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Abstract Agricultural landscapes presently cover about 46%
of earth terrestrial surface. This cultivated area is decreasing,
whereas the global food demand is projected to increase up to
70 % in 2050. The intensification of agriculture is not a solu-
tion to this food issue because intensive agriculture has often
resulted in pollution and loss of biodiversity. On the other
hand, mechanistic models with optimization algorithms can
be used to design alternative land uses for sustainable agricul-
ture. Here, we present a review of metaheuristics for land use
optimization reported in 50 articles including 38 case studies
carried out in 16 countries. Our main conclusions are: 1) the
success of metaheuristics is problem-dependent. In general,
metaheuristics enable search to escape from local optima
and find a good global approximation solution. 2) The choice
of a given metaheuristic for solving a given problem seems to
be driven by its historical use in a research team and by its
popularity outside the metaheuristics research community,
rather than by the characteristics of the problems to be solved
and by the latest results from the metaheuristics research com-
munity. 3) Stakeholders of land use are increasingly involved

at different levels of the land use optimization procedure and
multi-actors decision-making methods are necessary to find
trade-offs between their competing interests. 4) A future chal-
lenge is the use of parallelization techniques along with the
hybridization of different metaheuristics or of metaheuristics
with other optimization methods.
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1 Introduction

Agricultural landscapes, covering roughly 46 % of the earth
terrestrial surface, are facing a challenge to meet the global
food requirements expected to increase by as much as 70% by
2050 (Hooke et al. 2012; Barral et al. 2015). Agricultural
systems are nowadays considered as one of the major sources
of environmental pollution and deterioration of biodiversity
features worldwide, including species extinction (Münier
et al. 2004; Sarkar et al. 2006). However, agroecosystems
have the potential to deliver many regulation ecosystem ser-
vices such as pest regulation, water cleaning, or carbon se-
questration. In this context, decision-makers and stakeholders
are facing the challenge to identify alternative management
options and practices reducing the reliance of agriculture on
external chemical inputs, especially pesticides, and promoting
these services. Land use management could help to deal with
such a challenge and to reconcile viability of agricultural sys-
tems, environment protection, and biodiversity preservation
(Fig. 1) (Taki et al. 2013). It has been shown, for example,
that improper land management might disserve the biological

control of pests (Taki et al. 2013) and lead to pollution due to
fertilizers and pesticides (Zhang et al. 2013).

Land use spatial allocation is defined by many authors as
the process of assigning different uses (industrial zones, agri-
cultural areas, recreation zones, public facilities) to specific
geographical zones in order to optimize the spatial and tem-
poral efficiency of land use (Stewart et al. 2004; Liu et al.
2013c). The land use allocation problem covers a large num-
ber of domains, e.g., urban and regional planning, facility
locations, land acquisition, reserves and forest management,
and crop allocation (Ligmann-Zielinska et al. 2005).
Agricultural land use allocation, which is a particular case of
land use allocation, consists of allocating different species and
activities to different areas in agricultural landscapes (Liu et al.
2013c; Stewart et al. 2004). This type of allocation can be
dealt with by a model-based design approach relying on land
use models and optimization techniques. The advantage of
this approach is to allow decision-makers to explore a large
number of land use combinations. Agricultural land use opti-
mization is a very hard and complex task involving many
stakeholders and decision-makers, many spatial factors, attri-
butes and constraints, and multiple conflicting objectives (Liu
et al. 2013c). In addition, temporal constraints such as crop
rotations and land rent duration have to be taken into account.
The design of agricultural land use scenarios has been studied
as a multi-objective optimization problem involving conflict-
ing environmental, e.g., insecticides use reduction, economi-
cal, e.g., farmer’s income, and technical, e.g., regrouping the
same land uses in patches, objectives. The optimization tech-
niques are widely considered as very useful for model-based
land use allocation and management. Two main classes of

Fig. 1 French multifunctional
landscapes. a Common cranes
feeding in the remnants of a maize
field close to a pine forest
(Landes); b grassland next to fern
vegetation traditionally used for
sheep bedding (Pyrénées); c
residential buildings built on
former agricultural land (Ile de
France)
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optimization approaches could be distinguished: deterministic
and stochastic.

The majority of the traditional optimization methods are
based on deterministic approaches. Examples include the sim-
plex method for linear programming, gradient-basedmethods,
e.g., the Newton-Raphson algorithm, and gradient-free
methods such as Hooke-Jeeves and Nelder-Mead algorithms
(Yang 2011; Cordon et al. 2002; Lin et al. 2012). Methods
such as dynamic programming, backtracking, and branch-
and-bound methods are other examples of deterministic
methods dedicated to the exact resolution of some problems
(Bahesti and Shamsuddin 2013; Cordon et al. 2002).

Such classical mathematical programming methods were
among the first used approaches for land use optimization.
Many studies using linear programming solvers for land use
optimization have been published. These studies dealt with
problems involving one single objective as well as multiple
objectives through the use of aggregation methods, in which
different objectives are synthesized in one value that needs to
be optimized (Stewart et al. 2004).

Some studies of agricultural land use allocation based on
classical mathematical approaches were dealing with agroeco-
logical and socioeconomic aspects of production (Van
Huylenbroeck 1997; Sarttra et al. 2013; Raggi et al. 2013;
Min et al. 2010; Gabriel et al. 2006; Campbell et al. 1992;
Domptail and Nuppenau 2010; El Sayed Abdel Asís 2007;
Alabdulkader et al. 2012; Wankhade and Lunge 2012; de
Figueiredo et al. 2012; Akplogan et al. 2011). Others were
dedicated to watersheds and water resources management
(Klein et al. 2013; Zhang et al. 2013; Walangitan et al. 2012;
Wang et al. 2004; Sadeghi et al. 2009; Gärtner et al. 2013; Gao
et al. 2010; Cotter et al. 2014; Meyer et al. 2012; Aerts et al.
2003a; Dai and Li 2013). Another aspect of those studies is
landscape ecology, including the impact of agricultural land-
scape structure, landscape elements configuration and forest
management on species distribution, habitat quality and suit-
ability improvement, and nature conservation and restoration
(Zhang et al. 2014; Wang et al. 2012; van Langevelde et al.
2002; Store and Kangas 2001; Prato 2005; Orsi et al. 2011;
Münier et al. 2004; Chuai et al. 2013; Brooker 2002; Bamière
et al. 2011; O'Callaghan 1995; Wossink et al. 1999). Energy
and carbon storage issues have also been considered in some
of those studies (Callesen et al. 2010).

Although deterministic approaches have been used suc-
cessfully and have good performance in some cases, they
show poor performances for many problems. Their drawbacks
include their inefficiency to deal with large-scale combinato-
rial and highly nonlinear optimization problems. Indeed, no
exhaustive search is possible for problems of large size since
the size of the search space often increases exponentially as
the number of problem dimension grows. Some mathematical
properties (e.g., smoothness, unimodality) of problems re-
quired by gradient-based methods may not be satisfied for

some land use optimization problems (Bahesti and
Shamsuddin 2013).

The use of mathematical programming techniques for land
use optimization has some limitations despite successful appli-
cations reported in the literature. As pointed out by Stewart
et al. (2004), four limitations create the need for more effective
optimization algorithms for agricultural land used allocation.
The first limitation concerns the efficiency of such approaches
to tackle problems involving large geographical areas and high
resolution due to the very high number of integer variables
induced in such a case. Despite the advance in developing
powerful solvers and the computers’ speed explosion, mathe-
matical programming techniques are still struggling to deal
with problems involving a large number of variables. The sec-
ond limitation is related to the difficulty of mathematical pro-
gramming techniques to deal with problems involving a large
number of nonlinear objectives and constraints as it is the case
usually in land use optimization. Indeed, these approaches re-
quire strict mathematically defined objectives and constraints
which are usually impossible to obtain in the case of land use
models, especially if they take into account different processes
(biological, physical). This limitation is due to the increasing
complexity of the land use problems. The third limitation is the
need to take into account the points of view of many stake-
holders and decision-makers increasingly involved in the pro-
cess of land use allocation. Such diversity of points of view
with different priorities is better reflected by a set of solutions
than by a single “optimal” solution. We thus need algorithms
able to generate a relevant set of trade-off solutions reflecting
the preferences of each stakeholder involved in the process.
Similarly, the involvement of more and more decision-makers
and the need for interactive decision-support systems requires
faster algorithms (short computational time) to allow for real-
time interaction (Stewart et al. 2004).

Stochastic approaches are considered as more flexible and
efficient to tackle large and complex optimization problems
that are non-differentiable, multimodal, and multi-objective.
Two main types of stochastic approaches could be distin-
guished: heuristics including construction algorithms and lo-
cal search algorithms and metaheuristics. Heuristics do not
guarantee the optimality of the solution, but they can be used
to find good approximate solutions in a reasonable computa-
tional time. Construction algorithms find a near-optimal solu-
tion by adding solution components step by step. Although
construction algorithms are known to be very fast compared to
exact methods (dynamic programming), they make very
strong assumptions in many situations, and the optimality of
their solutions is very sensitive even to small changes in the
construction process (Cordon et al. 2002). Local search algo-
rithms rely on the iterative improvement of the current solu-
tion by visiting its neighbors. If a better solution is identified,
it becomes the current solution; else the current solution is
kept. Local search may be trapped in a local optimum. The
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main drawback of local search algorithms is thus their suscep-
tibility to poor quality local optima. Heuristics are usually
problem specific since they use information from the problem
at hand to guide search, which implies the need for a new
heuristic for every new problem.

