
RESEARCH ARTICLE

Conservation tillage increases soil bacterial diversity
in the dryland of northern China

Ziting Wang1 & Lu Liu1
& Qing Chen1

& Xiaoxia Wen1
& Yuncheng Liao1

Accepted: 23 March 2016 /Published online: 19 April 2016
# INRA and Springer-Verlag France 2016

Abstract Agricultural practices change soil’s physical and
chemical properties, therefore modifying soil microbial com-
munities. Conservation tillage is widely used to improve the
soil texture and nutrient status in the dryland regions of north-
ern China. However, little is known about the influence of soil
properties on microbes, in particular on the effect of conser-
vation tillage on soil bacterial communities. Here, we studied
the effect of a 5-year tillage treatment on soil properties and
soil bacterial communities in the dryland regions of northern
China using a high-throughput sequencing technology and
quantitative PCR of 16S rRNA genes. We compared the
changes in soil bacterial diversity, and composition was mea-
sured for conservation tillage, including zero plow or chisel
plow, and for conventional tillage using plow. Our results
show that conservation tillage increased the Simpson index
by 378 % and exhibited significantly dissimilar polygenetic
diversity, with r of 1, and taxonomic diversity, of r
higher than 0.49, compared to conventional tillage.
This finding demonstrates that conservation tillage

modifies soil bacterial diversity. Chisel plow and zero
tillage increase the abundance of the genus Bacillus,
including 85 % of the phylum Firmicutes, and of
Rhizobiales belonging to the Alphaproteobacteria.
Overall conservation tillage increased the abundance of
profitable functional bacteria species.

Keywords Conservation tillage . Soil texture . Soil bacterial
community . Dryland region . northern China

1 Introduction

Agriculture is one of the most significant anthropogenic
contributors to the alteration of soil characteristics including
the physical, chemical, and biological properties of the soil
(Kladivko 2001). These activities affect the relative abun-
dance, diversity, and activities of the resident microbes.
Tillage is the major agricultural practice that impacts the soil
quality because the physical disturbance of the soil leads to
alterations in soil water content, the mechanical composition
of soil particles, and the degree of mixing of the crop residues
within the soil matrix (Kladivko 2001). Soil microbiota plays
important roles in the ecological processes that are facilitated
by soil disturbance and contribute both directly and indirectly
to crop growth and quality, nutrient cycling quality, and the
sustainability of soil productivity (Roger-Estrade et al. 2010).
The effect of tillage appears to correlate with the changes in
soil structure that alter microbial diversity; following conven-
tion tillage, the soil is expected to exhibit differences in the
community structure, diversity, and abundance of microbes
compared with that following conservation tillage
(Brussaard et al. 2007).

Numerous studies have focused on how microbial abun-
dance and structure are affected by reduced tillage and have
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indicated that soil organic carbon is a majority factor modify-
ing the soil microbial community (Ceja-Navarro et al. 2010;
Pastorelli et al. 2013). However, a few studies have shown that
conservation tillage enhances soil carbon sequestration, but
these reports have described changes in microbial biomass
and diversity in northern China that account for
approximately 56 % of the Chinese land area, only using
indirect techniques (Chen et al. 2009; Wang et al. 2008).
These results do not clearly and accurately demonstrate how
conservation tillage alters the soil microbial community.
Therefore, to better understand the effect of conservation till-
age on the soil microbial community, it would be valuable to
obtain accurate information on soil microbes using a high-
throughput sequencing technology to determine the correla-
tion between the soil properties and the microbiome
community.

In this study, we collected soil samples from three types of
5-year tillage treatments, specifically plow tillage, as an
example of convention tillage, as well as zero tillage and
chisel plow tillage, as examples of conservation tillage.
Then, we compared the bacterial communities using high-
throughput sequencing technology and quantitative PCR.
We hypothesized that the different tillage treatments would
target distinct soil microbiomes and different soil properties
(such as soil texture and nutrient status) and, therefore, would

likely influence different characteristics. Consequently, this
study had three main objectives: (1) to study the influence of
different tillage treatments under the same residue retention on
soil physicochemical characteristics; (2) to analyze the effects
of different tillage treatments on the enumeration, taxonomic
distribution, and phylogenetic composition of soil bacterial
communities; and (3) finally, to determine any correlations
between the soil variables and changes in the abundance,
diversity, and composition of soil bacteria under different
tillage treatments.

