
occurs primarily for strip-till and zero-till, aiming at long-term
adoption

↑ Grajewski and Schmidt 2015; Freese and Keelan 2016

Policies: restrictive policies on pesticides are being debated that
would lead to less reduced tillage

↓ Kehlenbeck et al. 2015; Agra-Europe 2016d; European Commission
2016a; Redaktion DLG-Mitteilungen 2016; Conseil
constitutionnel 2016

Climate change: reduced tillage debated as beneficial for
adaptation and for mitigation

↑ Olesen et al. 2011; Zandersen et al. 2016; Baker et al. 2007;
Blanco-Canqui and Lal 2008; Powlson et al. 2014; VandenBygaart
2016

Technology: site-specific tillage is being developed ↑ Auernhammer and Demmel 2015; Jørgensen 2014; Stoorvogel et al.
2015

4.4.2 Subsoil management

Factor costs: subsoiling is costly, factor costs are likely to increase,
and this may constrain implementation

↓ European Commission 2015b; Chamen et al. 2015

Policies: C sequestration in arable soils is a topic in international
political debate but seems less relevant in Germany, except for
organic soils

↑ Ministère de l'Agriculture 2015/2016; Wissenschaftlicher Beirat
Agrarpolitik et al. 2016; Deutsche Bundesregierung 2016; Paris
Agreement 2015

Soil degradation threats: subsoil compaction is a problem;
currently, awareness is weak, but it may increase with more
research and improved monitoring with technological progress
through ICT

↑ Jones et al. 2012; Prager and Curfs 2016 in connection with research
here and ICT in Sections 4.4.3 and 4.5.1

Climate change: mitigation and adaptation, including water
conservation, ongoing research and upcoming insights

↑ Alcantara et al. 2016; Kell 2012; Lorenz and Lal 2005; Kassam et al.
2013; Sang et al. 2016

Resource scarcity and research: higher nutrient efficiency through
subsoil management

↑ Zhang et al. 2016; Ekelöf et al. 2015

4.4.3 Weight and contact stresses

Factor costs (labor) with technology development: ongoing trend
towards heavier machines

↓ Chamen et al. 2015; Jones et al. 2012; Schjønning et al. 2015

Factor costs (labor): factor for adoption of technology saving labor ↑ Auernhammer and Demmel 2015

Soil degradation threats: compaction is a production constraining
factor in Germany and a driver of research

↑ Marahrens et al. 2015

Research and technology: development of technical solutions, e.g.,
full automatic tire pressure regulation or optimization of field
traffic

↑ Brunotte and Lorenz 2015; Auernhammer and Demmel 2015; Lorenz
et al. 2016; Bochtis et al. 2012; Edwards et al. 2016; Weltzien and
Gebbers 2016; Han et al. 2015; Agra-Europe 2016a

Technology: controlled traffic farming (CTF) potential for Europe
is still being assessed

↑ Antille et al. 2015; Chamen et al. 2015; Demmel et al. 2012; Preuße
2016

ICT and robotics: small, light autonomous agricultural robots for
different purposes in crop and grassland production are being
developed and will allow labor costs to be reduced

↑ Auernhammer and Demmel 2015; Blackmore 2015; Conesa-Muñoz
et al. 2015; Chevalier et al. 2015; Liebisch et al. 2016; AGCO
GmbH and Fendt-Marketing 2015; Meuli 2016; Rowbot Systems
2016; Naïo Technologies 2016b; ecoRobotix Ltd. 2016; Bechar
and Vigneault 2016 in connection with Section 4.5.1

“↑” indicates management beneficial for soil functions. “↓” indicates management threatening soil functions. “?” indicates that there are no conclusions
on the direction of the impact. Data in italics—drivers identified to affect soil management and soil functional changes
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tillage more beneficial for the soils, especially once better on-
the-go soil moisture sensors are available (Auernhammer and
Demmel 2015: 314 f., similarly, Jørgensen 2014; Stoorvogel
et al. 2015: 53).

The bottom line is that the existing drivers in favor of the
adoption of improved and new tillage technologies may be
counteracted in the short to medium term by pesticide restric-
tive policies and investment costs of new technologies.