The development of metaheuristics algorithms was moti-
vated by two limitations: to escape from local optima and to
have more general-purpose algorithms. Metaheuristics do not
assume any mathematical property of the treated problem and
can deal with multiple points of view of stakeholders in a
reasonable amount of computation time. Metaheuristics, such
as genetic algorithms (Cao et al. 2011; Stewart et al. 2004),
simulated annealing (Duh and Brown 2007; Santé-Riveira
et al. 2008), particle swarm optimization (Liu et al. 2013a;
Masoomi et al. 2012), and ant colony optimization (Yu et al.
2011; Mousa and El_Desoky 2013), combined with multi-
objective optimization techniques can generate diversified
land use planning scenarios (more details below). These ap-
proaches are efficient for solving land use spatial allocation
problems.

In the next section, we present some basic concepts of
metaheuristics and give examples of the most used classes of
these approaches. Then, in section 3, we review the use of
such approaches for agricultural land use optimization.
Section 4 is dedicated to the discussion of advantages and
limitations of using metaheuristics for agricultural land use.
The last section concludes the paper and gives some
perspectives.

2 Metaheuristics

Land use allocation is very complex and hard to solve in
practice. The efficiency and efficacy of the proposed optimi-
zation algorithms have been considerably improved over the
years to tackle such difficult problems. Metaheuristics are
among the most suitable approaches for solving such hard
combinatorial and nonlinear global optimization problems
(Ólafsson S 2006; Wetter and Wright 2004).

2.1 Definitions

Although metaheuristics are very successful and well known,
there is no universal definition commonly agreed for this term.
Consequently, many definitions of metaheuristics are reported
in the literature. Some emphasize their ability to control the
use of lower-level heuristics: Laporte and Osman (1995), cited
by Bahesti and Shamsuddin (2013), suggested to define a
metaheuristic as “An iterative generation process which
guides a subordinate heuristic by combining intelligently dif-
ferent concepts for exploring and exploiting the search space
using learning strategies to structure information in order to
find efficiently near-optimal solutions” (Laporte and Osman

1995). Another definition, also cited in (Bahesti and
Shamsuddin 2013), was proposed by Voss et al. (1999): “an
iterative master process that guides and modifies the opera-
tions of subordinate heuristics to efficiently produce high-
quality solutions. It may manipulate a complete (or incom-
plete) single solution or a collection of solutions per iteration.
The subordinate heuristics may be high (or low) level proce-
dures, or a simple local search, or just a construction method”
(Voss et al. 1999).

Other definitions refer to the ability of metaheuristics to
adapt to a large set of problems. According to Blum et al.
(2011), “the term of metaheuristics generally refers to approx-
imate algorithms for optimization that are not specifically
expressed for a particular problem” (Blum et al. 2011).
Following Boussaïd et al. (2013), “A metaheuristics is an
algorithm designed to solve approximately a wide range of
hard optimization problems without having to deeply adapt
to each problem” (Boussaïd et al. 2013). Therefore, roughly
speaking, we can consider metaheuristic as any high level
heuristic that is easily adaptable for solving a large number
of optimization problems.

2.2 Basic concepts

Metaheuristics usually assume no mathematical information
(e.g., first or second derivatives) on the considered problem
but require appropriate setting of some parameters (Boussaïd
et al. 2013; Bahesti and Shamsuddin 2013). A large number of
metaheuristics have been developed during the past few de-
cades. Examples of metaheuristics, given in historical order,
include Genetic Algorithms (Holland 1975), Simulated
Annealing (Kirkpatrick et al. 1983), Artificial Immune
Systems (Farmer et al. 1986), Taboo Search (Glover 1989,
1990), Ant Colony Optimization (Dorigo et al. 1991),
Particle Swarm Optimization (Kennedy and Eberhart 1995),
Differential Evolution (Storn and Price 1997), etc. (Bahesti
and Shamsuddin 2013; Boussaïd et al. 2013).

These algorithms could be classified into many categories.
For example, we could distinguish nature-inspired from non-
nature-inspired metaheuristics, population-based from single-
solution based metaheuristics, metaheuristics considering sin-
gle neighborhood from those considering various neighbor-
hoods structures and those with memory usage from
memory-less methods (Bahesti and Shamsuddin 2013).
According to Boussaïd et al. (2013), classification differenti-
ating single solution-based and population-based
metaheuristics is the most common in the literature.

2.3 Reasons of metaheuristics success

Many reasons are cited to explain the success of
metaheuristics. First, the use of stochastic operators allows
metaheuristics to escape from local optima and converge to
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approximate global optima. The idea here is not to find the
exact optimal solution of the problem at hand but to find
solution(s) of good quality within a reasonable computational
time. The key element in order to achieve such an objective
relies on the suitable trade-off between exploration and exploi-
tation. Exploration aims to identify the most promising re-
gions in a search space through the diversification of search
directions. Then, exploitation locally intensifies the search in a
promising region to find solutions of high quality. The better a
given metaheuristic performs in balancing these two opera-
tions, the better its performance will be (Boussaïd et al.
2013). The existing metaheuristics achieve the balance be-
tween these two operations differently. They might be more
adapted for exploration or for exploitation. Hybrid
metaheuristics combine two or more algorithms to take advan-
tages from each while avoiding as much as possible their
drawbacks (Boussaïd et al. 2013). Second, the availability of
powerful computational resources (clouds, clusters) and the
development of parallel architectures have considerably con-
tributed to the success story of metaheuristics by reducing the
computational time, which is one of their weak points
(Boussaïd et al. 2013). The third reason for the success
metaheuristics is due to their generality and ease to use and
tune in practice.

2.4 Examples

The most used metaheuristics in agricultural land use optimi-
zation, as observed from our review, are simulated annealing,
taboo search, evolutionary algorithms, differential evolution,
particle swarm optimization, and ant colony optimization. The
main ideas and basic concepts of these metaheuristics are pre-
sented in the following paragraphs.

Simulated annealing (Kirkpatrick et al. 1983): is a global
optimization method originated from statistical mechan-
ics by emulating physical processes. The annealing tech-
nique tries to slowly decrease the temperature of an ini-
tially heated material in order to eventually avoid the
appearance of defects so that the frozen state occurs at
the minimum energy configuration. Using the tempera-
ture as a parameter, the simulated annealing algorithm
makes the parallel between the defects and local optima
on one hand and between the objective function and the
energy of the solid on the other hand. Starting from an
initial solution and an initial temperature, simulated an-
nealing selects randomly a new solution from the neigh-
borhood of the current solution. If the new solution im-
proves the objective function, then this solution is accept-
ed as the new current solution. Otherwise, the new solu-
tion could be accepted with a probability depending on
the current and new values of objective function and on
the temperature. This probability decreases with the

temperature so that at the earlier search stages, the dete-
riorating moves are highly probable. The process is re-
peated until a stopping criterion is satisfied.
Taboo search (Fred Glover 1989): is a global optimiza-
tion algorithm that uses “a meta-heuristic superimposed
on another heuristic”. Taboo search uses a local search or
neighborhood process and enhances its performance by
using mechanisms inspired from human memory, which
avoids visiting recently visited solutions. To do so, the
recent moves are stored in one or more taboo list(s). The
use of taboo list ensures that new regions of search space
will be visited and hopefully to find the global optimal
solution by avoiding local ones.
Evolutionary algorithms (Yao and Xu 2006): include ge-
netic algorithms, evolution strategies, evolutionary pro-
gramming, and genetic programming. Their basic and
common idea is to simulate the evolution of a population
of potential solutions using operators such as selection,
crossover, and mutation in order to create better individ-
uals. An evolutionary algorithm starts from an initial pop-
ulation of solutions. At each generation, the algorithm
selects, using an appropriate operator, a group of solu-
tions (parents) and then uses recombination to create
new individuals (offspring) and applies mutation to main-
tain the diversity in a population and finally selects
among the combined parents and offspring populations
the solutions forming the next generation (Fig. 2a). The
selection is based on individual (solution) fitness which
evaluates how good the solutions are according to the
criteria of the problem. The process is repeated until the
satisfaction of a predefined stopping criterion, such as the
maximum number of generations.
Differential evolution (Storn and Price 1997): is a popu-
lation-based metaheuristic, considered as a variant of
evolutionary algorithms. Differential evolution starts
from an initial population of solutions randomly generat-
ed or obtained by others means. At each generation, the
algorithm applies mutation, crossover, and selection op-
erators to the current population to create the next gener-
ation. First, the differential evolution generates a trial
population containing the counterpart of each solution
in the current population. To do so, a mutant solution of
each individual in the current population is created often
by adding a weighted difference of two other randomly
selected solutions. This mutant individual is then used to
create a trial solution by applying a crossover operator.
The trial solution is finally compared to the target solution
to select the best one of them, which will be retained for
the next generation. The process is repeated until the
stopping criterion is met.
Particle Swarm optimization (Eberhart and Kennedy
1995): is a population-based search algorithm inspired
by social behaviors of bird flocking. Each individual in
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particle swarm optimization is referred to as a particle and
represents a candidate solution to the optimization prob-
lem at hand. Each particle in particle swarm optimization
flies through the search space with an adaptable velocity
that is dynamically modified according to its own flying
experience and also to the flying experience of the other
particles. In particle swarm optimization, each particle
tries to improve itself by imitating traits from their suc-
cessful peers. Further, each particle has a memory, and
hence it is capable of remembering the best position in the
search space that it ever visited. The position correspond-
ing to the best fitness of a given particle is known as
“pbest” and the position corresponding to the best fitness
over all the particles in the population is called “gbest”
(Fig. 2b).
Ant colony optimization (Dorigo et al. 1991): is a nature-
inspired metaheuristic imitating the behavior of real-
world ants’ colonies in their search for food. The basic
idea of ant colonies algorithms is to mimic the ants ran-
dom walking on the graph representing the optimization
problem to solve. The ant colonies are considered as con-
struction algorithms as every ant constructs a solution by
investigating the graph. The algorithm initiates a set of
parameters and pheromone variables. Then, it constructs
a colony of ants that concurrently move through the
neighborhood of the states of the problem’s construction
graph. These moves are guided by a stochastic local de-
cision strategy using pheromone trails and heuristic infor-
mation. Once the solutions are constructed, the algorithm
modifies the pheromone trails by updating, i.e., increas-
ing or decreasing, the pheromone deposit to take into
account the evaporation phenomenon and the ants’