2 Material and methods

2.1 Experimental site and tillage treatments

This study was performed at Northwest A&F University,
Yangling, Shaanxi, China (34°17′N latitude, 108°04′E longi-
tude at an elevation of 521 m above sea level) on the Eum-
Orthrosols (Chinese soil taxonomy) soil, with a mean bulk
density of 1.29 g/cm−3. The experimental area was in the
central Shaanxi plain (Fig. 1), which belongs to zone 5
(Fig. 1) in the dryland regions of northern China (Wang
et al. 2007). The mean annual precipitation is 633 mm, with
an average yearly temperature of 13.2 °C. The soil was
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Fig. 1 Map of the dryland agricultural zones in northern China and different tillage treatments applied to the experimental field
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collected from a long-term trial that began in 2009. The
experimental treatments combined different tillage methods
on residue retention for croplands with a wheat-maize rota-
tion. The experimental design included a randomized com-
plete block with four replications. Winter wheat (cultivar
Shaan mai -139) was planted on October 17, 2013, using
wheat drills. Urea fertilizer (N>46 %) was used as the source
of the nitrogen, and phosphorus (P) fertilizer in the form of
calcium phosphate (Ca2 (PO4)3 (P = 16 %) was equally
applied in all of the treatments at a rate of 750 kg/ha at the
time of soil preparation.

The study compared the effects of three different tillage
treatments where sowing was carried out on the residues of
the previous crop. The main tillage treatment characteristic
(Fig. 1) included the following; plow tillage, where the soil
was plowed up to 20–30 cm deep using a moldboard plow,
followed by the rotavator for the final seedbed preparation;
zero tillage, where the tillage treatments were performed to
limit the soil disturbance, but to ensure germination we
adopted a rotary tillage at 0–5 cm; and finally, chisel plow
tillage, where fertilizers were first applied followed by the
use of a chisel plow with a depth of 30–35 cm, and 40 cm
between lines was used once.

2.2 Soil sampling and physicochemical analysis

Soil samples were collected at depths of 0–20 cm on May 6,
2014, 210 days after the wheat was sown. Each sampling site
consisted of five subsamples collected from plots using a stan-
dard soil corer, away from plant roots. Samples were sieved
through a 2-mmmesh to eliminate large rocks and roots. Each
composite soil sample was homogenized and stored at 4 °C
for less than 24 h before DNA extraction. We analyzed 12 soil
samples (three tillage treatments with four replicate sampling
sites per tillage).

The physical and chemical analyses of the soil were
performed in the laboratory. Measurements of pH, soil
organic carbon, total nitrogen, and soil texture were
performed as described by Zhao et al. (2014). The soil
concentrations of inorganic nitrogen (nitrate and ammonia)
and dissolved organic carbon and nitrogen were deter-
mined using the procedure described by Berthrong et al.
(2013). The soil volumetric water content was measured at
sampling points (five times per sample, averaged) using a
FieldScout TDR 100 Soil Moisture Meter with Case
(Spectrum Technologies Inc., Plainfield, USA). The urease
and invertase activities were assayed using 5-g soil
samples containing an appropriate substrate (added to the
soil) and incubated for 24 h (37 °C) at the optimal pH for
each enzyme type, as described by Gu et al. (2009).
The catalase activities were determined as described by
Trasar-Cepeda et al. (1999).