4.4.2 Subsoil management

The management of subsoil has different facets. One is
subsoiling, that is deep plowing to break the plow layer and
traffic-induced compaction, and in some cases, adding organic
material to the subsoil. This approach can be used in combi-
nation with subsequent no-till to improve water storage and
availability for plants (Kassam et al. 2013). The other aspect
of subsoiling is to breed and cultivate suitable plants, manip-
ulating soil fauna and microorganisms, also in combination
with reduced tillage (Lorenz and Lal 2005; Kell 2012).

Subsoil compaction from heavy machinery and plowing is
a soil degradation threat in Europe, including Germany
(Jones et al. 2012) (Table 6). At the same time, it is very
difficult to recognize and is thus not sufficiently addressed
by farmers (Jones et al. 2012). Research is a key driver here
because potential new measures of and additional arguments
for subsoil management seem to be primarily discussed within
the scientific community. Therein, subsoil management is
discussed in terms of sequestering carbon (climate change
mitigation) (Kell 2012; Alcantara et al. 2016; Lorenz and
Lal 2005), water conserving tillage (climate change adapta-
tion) (Sang et al. 2016), and phosphorous efficiency (resource
scarcity) (Ekelöf et al. 2015; Zhang et al. 2016). Thus,

research is now providing more arguments for subsoil man-
agement in relation to current societal challenges, thereby po-
tentially creating a meaningful impact. Especially in terms of
C sequestration, the subsoil is understood to be a long-term
sink because of the physical protection of the overlying top-
soil. Differences in the subsoil texture compared to the topsoil
may as well affect the carbon sequestration potential
(Alcantara et al. 2016). The research fits well with current
policies of the UNFCCC’s Paris Agreement (Paris
Agreement 2015) and the “4 per 1000” initiative (Ministère
de l’Agriculture 2015/2016), of which Germany is part.
However, Germany’s “National Climate Action Plan for
2050” (Deutsche Bundesregierung 2016) does not entail car-
bon sequestration in mineral arable soils, nor is it identified as
a relevant measure in the recent national experts’ report on
climate change mitigation in the agricultural and neighboring
sectors (Wissenschaftlicher Beirat Agrarpolitik et al. 2016). In
addition, the costs (factor costs) of deep tillage (Chamen et al.
2015) are a natural opponent of that aspect of this trend, and
factor costs are likely to increase (European Commission
2015b).

Overall, with research in an early stage still being the main
driver of modern subsoil management that supports soil func-
tions, while policy drivers are undetermined, and factor costs
are hampering, the development of subsoil management is
uncertain.

4.4.3 Weight and contact stresses

High labor costs (factor costs) and the development of agri-
cultural technology have been driving an increase in the
weight of machinery for decades in Europe (Schjønning
et al. 2015) (Table 6). Some measures to address compaction
have offset part of the increasing pressure but not sufficient to
reverse the trend of increasing compaction (Jones et al. 2012).
Similarly, high labor costs seem to hamper the adoption of
such measures because they require more working and/or
waiting time, for example, to adjust tire pressure between
the field and the road and avoiding driving in the fields when
the soil is too wet (Chamen et al. 2003). A trend reversal
cannot be identified currently, certainly not for labor costs
(European Commission 2015b) and not for the weight of ma-
chines (Jones et al. 2012).

Still, in the medium to long term, soil compaction can
decrease yields (Chamen et al. 2015; Schjønning et al.
2015). Based on spot tests, Marahrens et al. (2015) esti-
mated that compaction has already led to soil functions
being impaired on 20% of the German cropland.
Approximately 50% of German soils are estimated to be
vulnerable to compaction (Marahrens et al. 2015). Thus,
compaction as a soil degradation threat is a driver of
research and maybe a driver of developing and adopting
less compacting technologies.