choice of some promising paths. The final step of the
algorithm is the implementation of “centralized actions
which cannot be performed by single ants” (daemon ac-
tions). The use of local search to improve the constructed
solutions is an example of daemon actions.

In summary, there is high diversity of metaheuristics avail-
able in the literature. The balance of their exploitation and
exploration abilities is one the most important keys to choose
a suitable metaheuristic for a given optimization problem. The
specific characteristics of the latter, e.g., the number of objec-
tives and constraints could also guide this choice. Many liter-
ature reviews describing the historical development of
metaheuristics and their basic concepts have been published
(Bahesti and Shamsuddin 2013; Blum et al. 2011; Boussaïd et
al. 2013; Jarraya and Bouri 2012; Jones et al. 2002; Madhuri
and Deep 2009). We refer interested readers to the recent
review of metaheuristics (Boussaïd et al. 2013).

3 Land use optimization using metaheuristics

This section reviews agricultural land use optimization using
metaheuristics, following the contexts and the aims of studies.
Inspired by the classification made in (Groot et al. 2007), we
distinguished studies dealing with economic crop planning,
water resources management issues, landscape ecology issues
including forest management, and nature restoration (Groot
et al. 2007; Badarudin et al. 2009). Many classifications of
the studies dealing with land use allocation are possible fol-
lowing the used method, e.g., simulated annealing, taboo
search, evolutionary algorithms, the type of decisions to be

Fig. 2 a A sketch of an
evolutionary algorithm. b The
main steps of a particle swarm
optimization algorithm
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implemented, i.e., land use allocation to crops, configuration
of the landscape, or combination of allocation and configura-
tion, and the spatiotemporal decision levels, i.e., operational,
tactical, strategic. Some of these classifications were used to
structure the subsections and thus to facilitate reading of this
paper. Figure 3 illustrates the use of metaheuristics in agricul-
tural land use optimization.

3.1 Economic crop planning

This first part is dedicated to studies that used metaheuristics
for agricultural land use optimization with special focus on
economic crop planning. Although these studies take into ac-
count, to some extent, some ecological issues, their main con-
tributions are more related to the agro and socioeconomic
dimensions. Here, the criteria to be optimized are mostly
farmer’s income from harvest, type and amount of employ-
ment, biodiversity indices based on landscape ecological mea-
sures, diversity of land uses, soil erosion, and labor productiv-
ity. The metaheuristics used in this category are mainly simu-
lated annealing, taboo search, ant colonies, evolutionary

algorithms, and differential evolution. Examples of studies
dealing with economic crop planning using these
metaheuristics are presented hereafter according to the used
method.

3.1.1 Studies using simulated annealing

A first set of studies used simulated annealing. These three
studies have the common characteristics that they had few
(i.e., no more than 3) criteria, often aggregated into one ob-
jective. They dealt with a low number of crops and land covers
(10 roughly speaking). They included some methodological
aspects by comparing different optimization methods.

The aim of the first study was to allocate six land use
categories into a territory comprising five villages according
to the constraints and needs of each category and to the global
needs of the farming system (Le Ber et al. 1999). The used
model was defined at the village scale. The objective function
took into account production goals, their equilibrium (viabil-
ity), and the constraints violation translated into penalties.
Authors compared the simulated annealing results with those

Fig. 3 Coupling metaheuristics to mechanistic models to design land use scenarios. The mechanistic models are used at the evaluation stage, which is
common between all metaheuristics in order to estimate the quality of each scenario according to the considered criteria and the constraint violation
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obtained using a rule-based model and a multi-agent system.
The simulated annealing resulted in better production goals
but the multi-agent model was better for constraint satisfac-
tion, viability, and computation time. Authors recommended
using multi-agent models in cases where there are constraints
on computation time and using simulated annealing when the
decision-maker is looking for more equivalent solutions to be
properly repaired, i.e., adjusted for constraint satisfaction.

The second study (Santé-Riveira et al. 2008) used simulat-
ed annealing to allocate 13 crops or covers, classified in five
groups, to a set of possible land units (described by 182,168
cells with a size of 100 m×100 m). The objective function
took into account the suitability of each land unit for each use,
the compactness of the total area assigned to each use, and the
compactness of the total area assigned to each group of similar
uses. These three criteria were aggregated into one objective
function and sets of weights reflecting the importance of each
criterion were applied. Authors compared the results obtained
using these sets of weights to each other to analyze their im-
pact on computation time and on criteria values. Then, they
compared the results of simulated annealing with those obtain-
ed when the average suitability alone was maximized using
hierarchical optimization, multi-objective land allocation, and
ideal point analysis (Santé-Riveira et al. 2008). The simulated
annealing outperformed the other three algorithms by identi-
fying allocations having better suitability, but these solutions
are less compact (more fragmented). Authors pointed out the
weakness of simulated annealing regarding its computation
time, which was considerably more than other algorithms.
To deal with this drawback, authors suggested a good initial-
ization through “good a priori land use areas”.

Lastly, Chetty and Adewumi (2013) considered simulated
annealing and taboo search as references to investigate the
effectiveness of three local search metaheuristics for annual
crop planning within a new irrigation scheme. The problem
had 10 competing crops over 3764 ha (Chetty and Adewumi
2013). The objective function in this study was to maximize
the gross benefits of famers subject tomany constraints related
to crops’ allocation. The taboo search was the overall best
among the five considered methods.

3.1.2 Studies using evolutionary algorithms

The evolutionary algorithms are, from our point of view, the
most used metaheuristic to deal with the economic crop plan-
ning at a strategic level. The work conducted by Keith B.
Matthews at Macaulay Land Use Research Institute, now a
part of the James Hutton Institute, is among the most compre-
hensive in this area. Their research (Matthews et al. 1999)
dealt with rural land use planning at the management unit level
of an area defined by the EuropeanUnion as less agriculturally
favored. The study area of most of the research was a farm of
300 ha (95 fields) at the Hartwood Research Station in

Lanarkshire, Scotland. The land uses in this area are mainly
spring barley, upland sheep and suckler cattle, both on sown
pastures, five broad-leaved tree species and two conifer spe-
cies. Objective functions varied, but they were mainly related
to the maximization of the Net Present Value (NPV) of the
land management (Matthews et al. 1999) and the maximiza-
tion of diversity and evenness of the pattern of land use
(Matthews 2001).

The used approaches were based on single-objective evo-
lutionary algorithms and multi-objective evolutionary algo-
rithms, with a special emphasis on the solution encoding and
controlled operators considered as suitable for the land use
management. Land block, Percentage, and Priority versions
of multi-objective evolutionary algorithms were proposed by
the authors to deal with the land use optimization problem. In
Land block representation, each area of uniform land use is
represented by a gene in the genotype. However, the scalabil-
ity of the Land block representation and the performance of
evolutionary algorithms in such a case are questionable. Also,
this representation does not tolerate decisions such as splitting
fields into parts or merging two fields since the genotype
length is fixed. In the Percentage and Priority representation,
each gene has three components: land use, priority, and target
percentage.

The Percentage and Priority multi-objective evolutionary
algorithm outperformed the land block multi-objective evolu-
tionary algorithm. Contrarily, the land block evolutionary al-
gorithm showed better performance than the Percentage and
Priority evolutionary algorithm when one single criterion was
considered. The authors also compared evolutionary algo-
rithm results with 10 individuals and three collective alloca-
tions assigned by decision-makers frommultiple backgrounds
(biologist, agronomist, bank adviser…) with the current land
use pattern (Matthews et al. 2002, 2006). Results of such a
comparison revealed that the experts’ allocation has some-
times poorer performance compared to the Percentage and
Priority algorithm. To deal with this issue, mainly due to some
implicit constraints, Proximity-Percentage and Priority algo-
rithm was proposed. This version of Percentage and Priority
takes into account the proximity between land blocks and uses
a greedy algorithm.