2.3 DNA extraction, bacterial 16S gene PCR
amplification, and Illumina sequencing

Microbial DNA was extracted from 3 g of fresh soil thrice
(using a 1-g sample each time) using an E.Z.N.A.® Soil
DNA kit (Omega Bio-Tek, Inc., Norcross, GA) according to
the manufacturer’s instructions. The concentration and quality
of the DNA were detected using a spectrophotometer
(NanoDrop2000, Thermo Scientific, Wilmington, DE,
USA). Primers pairs F515 (5′-GTG CCA GCM GCC GCG
GTA A-3′) and R806 (5′-GGA CTA CHV GGG TWT CTA
AT-3′) targeting the V4 region of the 16S rRNA gene were
used for PCR (Peiffer et al. 2013). This primer set pro-
vided a comprehensive coverage with the highest taxo-
nomical accuracy of the bacterial sequence. In addition,
the reverse primer contained a 6-bp error-correcting
barcode unique to each sample. The protocol for PCR
amplification of the 16S rRNA gene was described pre-
viously (Caporaso et al. 2010). Each PCR product was
subjected to pyrosequencing using the Illumina MiSeq
platforms at Majorbio BioPharm Technology Co., Ltd.,
Shanghai, China.

FLASH software was used to merge the pairs of
reads from the original DNA fragments (Caporaso
et al. 2010). Further sequence analysis was performed
using the USEARCH v5.2.32 to filter and eliminate
noise from the data by clustering similar sequences with
less than 3 % dissimilarity and the Quantitative Insights
Into Microbial Ecology pipeline software to select 16S
rRNA operational taxonomic units from the combining
reads of clustered operational taxonomic units with
97 % similarity (Edgar 2010).

2.4 Quantitative PCR analyses

The relative abundances of 16S rRNA genes were mea-
sured for bacteria by quantitative PCR with the
bacterial-specific primer pairs F515 (5′-GTG CCA
GCM GCC GCG GTA A-3′) and R806 (5′-GGA CTA
CHV GGG TWT CTA AT-3′) (Berthrong et al. 2013).
The abundances of the bacterial 16S rRNA genes were
quantified using standard curves generated from 10-fold
serial dilutions of cloned full-length copies of the 16S
rRNA gene. The 20 μL quantitative PCR reactions
contained 10 μL EvaGreen 2× qPCR MasterMix
(Applied Biological Materials Inc., Richmond, Canada),
each primer (final concentration 0.3 μM), and bacterial,
environmental, or standard DNA templates (2 μL per
reaction). The quantitative PCR was carried out using
a Bio-Rad C1000/CFX96 Thermocycler (Bio-Rad,
Hercules , CA) us ing the fo l lowing three-s tep
thermocycler protocols: initial denaturation at 95 °C
for 10 min, followed by 40 cycles of 95 °C for 15 s,
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53 °C for 30 s, and 70 °C for 60 s. All quantitative PCR
reactions were run in triplicate with each DNA template.
The amplification efficiency of the quantitative PCR was
86–97 % (R2 >0.992).

2.5 Statistical and bioinformatics analysis

Alpha diversity was calculated using Mothur to estimate
richness with the Chao1 estimator and the abundance-based
estimators, while we estimated diversity using the Shannon
diversity and Simpson diversity indices. For beta diversity,
taxonomic and phylogenetic community comparisons were
performed using Bray-Curtis and weighted and unweighted
UniFrac distance matrices. Non-metric multi-dimensional
scaling was used to illustrate the clustering of the different
samples. Analysis of similarities was performed to test the
significance of separation between different tillage treatments.

To study the relationship between the soil characteristics
and the abundance of dominant phyla and the four classes of
Proteobacteria, we used a redundancy analysis. Correlations
between the soil bacterial community structure and soil
characteristics were determined using Mantel tests with 999
permutations.

All statistical analyses and Spearman’s rank correla-
tions between the abundant phyla and soil properties
were calculated using the statistical package for the social
sciences version 22.0 software packages (SPSS Inc.). Non-
metric multi-dimensional scaling, analysis of similarities,
redundancy analysis, and Mantel tests were performed using
“vegan” packages in the R v3.20 statistical environment. A
P<0.05 was considered statistically significant.

2.6 Sequence accession numbers

The 16S rRNA gene sequences obtained in this study have
been deposited in the National Center for Biotechnology
Information Sequence Read Archive database with the
accession number SRP058463.