Fig. 4 In front of the tractor, a sensor detects soil texture via the
conductivity. Sandy soil with low conductivity is being tilled at a
deeper working depth than a clayey soil with high conductivity. Data
acquisition and implementation are done in real time. (photo credits:
Hans-Heinrich Voßhenrich)
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One option is “controlled traffic farming” (CTF)
(technology), which has been investigated and adopted
mostly in other parts of the world, especially in
Australia (Antille et al. 2015; Demmel et al. 2012)
(Table 6). For European conditions, no unequivocal
knowledge of the impacts of the approach is available
(Chamen et al. 2015). Practitioners seem to be skeptical
about the usefulness of CTF in Germany (Preuße 2016).
Research on CTF is occurring in some European coun-
tries, including Germany, and may drive its adoption in
the long term (Demmel et al. 2012) (Table 6).

A further option for reducing mechanical stress is decision
support systems (DSSs) that optimize field traffic more indi-
vidually (research and technology) (Table 6). The first step is
calculating fieldwork patterns and guiding the tractors so that
minimal overlap occurs. This practice also saves labor costs
(factor costs) due to time savings (Auernhammer and
Demmel 2015), which may drive its adoption. Automatic tire
pressure regulation is currently being developed (Brunotte and
Lorenz 2015). Further, DSSs are being developed that can
integrate more soil data from different sources and optimize
routes, loads, and tire pressure in terms of soil compaction
(Bochtis et al. 2012; Lorenz et al. 2016). Such technologies
still have challenges in the areas of on-the-go sensing of soil
characteristics, sensor/data fusion, and generating practical
decision support (Bechar and Vigneault 2016; Han et al.
2015; Weltzien and Gebbers 2016). In addition, improved
DSSs are being developed to determine the days of trafficabil-
ity and workability for the specific field operations (Edwards
et al. 2016; Lorenz et al. 2016).

In the long term, ICT and robotics development may lead
to much lighter machines. For some purposes, small, light-
weight robots are being developed, and few first variants are
already on the market or shortly before commercialization
(ecoRobotix Ltd. 2016 (Fig. 1); Naïo Technologies 2016a, b;
Rowbot Systems 2016). Their further adoption still faces tech-
nological and organizational challenges as well as legal issues
(Auernhammer and Demmel 2015). Nonetheless, broad im-
plementat ion of small robot fleets is envisioned
(Auernhammer and Demmel 2015; Blackmore 2015) and pre-
pared by researchers (e.g., Chevalier et al. 2015; Conesa-
Muñoz et al. 2015; Liebisch et al. 2016) and agricultural tech-
nologies companies (AGCO GmbH and Fendt-Marketing
2015). The fact that those agricultural robots are unmanned
vehicles that are envisioned to operate as fleets will disconnect
the weight of the machines from labor costs. Their large-scale
adoption could relieve much pressure from the soils, while
there is no scientific evidence yet that shows where there is
an optimal balance between stress from machine size/weight
and stress from the frequency of running over the field.

Thus, research and technological development
(technology, ICT and robotics), together with factor costs of
the farms, drive measures that are likely to bring some relief to

the weight and contact stresses of soils in the short and long
term if the evolving opportunities are realized.

4.5 Inputs into the soil

Inputs into the soil comprise fertilizers, pesticides, organic
input, biotic components, and water. On the one hand, inputs
into the soil can enhance soil functions. For example, manure
delivers organic material and nutrients to the soil. On the other
hand, inputs can harm soil functions, such as when pesticides
disturb the soil biological system.

4.5.1 Precise application

The efficiency of resource use, such as fertilizers and pesti-
cides, can be improved with new technologies. Factor costs
(Schindler et al. 2014), increasing with resource scarcity, and
consumer demand concerning environmental issues (see
Section 4.1) are drivers for this (Table 7). Examples are the
use of small robots for precise herbicide application on or
mechanical destruction of weeds identified with sensors
(Meuli 2016) (Fig. 1). Needed technologies, including robots,
drones, (on-the-go) sensors for soil characteristics, data fusion
algorithms, translation into decision-support systems, infra-
structure with GNSS (global navigation satellite system),
and mobile networks, are under development (ICT and
robotics). Thus, a more precise application can be expected
in the long term.