Similarly, an evolutionary algorithm was used in
(Chikumbo et al. 2012) for a more complex strategic land-
use problem, i.e., the management of a farming system involv-
ing 14 criteria and covering an area of 1500 ha composed of
315 paddocks having each one between 1 and 111 manage-
ment option(s). The studied farm is located east of the Rotorua
city, New Zealand, and the studied farming system was com-
posed of dairy cattle, beef cattle, sheep, plantedMonterey pine
forests, protected natural forests, roads, and buildings. The
farm’s management targeted the reduction of the environmen-
tal footprint and economic viability of farming business by
identifying management strategies and their corresponding
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spatial arrangements of land uses that satisfy objectives and
fulfill spatial constraints over a 50-year planning period. The
study aimed thus to optimize 14 objectives: maximizing saw-
log production, pulpwood production, milk solids, beef, sheep
meat, wool, carbon sequestration, water production, income
and earnings before interest and tax; and minimizing costs,
such as nitrate leaching, phosphorus loss, and sedimentation.
Many spatial constraints have been taken into account, e.g., no
changes to natural forests, roads, and buildings. Taking into
account the high number of criteria, the authors proposed a
modified version of the Reference-point-based Non-
dominated Sorting Genetic Algorithm, R-NSGA-II, to deal
with this many-objective optimization problem, i.e., with
more than three objectives. For constraint handling, the pro-
posed algorithm used an improved version of fitness sharing
Pareto-ranking, which consists of subdividing the population
into several subpopulations based on the similarity among
individuals and emulating gene silencing which is an epige-
netic regulation of gene expression (Chikumbo et al. 2012).
The authors analyzed their results in the form of time-series
and grouped criteria into three categories (productivity, prof-
itability, environmental impact) to visually interpret these re-
sults (Chikumbo et al. 2012).

Similarly, Datta et al. (2007) dealt with the allocation of
five land uses to a landscape area divided into 100×100 units
in southern Portugal. The aim of this study was to predict the
effects of long-term global changes on the strategic level (50
to 100 years). The authors used the well-known NSGA-II
algorithm (Deb et al. 2002) in the framework of their tool
called NSGA-II-LUM. The evaluation criteria used in this
study were to maximize economic return, to maximize carbon
sequestration, and to minimize the soil erosion (Datta et al.
2007).

Evolutionary algorithms were also used to take into ac-
count the dynamics in crop planning at the strategic level in
(Nanlin et al. 2008). The authors dealt with dynamics in an
inter-temporal land use optimization problem, i.e., optimiza-
tion over a period of time and not only at one point. The aim
was to maximize the farmer’s incomes over a period of time in
heather moorland areas in the UK (Cordovan, Scotland),
where sheep and grouse farming compete and are managed
differently. The study took into account grouse dynamics (bi-
ological), grouse prices change (economical), and subsidy
(economical, e.g., European Union common agriculture poli-
cy) dynamics. Three types of tenant farmers were considered:
a tenant who only considers the current time in his/her deci-
sion, a short-term tenant (5 years), and a long-term tenant
(10 years). The problem was formulated as: how to allocate
the land use to grouse shooting or sheep grazing under the
dynamics and tenant determinants? Results of land use opti-
mization by the evolutionary algorithm were compared to al-
locations made by agricultural experts. The authors found the-
se two allocations to be similar and concluded on the

relevance of evolutionary algorithms for dynamic land use
optimization (Nanlin et al. 2008).

3.1.3 Studies using other metaheuristics

Other metaheuristics were used for economic crop planning at
a tactical level or for agricultural policy planning at a national
level. As an example of the first category, we can cite the study
of Groot et al. (2012), who used a differential evolution algo-
rithm to generate a large number of Pareto-optimal farm con-
figurations. The proposed approach was illustrated using a
96 ha mixed organic farm located in Oastkapelle, the
Netherlands. This farm comprises various crop rotations, per-
manent grasslands, and dairy cattle. Crop products could be
for home consumption, export (cash crops), or to feed milk
cows. The algorithm had to determine optimal farm
reconfigurations satisfying four objectives and fulfilling a set
of hard constraints. Farm configuration was here intended as a
combination of tactical choices of the areas of cultivated
crops, destination of crop products, and management strate-
gies of animals (dairy cows). The four objectives were: to
maximize the operating profit (incomes) and organic matter
balance (soil structure) and to minimize the labor requirement
and soil nitrogen losses (leaching and denitrification). The
constraints concerned the farm total area, the crop areas within
each rotation, the frequencies of cultivation of each crop, the
balance between dry balance supply, animal feed intake, and
acceptable nutrient losses and balance. To deal with such con-
straints in the initial population, the authors duplicated the
current configuration into 20 % of their initial population as
it was hard to have feasible solutions randomly generated.
Results showed that relatively small modifications to the cur-
rent configuration led to considerable improvements in the
farm’s performances (Groot et al. 2012).

An example of the second category is the Agricultural
Policy Optimizer proposed by Ververidis (2008). The author
combined mathematical programming (MP) and evolutionary
algorithms to tackle the bi-level optimization problems
resulting from the interactions between farmers and policy
makers. The Agricultural Policy Optimizer uses mathematical
programming to capture the production objectives of the farm-
er and uses the NSGA-II algorithm to optimize the policy
maker’s objectives. The author illustrated the proposed ap-
proach on a Scottish agricultural case study where 30 crops
and grass activities had to be allocated. Three socioeconomic
(maximization of land productivity maximization of labor
productivity minimization of net policy cost) and two bio-
physical (minimization of mean predicted soil loss and mini-
mization of mean mineral N use per unit area) criteria were
considered. Four political instrument scenarios were also stud-
ied. Three of these were economic instruments (single pay-
ment scheme, land use subsidies, and nitrogen taxation
scheme) and the fourth one was based on a set of regulatory
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constraints (Ververidis 2008). The NSGA-II algorithm, within
the Agricultural Policy Optimizer, creates a population of can-
didate solutions consisting of a set of policy instruments of
variable complexity. Each candidate is then evaluated as a
farmer’s optimization problem using the mathematical pro-
gramming module, and the values of the five criteria are used
to assess its fitness. The best solutions, based on fitness com-
putation, are selected to create the next generation of policy
formulations. The process is repeated until the verification of a
stopping criterion (McRoberts et al. 2009a, b).

Finally, inMousa and El_Desoky (2013), the use of a fuzzy
multi-objective multi-pheromone ant colony optimization ap-
proach was proposed to deal with the optimal human resource
assignment in the context of reclamation of derelict land in
Toshka, Egypt. The objective was to achieve four types of
tasks which affect the agriculture reclamation, namely: land
settlement, land planning, digging of canals, and plant culti-
vation. The assignment had to maximize the benefit of recla-
mation while minimizing the cost of agriculture reclamation.

3.2 Water resources management

The water resources management and the agricultural land use
are strongly linked as the land use optimization could help to
optimally allocate the water resources and to reduce the pol-
lution of water resources by chemical products from farms.
The studies dealing with land use optimization for water re-
source management purposes often took into account, in ad-
dition to farmer’s income, aspects such as nutrient loss, fertil-
izers leaching, and sediment and pollutant agrochemical con-
centration levels. In the following, we respectively present
some examples of studies dealing with land use allocation,
studies dealing with resources such as water and fertilization
allocation, and studies combining both goals for water man-
agement purposes.

3.2.1 Land use allocation for water management purposes

The work of Altinakar and Qi (2008) and Qi and Altinakar
(2011) dealt with land use allocation for water management
purposes using metaheuristics. Altinakar and Qi (2008) pro-
posed a taboo search method for multi-objective optimization
of agricultural land use in the framework of integrated water-
shed management. The authors applied their approach to a case
study involving the management of the USDAGoodwin Creek
experimental watershed located in northern Mississippi. They
considered two main criteria: environmental and economic.
The environmental criterion takes into account the sediment
and pollutant agrochemical concentration levels in the stream.
The economical criterion reflects the benefit from agricultural
products and the operational cost of the land. The authors com-
bined these two criteria using fuzzy computation in order to
take account of parameter uncertainties and uncertainties in

numerical model results (Altinakar and Qi 2008). In a second
study, Qi and Altinakar (2011) extended their case study, using
taboo search, to three objectives: minimize sediment yield at
key locations, minimize amplitude of pollutant concentration
peaks and the pollution time, and maximize the production
returns while minimizing the implementation costs and the total
expense. They also took into account constraints related to the
land owner’s preferences, e.g., undesired, desired and not ap-
plicable land use changes, and to policy constraints related to
the total area allocated to each land use (Qi andAltinakar 2011).

3.2.2 Best agricultural management practice allocation
for water management purposes

Many authors have usedmetaheuristics to allocate agricultural
resources for water management purposes. Examples ad-
dressed in this category are related to the optimal placement,
i.e., allocation of best agricultural management practices, of
the best conservation practices, and of other agricultural re-
sources. The criteria considered in these studies are usually
related to some economic aspects, such as farmer’s income
and implementation costs, and to the reduction of nonpoint
pollution sources.