3 Results and discussion

This study was focused on the response of soil bacterial com-
munities to conservation tillage, which was considered to
significantly improve soil texture, moisture, and nutrient
levels in northern Chinese dryland regions (He et al. 2007;
Wang et al. 2007). Here, we used ecological and statistical
methods to determine the soil properties affected by conser-
vation (chisel plow and zero tillage) and convention (plow)
tillage treatments and the main factors contributing to altering
soil bacterial (alpha and beta) diversity and community
composition.

3.1 Tillage treatment contributes to differences in soil
characteristics

The edaphic properties differed significantly between tillage
treatments (Table 1). We found that chisel plow tillage and
zero tillage soils had a significantly higher fraction of clay
and a lower fraction of silt compared with plow tillage soils.
Conservation tillage treatments increased the soil moisture
and had a considerably significant relationship with the soil
clay fraction (r=0.726, P=0.005), consistent with the finding
of a previous study (Prakash et al. 2010). Chisel plow and zero
tillage significantly increased the organic carbon content of
the soil, which can be explained by the alterations in soil
aggregation mediated by clay-size particles and an increase
in the crop residues, leading to sequestration of soil carbon
(Neumann et al. 2013). Based on those findings, we hypoth-
esized that changes in soil properties shifted the distribution of
the soil bacterial communities.

3.2 Soil properties modulate, soil bacterial alpha, and beta
diversity

Statistically significant differences in the soil bacterial richness
and diversity under different tillage treatments were observed
using the Shannon and Simpson indices. Compared to the plow

Table 1 Soil physical-chemical characteristics according to tillage treatments

Tillage pH Clay Silt Sand VWC SOC DOC NO3-N NH4-N DON TN Invertase
(mg/g)

Urease
(mg/g)

Catalase
(mg/g)(%) (%) (%) (%) (g/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (g/kg)

PT 8.47 37.64 A 61.84 B 0.50 A 26.15 10.23 A 36.55 10.16 0.35 23.32 1.26 A 6.58 4.89 A 2.75 B

ZT 8.41 40.17 B 56.51 A 3.28 B 30.03 11.37 B 37.99 9.16 0.74 23.57 1.40 A 5.71 7.84 B 2.76 B

CPT 8.45 40.33 B 57.90 A 1.77 A 30.06 12.67 C 40.76 10.82 0.73 29.66 1.70 B 9.14 10.85 C 2.70 A

P value ns 0.049* 0.003** 0.003** ns 0.001** ns ns ns ns 0.001** ns 0.002** 0.008**

Values are mean of four soil samples. Soil texture = Clay/Silt/Sand fraction

Different letters indicate significant differences (ANOVA, P< 0.05, Tukey’s HSD post-hoc analysis) among tillage treatments

VWC volumetric water content, SOC soil organic carbon, DOC dissolved organic carbon, DON dissolved organic nitrogen, TN total nitrogen, PT plow
tillage, ZT zero tillage, CPT chisel plough tillage, ns not significant (P> 0.05)
* 0.01<P value < 0.05, **P value < 0.01
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tillage treatment, the chisel plow and zero tillage treatments
strongly increased the Simpson index by 378 % (average) and
decreased the Shannon index by 6 % (average). The relation-
ship between the bacterial diversity indices and abundance
produced humped (Shannon H’, Fig. 2a) and U-shaped
(Simpson’s index, Fig. 2a) patterns reflecting conservation
and conversion tillage. At the vertex of both two patterns, we
found that plow tillage (Fig. 2a), whichmaymoderately perturb
the microbiota and decrease the soil texture and moisture
content, decreased in the competitive niche exclusion and
selection mechanisms between populations. Such conse-
quences could lead to an increase in theH’ value and a decrease
in Simpson’s index (Lienhard et al. 2013). Despite the high
similarity of the alpha diversity indices, the abundance of 16S
rRNA genes in the zero tillage soils was greater than it was in
chisel plow tillage (3.98 ×107 and 1.94× 107 copies g·dry
soil−1, respectively). This observation can be explained by
similarities in the soil texture and moisture between the zero
and chisel plow tillage. The soil texture and moisture are
principle factors affecting soil pore connectivity, which
leads to changes in bacterial diversity, and are significantly
related to the Shannon (P= 0.03) and Simpson (P= 0.01)
indices (Carson et al. 2010). The zero tillage, which caused
less soil disturbance than the chisel plow tillage did, could
provide a suitable environment for multiplying soil bacte-
ria. Consequently, our study supports the view that conser-
vation tillage treatments strongly affect soil texture and
altered soil moisture content, causing changes in alpha
diversity and the abundance of soil bacteria.