4.5.2 Pesticides

Aside from the precision of pesticide application
(Section 4.5.1), the authorization of pesticides may become
more strict. As outlined in Section 4.4.1, consumer demand is
establishing a trend towards more pesticide restrictive policies
(Table 7). The outcome of this ongoing debate is still uncer-
tain. The primary effects of a ban of glyphosate would likely
be decreased chemical disturbances of soil biota and de-
creased emissions of pesticides and their metabolites to other
environmental media. This is because for arable land, there are
currently almost no appropriate chemical alternatives
(Kehlenbeck et al. 2015). Instead, more physical disturbances
of soils because of increased tillage with the plow would most
likely occur in the short-term (Section 4.4.1). In the medium
or long term, a ban could result in increased use of other
pesticides, which may be more or less harmful to the environ-
ment than glyphosate (Kehlenbeck et al. 2015). New pesti-
cides may become available with yet unknown properties re-
garding persistence, mobility, and interference with soil
biodiversity.

Climate change is likely to alter and partially increase
weed pressures (Peters and Gerowitt 2014) and other pests
in Germany and Central Europe (Richerzhagen et al. 2011;
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Juroszek and von Tiedemann 2013; Lamichhane et al. 2016) (Table 7). This factor must affect plant protection strategies,

Table 7 Drivers and trends regarding the use of soil inputs in Germany

Drivers Direction Sources

4.5.1 Precise application

Factor costs, including costs because of resource scarcity ↑ Schindler et al. 2014

Consumer demand concerning the environment ↑ See Section 4.1

ICT and robotics: progress concerning, among others, precise
application and needed infrastructure

↑ Meuli 2016; Teagasc 2016; Weltzien and Gebbers 2016; mb 2016;
Han et al. 2015; Ribeiro et al. 2015; Liebisch et al. 2016; Chevalier
et al. 2015; Schmidhalter et al. 2008; Fountas et al. 2015b; Garbers
2015; Commission 2016a, b; European Commission 2016b; 5G
Infrastructure Public Private Partnership 2015 in connection with
ICT & robotics in 4.4.3

Policies: supporting the development of needed infrastructure and
technologies

↑ Commission 2016b; European Commission 2016b; Agra-Europe
2016a

4.5.2 Pesticides

Consumer demand potentially leading to policies restrictive of
specific pesticides, potentially leading to less pesticide
application

↑ Agra-Europe 2016d; European Commission 2016a; Redaktion
DLG-Mitteilungen 2016; Conseil constitutionnel 2016

Consumer demand potentially leading to policies restrictive of
specific pesticides, potentially leading to more frequent tillage
and higher shares of tillage with the plow

↓ Kehlenbeck et al. 2015 in connection with directly above

Climate change adaptation: changes in weeds and pests will require
changes in pesticide usage

? Peters and Gerowitt 2014; Richerzhagen et al. 2011; Juroszek and
von Tiedemann 2013; Lamichhane et al. 2016; Peters et al. 2014

Research on measures to improve soil biodiversity affecting
resilience against pathogens and reducing the need for pesticides;
precise application (see 5.1) reduces amounts used

↑ Johnson et al. 2016 and ICTand robotics in 5.1 for precise application

ICTand robotics:more precision brings opportunities for less input ↑ See Section 4.5.1

4.5.3 Organic inputs

Farmers’ attributes and soil threats: awareness of soil threats,
including organic matter decline, is already a factor for adoption
but may still have a positive influence on the adoption of new
options

↑ Techen 2015 in connection with soil threats and farm(er)s attributes
under 4.1 and 4.3.3

↑ COP to the CBD 2010a, b; Bundesministerium für Umwelt,
Naturschutz, Bau und Reaktorsicherheit 2007

Increasing research, including monitoring improvements in
Europe, to show the positive effects of different organic inputs on
soil biodiversity (soil threats) and climate changemitigation and
adaptation

↑ Stone et al. 2016; Alcantara et al. 2016; FAO 2016b; Diacono and
Montemurro 2010; Larkin 2015; Thies et al. 2015; Smith et al.
2013; Berndes et al. 2015; Griffiths et al. 2016 in connection with
4.3.3

Biomass technology: potential development towards including
lignocellulosic feedstocks in agricultural systems leading to more
organic residues