The first example of this category for dealing with the
optimal allocation of water, i.e., irrigation, and nitrogen,
i.e., fertilization, resources to winter wheat and maize grain
crops was considered by Lehmann et al. (2013). The au-
thors coupled the CropSyst model with an evolutionary
algorithm and aimed to maximize the farmer’s profit mar-
gins taking into account uncertainties through an utility
function (Lehmann et al. 2013). The study was conducted
under two contrasting climate change scenarios on two dif-
ferent sites in Switzerland.

The works of Rabotyagov et al. (2012), Panagopoulos et al.
(2013) and (Liu et al. 2013b) are examples of studies aiming
to optimize economic and nonpoint pollution sources simul-
taneously. In the first example, the authors proposed an ap-
proach for selecting watershed configurations, achieving com-
plete trade-off frontiers between costs of agricultural conser-
vation practices, i.e., lowest cost, and user-specified water
quality improvement objectives, i.e., minimize nonpoint-
source pollution in the watershed. For this purpose, they
coupled the SWAT water quality model with the Strength
Pareto Evolutionary Algorithm 2 (Zitzler et al. 2001). The
final aim was the production of maps of optimized placement
of user-specified set of conservation practices allowing the
best compromise between the abovementioned objectives
(Rabotyagov et al. 2012). In the second study, Panagopoulos
et al. (2013) used a multi-objective evolutionary algorithm to
determine optimal selections and locations of agricultural best
management practices, achieving acceptable catchment man-
agement solutions with respect to environmental and econom-
ic objectives. The environmental objectives concern the
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nonpoint source pollution estimated through the SWAT mod-
el. The sum of the annual total phosphorus and the nitrate-
nitrogen losses to surface waters were considered as environ-
mental criteria in this study. For the economic part, the imple-
mentation cost of several types of best management practices,
such as nutrient application, crop, soil, and livestock manage-
ment, were considered. The authors illustrated their approach
on a case study from Arachtos catchment in Greece with 51
potential agricultural best management practices and 251 hy-
drologic response units (Panagopoulos et al. 2013). In the
third example, the authors coupled the ε-NSGA-II multi-
objective genetic algorithm (Kollat and Reed 2006) with the
SWAT model to design agricultural best management prac-
tices, reducing nonpoint-source pollution. To reduce the com-
putation time, the authors proposed a parallelization tech-
nique. The approach was tested in the Fairchild Creek water-
shed in southern Ontario of Canada. Two criteria were con-
sidered, namely to minimize the agricultural best management
practice implementation costs and to maximize total phospho-
rous load reduction (Liu et al. 2013b).

Finally, Yu et al. (2011) used an ant colony algorithm for
classification rule discovery in the framework of land-use suit-
ability assessment. The approach was illustrated by a case
study from Macintyre Brook Catchment of southern
Queensland in Australia. The land-use suitability was evalu-
ated for irrigated agriculture taking into account percent slop,
soil texture, depth to water table, electrical conductivity of
groundwater, and hydraulic conductivity of soil (Yu et al.
2011).

3.2.3 Land and resources allocation for water management
purposes

A third category of studies with water management purposes
aims to simultaneously optimize land use and agricultural
resource allocation. Seppelt and Voinov (2002) combined lo-
cal optimization, Monte Carlo simulation, and an evolutionary
algorithm to determine optimal land use patterns and fertilizer
application maps, maximizing crop yields and minimizing the
nutrients outflow in order to investigate the impact of land use
on the water and matter dynamics. The above criteria were
aggregated into one economic criterion, integrating the profit
from crop yields, the cost of fertilizers, and the amount of
nitrogen leaching transformed into a financial penalty. The
approach was applied to the Hunting Creek Watershed, MD;
USA; which had as main land uses forest and agricultural
habitats. The used model took into account hydrological pro-
cesses as well as nutrient cycling and captured the response of
algal and macrophytes communities to nutrient concentra-
tions, water, and environmental inputs. The landscape was
represented as a grid of square cells with seven possible land
uses: soybeans, winter wheat, corn, fallow, forest, cities, and
rural areas. The authors stated that the proposed approach

allowed them to identify areas with high retention capacities
(Seppelt and Voinov 2002). In their second paper (Seppelt and
Voinov 2003), the authors extended the previous work by
considering three ecological criteria and farmer’s incomes.
The ecological criteria were the net primary production
reflecting the overall ecosystem services provided by land
use type, e.g., retention capacities of nutrients and the uptake
of greenhouse CO2, nutrients outflow out of a grid cell mea-
suring the overconsumption of retention capacity of the eco-
system, and the amount of surface water baseflow in the
streams reflecting how the land use affects the hydrologic
conditions, i.e., vulnerability to drought and floods.
Economic and ecological criteria were aggregated into one
performance objective where three weights are assigned to
ecological indicators. The authors reduced the optimization
task to the local method and explored the land use by consid-
ering scenarios defined by the weights. They also compared
the results from local optimization to existing landscapes
using a pattern matching algorithm (Seppelt and Voinov
2003).

Another example of this category was from Georgiou and
Papamichail (2008), who used a simulated annealing algo-
rithm to determine reservoir release policies and land use strat-
egies, optimizing farmer’s incomes and taking into account
soil water balance. They aimed to allocate cultivated areas
and water quantity to each crop. The case study used to illus-
trate the proposed approach was originated from a planned
reservoir on the Havrias River in Northern Greece (Georgiou
and Papamichail 2008).

Finally, Fotakis and Sidiropoulos (2012) proposed a multi-
objective self-organizing algorithm, i.e., an evolutionary algo-
rithm using cellular automaton, to deal with combined land
use and resources allocations. The proposed algorithm used
suitable transition rules, through cellular automaton, to deal
with local and global spatial constraints. The authors applied
their approach to a small hypothetical case study of water and
land use allocations and compared their results to those iden-
tified by NSGA-II and concluded the superiority of their al-
gorithm (Fotakis and Sidiropoulos 2012). More recently, the
same authors used an evolutionary algorithm to deal with a
combined land use and water allocation problem. This new
study considered a hypothetical case study but also a real-
world cultivated area situated in South Cyprus (Fotakis and
Sidiropoulos 2014). The authors aimed to optimally distribute
five irrigated crops as well as their irrigation sources. The
economic return after deduction of water pumping and
transportation costs was used to evaluate allocation strategies
alongside with ecological constraints. In the same way, Ortega
Álvarez et al. (2004) proposed an evolutionary algorithm to
identify optimal cropping patterns and irrigation strategies.
The case study related to 15 crops was a semi-arid irrigated
area in Castilla-La Mancha region, Spain (Ortega Álvarez
et al. 2004). The authors aimed tomaximize the farmer’s gross
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margin and used a risk associated to annual climatic change to
select the best solution.

3.3 Nature conservation in landscapes

In this section, we review the use of metaheuristics for land-
scape ecology. Here, the objectives are to optimize land use in
order to guarantee a good distribution of species in relation to
agricultural landscape structure, or to optimize the combina-
tion of agricultural land use and landscape element configura-
tion, in order to improve habitat quality and nature conserva-
tion and restoration. Two main groups of studies dealing with
land use optimization for nature conservation purposes can be
distinguished.

3.3.1 Resources allocation for nature conservation purposes

Some studies in this category are dealing with land use or
resource allocation or reallocation. Aerts and Heuvelink
(2002) used a simulated annealing algorithm for the restora-
tion of a former mining area for new land uses, e.g., forest,
shrub, and water. The restoration has to be done at lowest costs
through minimizing the development costs while creating
high natural values, i.e., forest and water zones, by maximiz-
ing the compactness of land use. Constraints regarding the
proportion of each land use have been considered in order to
restore the mine as close as possible to the pre-mining situa-
tion. The proposed approach was applied to a case study of an
open cast lignite mine of As Pontes in Galicia, in the North
Western part of Spain (Aerts and Heuvelink 2002).

Loonen et al. (2006) used an evolutionary algorithm in the
context of the reduction of nitrogen emission sources. Their
objective was to improve the quality of the Dutch nature re-
serve, including water resources, by minimizing the effects of
atmospheric nitrogen deposition in nature areas. The case
study was from the region of Noord-Brabant, where intensive
agricultural and farming systems cohabite with natural re-
serves and forests. The authors dealt with this problem as a
reallocation of nitrogen emission sources, in terms of intensive
or extensive agriculture, by “designing some areas where the
nitrogen emission level is allowed to increase and other areas
where the emission level will have to decrease” (Loonen et al.
2006). The objective function was to minimize the sum of
exceedances of critical loads in natural areas. The optimiza-
tion was subject to many constraints such as keeping the total,
i.e., global, emission in the area at the same level to keep the
local emission level in each cell at an acceptable level, i.e.,
bounds; no deposition in other zones was allowed, and no
increase of the deposition level was allowed in the natural
areas. This approach allowed reducing considerably the
exceedances of critical loads in natural areas. This reduction
ranged from 71 to 27 % in different cases.