The soil bacterial beta-diversity was analyzed using non-
metric multidimensional scaling and analysis of similarities
between both the taxonomic and phylogenetic measures.
Our result indicated that the bacterial phylogenetic composi-
tions (weighted UniFrac) under both conservation tillage treat-
ments—chisel plow tillage (r=1, P=0.028) and zero tillage
(r=1, P=0.026)—significantly and strongly differed from
those under plow tillage (Fig. 2b). Furthermore, the soil bac-
terial phylogenetic composition (weighted UniFrac) and the
phylogenetic membership (unweighted UniFrac) under chisel
plow and zero tillage (r=0.177 and 0.49, P=0.064 and 0.031,
respectively) showed a close similarity to plow tillage
(Fig. 2b). Although the bacterial taxonomic composition
under the three tillage treatments had a similar polygenetic
composition, the zero tillage versus plow tillage (r=0.99,
P=0.03) was muchmore different from the chisel plow versus
plow tillage (r=0.49, P=0.05). The significance of this vari-
ation can be explained by changes in soil texture. A Mantel
test revealed that the soil texture was significantly related to
soil bacterial beta-diversity in regards to phylogenetic compo-
sition (sand, r= 0.451), membership (silt, r= 0.459; sand,
r=0.195), and taxonomic composition (silt, r=0.340; sand,
r=0.340). The similar soil texture (clay and silt) fraction,
which correlated with the differences in the soil moisture
and nutrient concentrations, contributed to the analogous
polygenetic and taxonomic composition between chisel plow
tillage and zero tillage. The differences in silt and sand fraction
under zero tillage suggest that it was a safer agriculture
treatment to improve and preserve soil microbial diversity
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(Ceja-Navarro et al. 2010), leading to higher nutrient levels
(organic carbon) than plow tillage was in our study. This can
explain why larger differences in both bacterial polygenetic
and taxonomic diversity were found between the zero tillage
and plow tillage (Fig. 2b) than there were in other tillage
strategies. Consequently, our findings suggest that conserva-
tion tillage alters the soil silt and sand fraction, thereby causing
considerable changes in the soil nutrients and ultimately
changing the soil bacterial beta-diversity.

3.3 Effects of different tillage protocols on soil bacterial
taxonomic distribution

Our analysis of all the soil samples yielded 201,264 quality
sequences in total and 9455−23,023 sequences per sample
(mean=16,772), and 97.3 % of the sequences were classified
at the phylum level. We found that the phyla Proteobacteria,
Actinobacteria, and Acidobacteria were the most abundant in
the samples, which was consistent with several other studies
(Nacke et al. 2011; Navarro-Noya et al. 2013). Furthermore,
the phylum Firmicutes were highly abundant in the zero and

chisel plow tillage soils (Fig. 3a). Significant differences in
soil bacterial composition were observed between the conser-
vation and convention tillage soils (Fig. 3a). In particular, high
relative abundances of Firmicutes were observed in chisel
plow and zero tillage soils, while Actinobacteria,
Acidobacteria, Alphaproteobacteria, Betaproteobacteria, and
Chloroflexi were richer in plow tillage soils.