↑ See Section 4.3.1

Biomass technology: plant residues discussed as feedstock for
bioenergy and industry in the future

↓ Long et al. 2015; Caicedo et al. 2016; Berndes et al. 2015; Weiser
et al. 2014; Hennig et al. 2016; Thrän et al. 2016

4.5.4 New fertilizers from recycled nutrients

Resource scarcity and factor costs (also other nutrients): incentives
for technological development and adoption

? Marahrens et al. 2015; Trott 2010

Research/technology: development towards improved recycling
methods, but impacts on soil still unclear, contaminants are still a
problem

↓ Desmidt et al. 2015; Montag et al. 2015

Research/technology: potentially better distributions of P sources
in the country, reducing oversupply in some and undersupply in
other regions.

↑ Trott 2010 for current over- and undersupply of some agricultural
soils in Germany; Hjorth et al. 2016

Policies: debating and supporting the development of nutrient
recycling and the commercialization of products

? Wissenschaftlicher Beirat für Düngungsfragen beim BMELV 2011;
Kommission Bodenschutz beim Umweltbundesamt 2015;
European Commission 2015a, 2016c; Ekardt et al. 2015;
Fertilizers Europe 2016a, b

Research: is ongoing in academia and industry ? Fertilizers Europe 2016b; Desmidt et al. 2015; Montag et al. 2015
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including pesticide application. The trends are still uncertain
(Juroszek and von Tiedemann 2013; Peters et al. 2014).

Enhancing soil biodiversity can strengthen soil resilience
towards pathogens. In their review, Johnson et al. (2016) find
significant long-term potential of applying, for example, bio-
control agents such as entomopathogenic nematodes to the
soil, affecting soil biota while considerable research still
seems to be required to effectively reduce pesticide applica-
tion, making research a driver (Table 7).

With highly insecure policy development and climate
change impacts and new technologies still being in the re-
search stage, no clear trend can be identified for utilization
of pesticides (aside from more precise application).

4.5.3 Organic input

Farmers have long been aware of the important role of organic
matter in soil fertility. For example, approximately half of 694
Hessian farmers who grow cover crops named the humus
balance as one of their motivations (Techen et al. 2015: 75).
Maintaining the soil organic matter level was relevant for
cross-compliance from 2005 to 2014 as an alternative to some
crop rotation standards (DirektZahlVerpflV § 3).

There is no sign that organic matter decline (soil degrada-
tion threats) is a singular driver for changes in soil manage-
ment even though in combination with other drivers, it does
play a role in changing soil management (Table 7). Orgiazzi
et al. (2016) found that organic matter decline in agricultural

soils was one of the two highest threats to soil biodiversity
(soil degradation threats). Soil biodiversity loss may induce a
trend towards an increased organic input into the soil, as
research brings new insights along with better monitoring in
the EU (Griffiths et al. 2016; Stone et al. 2016) and societal
goals and policies are in place (COP to the CBD 2010a, b;
Bundesministerium für Umwelt, Naturschutz, Bau und
Reaktorsicherheit 2007). Reviews showed that the effects of
long-term organic amendments such as compost had very
positive effects on soil microbial biomass, enzymatic activity
(Diacono and Montemurro 2010), and biodiversity (Larkin
2015). Another review showed that amendments such as bio-
char can enhance soil biodiversity, but there is still much need
for further research (Thies et al. 2015). A related measure, also
increasing organic input and microbial biomass, is growing
cover crops as green manure (see Section 4.3.3).
Agroforestry and other systems, including perennials,
discussed in Sections 4.2 and 4.3.1, also increase organic mat-
ter input and improve soil invertebrate communities and soil
biodiversity as a whole (Smith et al. 2013; Berndes et al.
2015).

In addition, by increasing SOC, organic inputs are strongly
linked to climate change mitigation and adaptation, e.g., by
putting organic matter into the subsoil (Alcantara et al. 2016).