3.3.2 Reconfiguration of existing landscape for nature
conservation purposes

Others studies dealt with the reconfiguration of the shape of
the existing landscape through the introduction of new linear
elements and/or other new land uses. The first group of studies
used different metaheuristics based on a generalized goal pro-
gramming approach. In this approach, the decision-maker
states not his detailed preferences, but only a point of value
of criteria in the outcome space, called a reference point, and
the computer optimizes “such ad hoc formulated approxima-
tion of the preferences of the decision-maker that is consistent
with the stated reference point” (Aerts et al. 2003b). The case
study treated by this group was the Jisperveld area situated in
Northwest of the Netherlands, which was described as the
largest connected brackish fen-meadow area in Western
Europe. This area is of high nature value due to the presence
of various wetland vegetation types, such as sundew, peat
heather and various types of orchids, and due to the
existence of many rare bird species, such as the black tailed
godwit, common zeds hank and lark.

Aerts et al. (2003b) used simulated annealing and reference
point approach to solve high-dimensional optimization prob-
lems for multi-site land use allocation. The objective of this
study was to optimally allocate nine land uses, including two
new, i.e., future, land use types: “extensive agriculture” and
“water” in the context of governmental planning policy, for
land use changing from a predominated agriculture area to a
combined agriculture and nature area. Two criteria were con-
sidered for optimization and aimed tominimize the implemen-
tation costs and maximize the compactness of the allocated
land use (Aerts et al. 2003b). Stewart et al. (2004) dealt with a
similar problem and used the same geographical zone to illus-
trate their approach. The approach was the same as previously
but used an evolutionary algorithm for the optimization task,
which aimed to maximize both natural and recreational values
of the area and to minimize the costs of land use changes
(Stewart et al. 2004). Janssen et al. (2008) considered six
objectives, including the same three objectives as in Stewart
et al. (2004) and three spatial objectives aiming to minimize
the fragmentation and to maximize the largest cluster and the
compactness. The approach was tested through an interactive
session with the decision-makers who were asked to give their
feedback at the beginning of the land use allocation (Janssen
et al. 2008).

Groot et al. (2007, 2010) used differential evolution algo-
rithms. The case study was to redesign the linear landscape
elements in an agroecological zone in The Netherlands. This
case study was related to the Northern Frisian Woodlands,
where environmental cooperatives and other stakeholders
were investigating adjustments and reconfigurations of a
grassland-dominated landscape with hedgerows bordering
the fields. In their first paper, Groot et al. (2007) used the
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Landscape IMAGES framework and a differential evolution
algorithm to help decision-makers from various backgrounds
to investigate the trade-offs between nature conservation, ag-
ricultural profit, and landscape quality and biodiversity. The
adjustments of land-use intensity and hedgerows presence
aimed to optimize four objectives reflecting the opinions of
various stakeholders. These objectives were to maximize the
farmer’s gross margin by guarantying an acceptable agronom-
ic yield, to maximize the diversification of the botanical com-
position of fields and hedgerows, to maximize variation in
plant communities in the fields and half-openness of the land-
scape, and to minimize nutrient losses to the environment.
Two constraints regarding the limits on nutrient inputs and
the proportion of herbage grazed were also taken into account
(Groot et al. 2007). Groot et al. (2010) extended the previous
study by using a similar approach to redesign spatial configu-
rations of hedgerows, optimizing a set of seven objectives
(Groot et al. 2010). The considered objectives were related
to the ecological quality, landscape character, and
implementations costs. To deal with seven objectives, the au-
thors used the Pareto efficiency defined by Das (1999) and the
crowding distance proposed by Deb et al. (2002).

Interested readers are invited to consult comprehensive re-
view on forest management conducted by (Baskent and Keles
2005). That review gave additional examples using
metaheuristics and other optimization algorithms for forest
management. Another rich review of the biodiversity conser-
vation planning tools was (Sarkar et al. 2006) and is highly
recommended for further reading.

3.4 Multifunctional agricultural landscapes

Many land use optimization studies are of general purposes
and therefore include agricultural and others green land uses
to be assigned. We present hereafter some examples of such
studies classified following the used metaheuristic.

3.4.1 Studies using genetic algorithms

Evolutionary algorithms were used by Moulton et al. (2009)
to investigate the land use decision-making in the context of
potential habitat loss and fragmentation represented by reduc-
tion in the area and connectedness of natural land. The pro-
posed approach combined the use of NSGA-II (Deb et al.
2002) for the optimization task and the hierarchical cluster
analysis for the decision-making step to identify the most suit-
able configuration. The authors illustrated their approach on a
small example of four land uses (urban, agriculture, natural,
abandoned) and eight potential candidate sites (fields) in an
urban fringe area in southern Ontario, Canada. Eight
landscape-ecology metrics were considered as criteria to be
maximized (Moulton et al. 2009). The NSGA-II algorithm
was also used by Cao et al. (2011) for multi-objective

optimization of land use. The authors applied it to the example
of Tongzhou New Town, China. The objective was to allocate
five land uses, optimizing three objectives and fulfilling a set
of constraints reflecting the user’s and land planner’s restric-
tions. The objectives considered were to minimize conversion
costs, maximize accessibility, and maximize compatibilities
between land uses (Cao et al. 2011).

Cao et al. (2012) extended their previous work to investi-
gate the problem of how to plan and manage a rapid develop-
ing area in the future. The proposed approach used a
boundary-based evolutionary algorithm, based on a reference
point method, and the case study was the same as above.
Many criteria, such as economic, environmental and ecologi-
cal benefits, social equity including gross domestic product,
conversion cost, geological suitability, ecological suitability,
accessibility, Not In My Back Yard influence, compactness,
and compatibility, were taken into account (Cao et al. 2012).
Similarly, Porta et al. (2013) used parallel genetic algorithms
to design a spatial decision support system for the develop-
ment of municipal land use plans in Galicia, northwest Spain.
The approach took into account legal rules and constraints on
some existing land uses in some areas, i.e., no change allowed.
Four non-fixed categories, namely nature, agriculture, forest-
ry, urban, had to be allocated, optimizing two criteria and
fulfilling the constraints. Criteria were related to land suitabil-
ity and the shape regularity of the resulting land use patches
(Porta et al. 2013).

Finally, a multi-objective evolutionary algorithm was de-
veloped by Morio et al. (2013) to deal with the problem of
reusing underused or abandoned contaminated land, so-called
brownfields, for reducing the consumption of land and natural
resources. The authors aimed to identify land use configura-
tions by optimizing a set of criteria. The approach was illus-
trated using a case study of a former military site near
Potsdam, Germany. The criteria taken into account in this
study were related to some sustainability indicators and eco-
nomic aspects, including remediation costs and land values
(Morio et al. 2013).

3.4.2 Studies using particle swarm optimization

Many studies dealt with land use for multifunctional agricul-
ture using particle swarm optimization and multi-objective
particle swarm optimization. A particle swarm algorithm
was used by Ma et al. (2011) to investigate a township land
use planning with 10 potential land uses, including agricul-
ture, residential, mines, dry fields, forests, and pools. The
criteria taken into account in this study were to minimize the
expenses for land use changes, to maximize the suitability for
the targeted land use, and to maximize the compactness of the
land uses (Ma et al. 2011). In the same way, Masoomi et al.
(2012) proposed a multi-objective particle swarm optimiza-
tion algorithm to find the optimal arrangement of urban land
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uses at the parcel level, satisfying four objectives and some
constraints simultaneously. The objectives were to maximize
compatibility, dependency, suitability, and compactness of
land uses. The authors considered data of region 7, district 1
of Tehran, to illustrate their approach (Masoomi et al. 2012).
Huang (2010) used a particle swarm optimization algorithm to
deal with the land use structure optimization problem. He
aimed to maximize the gross domestic product and the total
ecological value of land ecosystem. This optimization was
subject to many constraints, e.g., social, land use rates, suit-
ability. The author illustrated the proposed approach on the
land use structure optimization for HeChuan District of
ChongQing City (Huang 2010).

Hybrid particle swarm algorithms have also been used for
land use optimization. Liu et al. (2013a, 2013b, 2013c) dealt
with land use allocation in the context of countries under se-
vere environmental and demographic pressures, taking into
account demands based on scenarios, influenced by economy,
technology, population, policy, and their interactions at
macro-level scales. The proposed approach integrated a sys-
tem dynamicsmodel and a hybrid particle swarm optimization
algorithm using different variation operators. The authors ap-
plied the proposed approach to a case study in Panyu,
Guangdong, China, aiming to maximize the total suitability
of land use map, minimize the distance of new development to
already developed sites, maximize the compatibilities of each
cell and its neighborhood, and maximize the compactness of a
land use. Five land uses: industry, commerce, residence, un-
developed such as agriculture and orchards, and restricted
land such as water, ecological preservation zone, were consid-
ered (Liu et al. 2013a).