To explain why some bacterial phyla are more abundant in
some soils than others, the concept of copiotrophic versus
oligotrophic bacteria has been proposed (Fierer et al. 2007).
Firmicutes have been described as fast-growing copiotrophs
that thrive in environments with high carbon availability
(Rodrigues et al. 2013). Among the classes of Firmicutes,
the relative abundance of Bacilli, which are primarily obligate
aerobes (Zhao et al. 2014), was significantly higher in the
chisel plow and zero tillage soils than it was in the plow
tillage. The genus Bacillus, which belongs to the class
Bacilli and possesses numerous growth-promoting character-
istics and is adapted to local conditions (Abiala et al. 2015),
was the most represented among the Firmicutes in chisel plow
and zero tillage (85 % each). Navarro-Noya et al. (2013)
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reported that zero tillage increases the relative abundance of
Firmicutes, but a study by Lienhard et al. (2013) found that
convention tillage increases the abundance of Firmicutes
due to their ability to produce endospores. In our study, the
soil texture (silt/sand fraction) was significantly correlated
with the abundance of Firmicutes (Fig. 3b) and was signif-
icantly higher in the chisel plow and zero tillage treatments
than it was in the plow tillage treatment. The conservation
tillage treatments produced soil with better ventilation and
nutrient status than the convention tillage did, which may
explain the higher relative abundance of Firmicutes in
chisel plow and zero tillage. Despite the Proteobacteria
having been described as fast-growing copiotrophs that
are stimulated in carbon-rich environments (Jenkins et al.
2010), competition for nutrients with Firmicutes may ex-
plain the reduced numbers of Alphaproteobacteria and
Betaproteobacteria we observed under the chisel plow
and zero tillage compared to the plow tillage. In partic-
ular, our study found that more than 42 % of the
Alphaproteobacteria were of the order Rhizobiales, which
are regarded as heterotrophic, nitrogen-fixing organisms
(Li et al. 2014). This result was significantly correlated
with the changes in the soil texture and nutrient conditions
(Fig. 3b) and may explain why the relative abundance of
Rhizobiales was higher in the chisel plow and zero tillage
(44 % and 46 %, respectively) than it was in plow tillage
(42 %) soils. Actinobacteria and Acidobacteria are consid-
ered as oligotrophs (Pascault et al. 2013), and their similar
soil textures and nutrient levels may explain their lower
abundance in the chisel plow and zero tillage than in the
plow tillage soils. Conservation tillage treatments alter soil
texture fraction and improve the aeration and nutrient sta-
tus, thereby increasing the relative abundance of profitable
functional bacteria species.

Considering the entire bacterial community composition,
our study revealed a significant correlation between soil
properties and the dominant phyla identified (r = 0.518,
P=0.002; Fig. 4). In addition, the soil properties can explain
the variation (81 %, Fig. 4) in bacterial composition between
the conservation (chisel plow and zero tillage) and convention
(plow) tillage. The soil texture (silt/sand fraction) had stronger
effects (a longer arrow) on the composition of the bacterial
communities (Fig. 4) than other properties did. Indeed, the soil
texture was significantly (Fig. 3b) correlated with the relative
abundances of the dominant bacterial phyla (class) including
the Acidobacteria, Firmicutes, Actinobacteria, Chloroflexi,
and Alphaproteobacteria. These results partially support the
notion that soil texture is the strongest factor in structuring
bacterial communities (Bach et al. 2010; Carson et al. 2010).
Our study suggests that the soil texture fraction is the principal
factor that plays an important role in determining soil nutrient
status and moisture (Davinic et al. 2012; Li et al. 2014) and
contributes to the differences in soil bacterial composition

between conservation (chisel plow and zero tillage) and
convention (plow) tillage.

4 Conclusions

In this study, we found that 5-year tillage treatments signifi-
cantly changed the soil texture, moisture, and nutrient levels,
as well as modified the soil bacterial diversity and community
composition of soil from the drylands of China. Although a
larger Shannon’s index value was found in plow tillage soil, a
more diverse soil bacterial community was observed in the
conservation (chisel plow and zero) tillage soils, which had
abundant funct ional microorganisms ( inc luding
Alphaproteobacteria/Rhizobiales and Firmicutes/Bacillus)
and relatively large Simpson’s indexes. Most importantly,
our results demonstrate that conservation tillage improved
the soil texture fraction, which was the main factor that in-
creased the soil moisture and improved the aeration and
nutrient status, contributing to the changes in the soil bacterial
community. We believe our findings in this study can enhance
the understanding of the role of conservation tillage in altering
soil bacterial community and contribute to building a stable
and functional soil environment. Furthermore, this knowledge
may contribute to producing sustainable crops in the dryland
regions of northern China.
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