Although biomass production for energy and industry (bio-
mass technology) offers potential opportunities for increased
organic input from cultivating lignocellulosic perennials in the
future (see Section 4.3.1), it has opposite effects as well. The

Table 7 (continued)

Drivers Direction Sources

4.5.5 Inoculation of soil and seeds with, and management of, mutualists of crops and natural enemies of pests

Factor costs: costs of measures expected to be hurdles for
implementation, at least in the near future for inoculation and
medium to long term for more sophisticated measures like
improved crop rotations

↓ Johnson et al. 2016

Research bringing new insights into how to generate positive effects
on plant production through microbial inoculation

↑ Johnson et al. 2016; Saia et al. 2015a; Saia et al. 2015b; Zhang et al.
2014; Verbruggen et al. 2012; El-Sirafy et al. 2006; Rasmann et al.
2017; Kergunteuil et al. 2016; Larkin 2015

Research, soil threats: generally positive effects on soil habitat
function if pesticides can be avoided because of inoculation with
natural enemies

↑ Kergunteuil et al. 2016

Policies: If not studied and regulated enough, inoculants could reach
the market that may affect non-targeted organisms negatively

↓ Kergunteuil et al. 2016

Research bringing new insights on promoting local mutualists of
crops and natural enemies of pests

↑ Johnson et al. 2016; Rasmann et al. 2017; Larkin 2015

Technology: improved methods to assess soil biota and derive
management options expected

↑ Teagasc 2016

4.5.6 Irrigation

More irrigation is expected due to climate change in the long term ? Münch et al. 2014; Nendel et al. 2014; Statistisches Bundesamt
2014c; Gutzler et al. 2015; Riediger et al. 2016

“↑” indicates management beneficial for soil functions. “↓” indicates management threatening soil functions. “?” indicates that there are no conclusions
on the direction of the impact. Data in italics—drivers identified to affect soil management and soil functional changes
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use of plant residues for energy production and industry has
been identified as a method to avoid directly losing acreage for
food production (Long et al. 2015). This class of feedstock
may be strengthened to some degree by breeding dual-
purpose crops (Caicedo et al. 2016). Withholding plant resi-
dues can put considerable pressure on soils by preventing the
maintenance of soil organic matter with all its functions and
ecosystem services (Berndes et al. 2015). Considering this
circumstance, Weiser et al. (2014) still estimate that between
53 and 89% of the technical potential of straw in Germany
could be sustainably used for bioenergy. In the short run, it is
likely that only a small share of this potential will be used
because of technical constraints such as low energy density
and long transport distances due to dispersed cultivation
(Hennig et al. 2016). In the long run, technical circumstances
may improve, for example, through further development and
by removing institutional barriers of market uptake of the
torrefaction technology (Hennig et al. 2016; Thrän et al.
2016). Thus, in the future, the usage of plant residues may
become a pressure on agricultural soils depending on techno-
logical and political developments.

Even though there are drivers pointing to opposing direc-
tions, it does seem like the relevance of organic input is
gaining broader awareness, and this may lead to actions
counteracting organic matter decline in places where it is
relevant.

4.5.4 New fertilizers from recycled nutrients

The recycling of substances such as sludge and slurry in fer-
tilizer production, such as phosphate, is a topic of research
and technology development and discussion in academia, in-
dustry, and politics. This process may have different influ-
ences on soils, including its contamination with substances
like heavy metals, depending on the original material and its
treatment (Desmidt et al. 2015; Montag et al. 2015).

The drivers for such recycling are factor costs and espe-
cially resource scarcity. In Germany, some agricultural soils
are oversupplied with phosphorous (P) to the extent that it is a
threat to other ecosystems (Marahrens et al. 2015: 19)
(Table 7). Other agricultural soils are rather poorly supplied.
An analysis of the data from most German federal states
showed that 28% of cropland and 51% of grassland are
undersupplied with P (Trott 2010). Processes like improved
slurry separation may contribute to better distributing P and N
(nitrogen) between regions by making the nutrients more wor-
thy of transport (Hjorth et al. 2010). The necessity for efficient
P use is a topic at the interface of research and the political
agenda in Germany (Kommission Bodenschutz beim
Umweltbundesamt 2015; Wissenschaftlicher Beirat für
Düngungsfragen beim BMELV 2011), and the European
Commission is paving the way for adjusted fertilizer regula-
tions (European Commission 2016c) in the context of the

Action Plan for the Circular Economy (European
Commission 2015a) and the Raw Materials Strategy (Ekardt
et al. 2015) (policies). In addition, part of the fertilizer industry
is working towards recycling nutrients while emphasizing that
the framework conditions are not yet fully developed
(Fertilizers Europe 2016a, b) (research).