3.4.3 Studies using ant colony algorithms

Ant colony algorithms have also been used for land use opti-
mization of general purposes. Liu et al. (2013c) proposed to
use the global search capability and information feedback
mechanism of ant colony algorithm and graph modeling to
deal with a land use spatial allocation problem. The aim was
to improve the land use efficiency by allocating different land
uses, e.g., cropland, gardens, forestland, towns, under the
limits of regional land use structure according to specific plan-
ning objectives at different spatial and temporal scales. The
case study focused on Gaoqiao Town of Fuyang City in
Zhejiang Province, China. The authors aimed to maximize
the land use suitability, to maximize spatial compactness and
unchanged rate under a variety of constraints, e.g., optimal
land use structure and land use policies. These criteria were
aggregated using a weighted sum method (Liu et al. 2013c).
Yang et al. (2012) proposed an approach combining an ant
colony algorithm, Markov chains, and cellular automata for
the simulation and optimization of spatiotemporal land use
changes. The proposed approach aimed to determine local

transition rules of land use changes by conducting a reason-
able local rule discovery process. The authors illustrated their
approach on a rapidly growing area, i.e., Changping, a district
of Beijing, having five potential land uses. The criterion con-
sidered in this work was the rule prediction quality (Yang et al.
2012).

3.4.4 Studies using other metaheuristics

Although evolutionary algorithms, particle swarm
optimization, and ant colony optimization were the most
used metaheuristics, other metaheuristics were also used
for land use optimization. Duh and Brown (2007) devel-
oped a knowledge-based Pareto simulated annealing algo-
rithm for multi-objective land use optimization. The au-
thors compared their algorithm to a classical Pareto sim-
ulated annealing algorithm. The performances of these
algorithms were compared using a benchmark of four hy-
pothetical land use optimization problems. The criteria
considered for optimization were related to some spatial
patterns and non-pattern objectives. The knowledge-based
Pareto algorithm showed better performances compared to
the classical algori thm (Duh and Brown 2007),
Eldrandaly (2010) proposed the use of Gene Expression
Programming for solving the Multisite Land Use
Allocation Problem. He considered a fictive case study
to illustrate his proposed approach. Two criteria were tak-
en into account, namely the minimization of the develop-
ment costs and the maximization of the compactness of
the land uses. He considered also the coverage of three
land use types as predefined, i.e., as constraints
(Eldrandaly 2010).

In summary, the use of metaheuristics for land use opti-
mization is now well established as a large number of re-
search publications dealing with this problem are available
in the literature. Contrary to our initial expectations, the
choice of a given metaheuristic for solving a given land
use optimization problem was mostly driven by the histor-
ical use in the research teams and affinities between scien-
tific communities, rather than by the characteristics of the
problem at hand. Table 1 summarizes eight representative
examples using metaheuristics for land use optimization,
i.e., two examples from each category in our review. This
table summarizes the reviewed work by its category, objec-
tives, used metaheuristic, criteria and constraints, land uses
and the available land area.

4 Discussion

In spite of the popularity of using metaheuristics for land use
optimization, there are still many interesting research issues
that are worth further discussing.
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4.1 Impact of the history of research communities

The first point we would like to discuss is the historical link
and affinity between some research communities dealing with
land use optimization and some metaheuristics. One reason of
this historical links, let us say specialization, could be the
historic divorce between research communities developing
some metaheuristics during the first two decades of their ex-
istence. Indeed, as stated by Blum et al. (2011), “during the
first two decades of research on metaheuristics, different re-
search communities working on metaheuristic techniques co-
existed without much interaction, neither among themselves
nor with operations research community.”

As pointed out by Matthews (2001), simulated annealing
and taboo search, both taking their roots in the neighborhood
search method, are two popular methods in forest manage-
ment. This could be partially explained, especially for simu-
lated annealing, by the principles of these methods and their
closeness to the operations research community and thus to
the agronomic and forestry communities. Taboo search might
be seen as an attempt to improve the performance of simulated
annealing by learning from the past, through a taboo list, and
thus integrating the concept of memory inspired by the similar
mechanism in human beings (Boussaïd et al. 2013).

Similarly, evolutionary algorithms, particle swarm optimi-
zation, and other metaheuristics have been introduced rela-
tively later to the land use community due to the development
of such algorithms by their own communities. These methods
were used to tackle the increase of complexity in land use
optimization problems. Such complexity is mainly caused
by the change of decision-makers’ points of views and their
competing cri teria. Although more sophist icated
metaheuristic algorithms have been developed in the
metaheuristic communities, especially in the evolutionary
computation community, such advanced algorithms have not
propagated to the land use optimization community, partly
because of time and partly because the more advanced algo-
rithms are not as straightforward as their basic forms, which
creates barriers for their wider and faster adoption. More and
closer collaborations between metaheuristic researchers and
land use researchers are needed in the future.

4.2 An increasing number of objectives and constraints:
scalability of metaheuristics

The increasing number of criteria and constraints involved in
land use optimization problems pose challenges to researchers
and engineers. The optimization problems involving more
than three criteria are often called many-objective optimiza-
tion problems in the evolutionary computation community. It
is well known that the Pareto dominance, the most often used
relationship in the field of multi-objective optimization, is
inappropriate in the context of many-objective optimization.

Indeed, it has been shown that when the number of objectives
increases, the number of non-dominated solutions increases
exponentially (Handing and Xin 2014). This drawback of
Pareto-based multi-objective optimization algorithms has a
direct impact on the ability of such algorithms to progress
towards the Pareto-Optimal front. Therefore, many studies
have been carried out in order to propose comparison opera-
tors that are able to overcome the drawback of the Pareto-
dominance operator in such algorithms. The scalability of
metaheuristics, especially multi-objective evolutionary algo-
rithms, to many objectives has been treated through different
approaches. The main approaches are the modification of the
Pareto dominance relation, the introduction of different ranks,
the use of indicator functions, the use of scalarization func-
tions, the use of preference information, and the reduction of
number of objectives (Ishibuchi et al. 2008).

The modification of the Pareto dominance relation through
many relaxation forms has been proposed in the literature to
improve its comparability abilities. The alpha dominance, the
epsilon dominance, and the local dominance relation are ex-
amples of such modifications (Rui et al. 2013). The idea of
introducing different ranks is to use other dominance relations,
which might be able to differentiate solutions that Pareto-
dominance relation cannot. The relation, favor, based on the
number of criteria favoring one solution to another and the
relation, epsilon-preferred extending the favor relation to take
into account the difference in the objective values of the two
solutions, are examples of such an approach (Rui et al. 2013).

Indicators were initially designed to evaluate the perfor-
mance of metaheuristics. Later, researchers have used these
indicators within the optimization algorithms. Examples are
the indicator-based evolutionary algorithm, the S metric selec-
tion multi-objective evolutionary algorithm, and the
hypervolume-based algorithm (Rui et al. 2013).

The scalarization approach transforms the original many-
objective optimization problem into a single-objective one
using methods such as weighted sum and Tchebycheff
functions. Ishibuchi et al. (2008) distinguished two types of
scalarization approaches. The first approach assigns to each
solution a number of ranks according to each performance
criterion against a set of scalarization functions. In this ap-
proach, every solution receives many ranks, e.g., according
to each objective, and then the final rank of this solution is
determined by an appropriate method, e.g., min operator. The
second approach uses a single scalarization function, e.g.,
weighted sum, to calculate the rank of each solution
(Ishibuchi et al. 2008).

The incorporation of the decision-maker preferences into
metaheuristics could improve the comparability between so-
lutions otherwise incomparable using the Pareto-dominance
relation. Examples of such an approach were cited by
Ishibuchi et al. (2008). Two recent algorithms using this ap-
proach were described in (Rui et al. 2013) and (Sinha et al.
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2010). The idea of the dimensionality reduction approach is to
identify the smallest set of conflicting objectives. The reduc-
tion could be done using machine learning techniques such as
principal component analysis, maximum variance unfolding
(Sinha et al. 2010), nonlinear correlation information entropy
(Handing and Xin 2014), or unsupervised feature selection
algorithms.

Although agricultural land use optimization usually in-
volves many criteria, examples of the use of many-objective
optimization algorithms to deal with land use allocation are
rare. We can only point to Chikumbo et al. (2012) and Groot
et al. (2010). The weighted sum approach remains the most
used method despite its well-known drawbacks.

4.3 Which metaheuristic for which problem?

The choice of the suitable metaheuristic to deal with a given
optimization problem is of great importance for the end users.
This choice could help tackling emerging problems more ef-
ficiently and avoiding the use of poor-performing
metaheuristics. However, this question is very difficult and
there are some ongoing research efforts to understand how
and why one metaheuristic outperforms another for tackling
some optimization problems (He et al. 2014). The fitness land-
scape analysis, in the metaheuristics community, can be a
promising idea for this purpose (He et al. 2007). According
to Pitzer and Affenzeller (2012), the fitness landscape analysis
is commonly used to better understand the performance and
the progression “through the landscape” of a given heuristic
on a problem instances (Pitzer and Affenzeller 2012). The use
of such a concept allows characterizing local optima, plateaus,
basins of attraction, and barriers. One can question the useful-
ness of fitness landscape analysis as it is consuming time and
resources that could be used for solving the optimization prob-
lem at hand. However, the use of fitness landscape analysis
could help understanding themetaheuristic and the problem. It
could help developing better metaheuristics for land use
optimization.