Thus, there is a clear trend towards recycling nutrients for
fertilizers while it is still unsure when and what kind of change
exactly will occur.

4.5.5 Inoculation of soil and seeds with, and management of,
mutualists of crops and natural enemies of pests

Biotic inoculation of soils and seeds is seen by some authors
(Johnson et al. 2016, Kergunteuil et al. 2016) as an evolving,
promising method for plant performance and protection.

Important below ground mutualists for crops that can im-
prove crop productivity and promote indirect plant defenses,
among others when added by inoculation, are bacteria and
fungi (Rasmann et al. 2017). Positive effects on plant growth
by soil inoculation with bacteria or fungi were found, for
example, in wheat in Sicily (Saia et al. 2015a), China
(Zhang et al. 2014), and Egypt (El-Sirafy et al. 2006), whereas
findings of negative effects (Verbruggen et al. 2012) underline
that the interdependencies are not well understood yet (Saia
et al. 2015b) (Table 7).

Natural enemies of belowground pests are manifold. They
include viruses, bacteria, fungi, nematodes, and arthropods
(Kergunteuil et al. 2016). High potential for inoculation with
such organisms is seen for several types of natural enemies,
such as entomopathogenic nematodes (EPNs) (Johnson et al.
2016 and Kergunteuil et al. 2016) and mixes, such as EPNs
with Bacillus thuringiensis (Kergunteuil et al. 2016). For
some organisms, effects on non-targeted organisms are not
sufficiently studied yet. But in general, negative effects are
much less expected than from chemical pesticides
(Kergunteuil et al. 2016).Wide application of inoculation with
natural enemies is still hindered by technical and economic
obstacles, including factor costs (Johnson et al. 2016 and
Kergunteuil et al. 2016), so that currently, research, including
industrial research, seems to be the decisive driver towards
inoculation of soil with natural enemies.

While inoculation is an innovative method that may evolve
and gain adoption, there are more conventional ways to pro-
mote local mutualists of crops and natural enemies of pests,
such as crop rotations, cover crops and intercropping (Johnson
et al. 2016, Larkin 2015), organic amendments, especially
compost (Larkin 2015), and breeding plants to attract mutual-
ists (Rasmann et al. 2017).

Inoculation of soil with, and management of, soil biota is
the pressure most explicitly associated with soil biodiversity
loss as a driver (soil degradation threats) (Section 4.5.3).
Inoculation may still be a rather expensive measure for
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compensating for soil biodiversity loss, carrying also the risk
of damaging non-targeted organisms if measures are not stud-
ied and regulated enough (policies). In the long run, it is likely
to become cheaper. Farmers may perceive this practice as an
easy option that does not require as substantial changes to the
production systems as other measures, even though the effec-
tiveness of the inoculation may strongly depend on supporting
measures (Johnson et al. 2016). Teagasc (2016) expects that
by 2035, it will be routine in agriculture to collect genetic data
from soil biota (technology) and use the information together
with available data from other sources for management deci-
sions, including isolating and utilizing endophytes to enhance
the soil biome. There are still significant challenges to over-
come to reach this goal, such as to develop sensors and algo-
rithms (Section 4.5.1).

Pesticides will likely be the cheapest version for fighting
plant diseases in the near future. But upcoming research and
technology together with increased awareness of the relevance
of soil biota may pave the way towards the wide-spread adop-
tion of inoculation with crop mutualists and natural enemies of
pests in the future and potentially also towards agricultural
management which promotes the local soil biotic communities.

4.5.6 Irrigation

Irrigation is not widespread in Germany. In 2012, only 4% of
German agricultural areas had the infrastructure for irrigation
and only 2% were actually irrigated (Statistisches Bundesamt
2014c).