Although it is very difficult to advise a good metaheuristic
for a given problem, some observations could be made to-
wards the choice of metaheuristics to use. For example, taboo
search and simulated annealing seem to have performed well
for cases where there are many constraints, making moves
within the search space satisfying such constraints and random
generation of feasible solutions very difficult. Examples of
such situations are reconfiguration studies aiming to introduce
the smallest number of changes, e.g., hedgerows, into a land-
scape to improve nature conservation. Evolutionary algo-
rithms were preferred for handling multiple conflicting objec-
tives. Inmany applications, hybrid algorithms that combine an
evolutionary algorithm with local search seem to be very ef-
fective and efficient, because they tend to balance exploitation
and exploration better in search.

4.4 Balancing the trade-off between exploration
and exploitation: hybridization

Some metaheuristics are known to be more explorative, while
others are reputed to be more exploitative. As a consequence,
sometimes, simple metaheuristics can show poor perfor-
mances in dealing with some hard problems, such as agricul-
tural land use optimization. To tackle this issue in practice, the
metaheuristic research community suggested the combination
of different algorithms having different abilities to improve
the performances of single algorithms. This technique, com-
monly called hybridization, aims to take advantages of the
strength of each algorithm and avoid as much as possible its
drawbacks. Many kinds of hybridization are possible and al-
ready available in the literature including techniques combin-
ing one metaheuristic with another metaheuristic (Tang et al.
2014), with constraint programming, with local search meth-
od, with tree search technique, with problem relaxation, and
with dynamic programming. However, developing
hybridization techniques is a difficult task. Blum et al.
(2011) recommended that the greatest caution should be taken
before engaging in such an adventure and to not go further if
the hybridization is unnecessary. The use of hybrid
metaheuristics for land use optimization is still rare. Some
examples of this approach can be found in (Liu et al. 2013a;
Aerts et al. 2003b; Seppelt and Voinov 2002; Yang et al.
2012). Interested readers are kindly invited to consult the pa-
per of Blum et al. (2011) for more details on hybrid
metaheuristics.

4.5 Adapting computational facilities to handle a large
number of decision variables and dynamics

One of the most important issues in dealing with agricultural
land use allocation is the geographical resolution and its im-
pact on the number of decision variables involved in the
resulting optimization problem. As researchers and decision-
makers are increasingly investigating agricultural systems on
a large scale and with more and more emphasis on the local
level, the explosion of the number of decision variables seems
unavoidable. Moreover, some of the used models may have
some temporal and dynamic aspects and need the solution of
differential or partial differential equations at each step.
Examples of such phenomenon are population dynamics
models used in the context of integrated pest management.
Another example is the design of conservation strategies in a
dynamic context where proposed solutions must be updated
on the basis of new information and following the changing
situations (Sarkar et al. 2006). The impact of such aspects on
the computation time of metaheuristics could be very severe.

Parallel computing techniques constitute potential solu-
tions to the increasingly long computation time problem.
Population-based metaheuristics, such as evolutionary
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algorithms, are very appropriate for parallelization to speed up
the evaluation of solutions. Examples using parallel evolution-
ary algorithms for land use optimization include (Porta et al.
2013; Liu et al. 2013b).

4.6 Decision-making issues: integrating the knowledge
of decision-makers

The goal of land use optimization is to support decision-
makers and not to exclude them from the whole allocation
process (Sarkar et al. 2006). Metaheuristics allow generating
a set of Pareto-optimal solutions represented by spatial con-
figurations and/or crops allocations, but do not take into ac-
count the decision-making task, i.e., choice of the most suit-
able configuration(s) to be implemented from all candidates.
In published early work, the results of the optimization using
metaheuristics were submitted to decision-makers who had
the task to choose the most appropriate solutions with nomore
support. Basic tools such as graphical representation and some
statistical analysis were then used by decision-makers in mak-
ing the choice. Such tools have some limitations, especially in
cases with high dimensional problems. Therefore, researchers
proposed the use of many multi-criteria decision-making
methods, which are more powerful approaches to decision-
making. For instance, (Store and Kangas 2001) integrated
spatial multi-criteria evaluation and expert knowledge for
GIS-based habitat suitability for species. The method, using
the multi-attribute utility theory, was illustrated on a case
study in which habitat suitability maps were produced for an
old-forest polypore. Van Huylenbroeck (1997) combined sev-
eral multi-attribute utility theory methods for the analysis of
the trade-offs between economic and environmental objec-
tives in rural planning (Van Huylenbroeck 1997). In the con-
text of agricultural land allocation, the multi-criteria decision-
making methods were generally used independently of the
optimization process.

More recently, some attempts have beenmade to bridge the
gap between the metaheuristics and the decision-making
methods used in land use optimization. The aim here is to
use metaheuristics and multi-criteria decision-making interac-
tively to help decision-makers search towards some promising
regions and to be realistic about the performance of used al-
gorithms. Depending on the used approach and on the results
of each optimization round, decision-makers can thus change
the weights assigned to criteria, reconsider their reference
points, or adjust their goals before launching the next round.
An example of this typewas presented in (Janssen et al. 2008),
where the results of an interactive session with land use plan-
ners were used in the framework of a heuristic. Xiao et al.
(2007) reviewed the interactive evolutionary approaches in
multi-objective spatial decision-making. Their goal was to
help the decision-maker to select some alternatives from the
whole set of solutions generated by evolutionary algorithms

and displayed using an interactive visual tool allowing to an-
alyze trade-offs between criteria (Xiao et al. 2007). Seppelt
et al. (2013) recommended to combine optimization algo-
rithms generating Pareto-frontiers with the scenario analysis
in order “to provide efficient options for sustainable land use
from global to subglobal scales” (Seppelt et al. 2013).
Agricultural land use allocation involves many competing ac-
tors such as farmers, farmers associations, environmental
agencies, land planners, and economists. It is therefore useful
to consider multi-actor decision-making methods to help all
these actors finding consensus among them (as shown in
Fig. 4). Approaches based on reference points and goals, as
discussed above, could be very useful for such purposes.

4.7 Methodological studies for different land
use optimization problems

All the studies that we found in the field of land use optimi-
zation were applied to specific situations for concrete applica-
tions. Further, the choice of the metaheuristics that were used
was not guided explicitly by the characteristics of the problem
at hand. In that context, providing advice to researchers that
aim to use these methods for land use optimization is difficult.
This highlights the need for in-depth studies exploring the
value of different metaheuristics for different types of land
use optimization problems. These problems would differ in
terms of geographical resolution, e.g., number of land uses
to be allocated and number of units where allocation would
take place, as well as in terms of optimization goals, e.g.,
numbers of objectives and levels of constraints. A closer col-
laboration between researchers using land use simulation
models and the meta-heuristics research community would
help reach this goal.

5 Conclusion

Reducing the dependency of agricultural systems on chemical
products while keeping an acceptable economic income for
farmers are amongst the ultimate goals of decision-makers in
many countries. Researchers are increasingly using modeling
and optimization techniques to identify pragmatic and clever
management strategies satisfying these objectives. Due to the
complexity of these problems, classical optimization methods
such as mathematical programming, local search techniques,
and heuristics may not be sufficient to deal with such
problems.

The use of metaheuristics for agricultural land use optimi-
zation is now deeply rooted in the scientific community and a
large number of research papers related to this topic have been
published. Agricultural land use optimization using
metaheuristics is now pursued for various purposes, including
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economic crop planning, nature preservation, watershed man-
agement, and multifunctional agriculture.

As the context and objectives are evolving constantly, agri-
cultural land use optimization has becomemore andmore com-
plex. New metaheuristics have to be developed to deal with
such increasing complexity. For instance, decision-makers
and stakeholders are nowadays interested in larger geographi-
cal zones with emphasis on local effect of management strate-
gies. Doing so, the number of decision variables will increase
and the difficulty of the problem at hand will also increase.

Some interesting ideas have been introduced to improve
the performance of metaheuristics when dealing with hard
optimization problems. On one hand, the use of parallelization
techniques and the use of clusters and clouds can speed up
existing algorithms. On the other hand, hybridization of dif-
ferent metaheuristics can lead to new and more efficient algo-
rithms. Although it is very difficult to suggest a suitable
metaheuristic for a given optimization problem, some charac-
teristics of the problem could guide this choice. For example,
we could use such characteristics to choose search operators

Fig. 4 Involving decision-makers and stakeholders in the process of
land use design using metaheuristics is a real challenge for the future.
Decision-makers can be involved in the process using a priori,
interactive, and a posteriori approaches. (1) In the a priori approach,
decision-makers can express their preferences, through known land use
scenarios for example. (2) Interactive approaches allow decision-makers

to change their preferences during the optimization process based on
their real-time analysis of the progress of simulations and their outputs.
(3) In the a posteriori approach, decision-makers analyze the results of
the optimization at the end of simulation. They can decide to change
their preferences and go into new simulations or be satisfied with those
results
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automatically in an evolutionary algorithm (Consoli et al.
2014). Another important issue is to help the stakeholders
and decision-makers selecting one or more solution(s) from
the whole set of solutions generated by a multi-objective
metaheuristic algorithm. Indeed, stakeholders and decision-
makers who sometimes have competing interests are increas-
ingly involved in the land use optimization and require inter-
active tools helping them to find best trade-offs reflecting their
various interests and points of view.
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