Several studies found economic potential for irrigation in
some areas in Germany at present and increasingly in the
future, towards 2070, due to climate change, with high vari-
abilities among regions and soil types (Nendel et al. 2014;
Münch et al. 2014; Riediger et al. 2016) (Table 7). Conflicts
with other water uses can occur in drier years in northeastern
Germany (Steidl et al. 2015), restricted water extraction rights
may hamper irrigation, and investments in irrigation infra-
structure are less likely on rented land (Münch et al. 2014).
At the same time, even in one of the German states with the
lowest annual rainfall, Brandenburg, Gutzler et al. (2015)
found that water availability would likely be a problem in only
2 out of 14 districts.

Thus, there is a clear trend towards an increased introduc-
tion of irrigation in Germany as a reaction to climate change in
the long run.

5 Conclusions

The analysis of the drivers and trends of soil management in
Germany present challenges as well as opportunities for main-
taining or improving soil functions presently and in the com-
ing decades. Challenges stem largely from agricultural

intensification, which will likely have less impact in
Germany than worldwide. More challenges stem mainly from
factor costs and risks associated with new practices. Factor
costs are projected to remain stable or even increase in relation
to the product prices and are an obstacle to the adoption of
some beneficial practices, more so in short than in the long
term. Risks usually come along with emerging practices be-
cause their impacts are not sufficiently understood. There are,
however, also great opportunities for agricultural soils posed
especially by the technological development towards includ-
ing smaller and lighter machines and more precise manage-
ment, by research that is increasingly uncovering positive ef-
fects of some soil improving production methods on soil qual-
ity and yield development, and by a societal will to support
sustainable production methods or subsidiary aspects such as
the SOC content of agricultural soils.

Some solutions for the challenges will be developed and
opportunities seized by farmers and the farming industry;
some changes will be initiated by policy measures.
However, the realization of opportunities is not self-evident.
Soil and agricultural research can play a vital role in develop-
ing sustainable and effective methods of soil management in
this framework of drivers, for example, to incorporate ligno-
cellulosic crops in agricultural productions systems to seize
the opportunities stemming from improved biomass technol-
ogies and policy strategies. It is also crucial for researchers to
cooperate in analyzing the unfolding management changes,
their alternatives, and their impacts on soil processes so that
they can provide evidence for sound suggestions to farmers,
authorities, politicians, and society. Basic and applied research
must interact in a systemic approach to better understand the
soil reaction to changing management and to understand the
value of soil functions for societal value systems, particularly
in terms of ecosystem services, resource efficiency, and ethical
and equity considerations. Only then appropriate governance
systems can be developed that integrate bioeconomy with
sustainable development targets.

The analysis showed that for many upcoming manage-
ment practices, little scientific evidence about their effect
on soil processes and functions exists, especially on the
habitat for biodiversity function. Researchers will need to
further develop knowledge about the interaction between
soil management and soil functions. To capture the long-
term impacts of potentially drastic changes under semi-
controlled conditions, long-term field experiments are
very valuable. For example, new fertilizers added over a
long period potentially accumulate substances, which do
not seem relevant in the short-term observation. The anal-
ysis particularly requires a systemic view on the soil pro-
cesses and an interdisciplinary approach involving soil
scientists, agricultural scientists, natural scientists, and
socio-economic scientists, and the latter to also conduct
sustainability assessments of soil management trends that
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bring a wider understanding of intended and unintended
impacts of soil management on sustainability targets.
Cooperation with practitioners may improve research re-
sults to be well-founded and accepted by farmers.

This review showed that there are a number of changes that
might occur in agricultural soil management depending on
how different drivers develop. On this basis, future soil man-
agement scenarios can be built in the frame of different driver
configurations to further determine crucial research topics and
needs for action.

The conclusions are not just true for Germany but can be
transferred generally to other countries. Many drivers present-
ed here are global, such as food demand and aspects of tech-
nological development, or European, such as many of the
policies. In addition, for each country, there are distinctions
such as the climate, infrastructure, and educational level of the
farmers. Our driver-pressures framework for soil management
(Fig. 2) can be useful for researchers analyzing soil manage-
ment and trends in other countries. With additional case stud-
ies, a more robust, generic framework may be developed.
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