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Abstract No-till practices are restoring and protecting soil
health and are considered critical for achieving sustainability
of global agriculture. Organic producers in the USA would
like to no-till, but are concerned about managing weeds with-
out tillage. In conventional agriculture, no-till improves weed
management in diverse rotations when crops are arranged in
2-year intervals of cool season and warm season crops. A
similar approach with organic rotations may enable producers
to also accrue the weed management benefit of no-till in or-
ganic farming along with restoring soil health. Here, we re-
view the benefits gained for weed management when a com-
plex rotation is integrated with continuous no-till. The com-
plex rotation included 3 years of a perennial legume and
6 years of annual crops arranged in 2-year intervals of warm
season or cool season crops. The no-till, complex rotation can
(1) reduce weed emergence 3- to 4-fold in some annual crops;
(2) delay weed emergence 2 to 4 weeks; (3) reduce yield loss
due to weed interference; (4) suppress invasion of dandelion
into cropland; and (5) enhance soil restoration, improve nutri-
ent cycling, and increase soil porosity. Furthermore, perennial
red clover can be converted to no-till cropland with fall mow-
ing; thus, organic producers can include a perennial legume in
a no-till rotation. The complex rotation increases the impact of
no-till on weed seed decay in soil and provides numerous
opportunities for cover crops to replace tillage for controlling
weeds. These benefits suppress weed growth and interference
such that organic producers may be able to continuously no-
till in their farming systems, thus accruing restoration of soil
health and long-term sustainability gained with no-till.
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1 Introduction

Development of no-till systems, which involves no soil dis-
turbance and direct drilling of crops, has greatly affected ag-
riculture (Triplett and Dick 2008). Producers are restoring soil
health, increasing organic matter levels and carbon storage,
improving soil structure, and minimizing soil erosion with
no-till (Carter 2002; Hobbs 2007). A further benefit is that
microbial activity and resource use efficiency increase with
no-till (Peigne et al. 2007; Triplett and Dick 2008).
Integrating no-till with crop diversity is recognized as critical
for achieving sustainability of global agriculture (FAO 2014).

Organic producers are interested in no-till, but they lack
viable alternatives to tillage for controlling weeds (Sooby
et al. 2007). Scientists are exploring cultural tactics to reduce
intensity of tillage (Peigne et al. 2007; Maader and Berner
2012). Methods such as strip tillage (Brainard et al. 2013) or
a crimper-roller that mechanically kills cover crops (Kornecki
et al. 2009) have been developed. These methods have led to a
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concept of rotational tillage, where reduced or no-till se-
quences are integrated within a longer tillage-based rotation
(Legere et al. 2013). However, results have been inconsistent
(Carr et al. 2012). A further concern with rotational tillage is
that in conventional agriculture, continuous no-till is more
beneficial for improving soil health (Triplett and Dick 2008).
Grandy et al. (2006) noted that even a one-time tillage can
severely restrict benefits gained from no-till, especially related
to soil structure.

Barberi (2002), reviewing weed management in organic
farming, questioned if emphasis on specific control tactics
was the most effective approach to manage weeds. He specu-
lated that the control tactic approach may neglect the systemic
(“holistic”) nature of organic agriculture and encouraged re-
searchers to consider system design in addition to control tac-
tics. In conventional agriculture, a systems approach to weed
management can reduce the need for herbicides (Deytieux
et al. 2012). Integrated weed management involves a multi-
tude of cultural tactics to disrupt weed population dynamics as
well as suppress weed interference (Harker 2013; Shaner
2014). One critical component of integrated weed manage-
ment is rotations composed of a diversity of crops with differ-
ent life cycles (Colbach et al. 2014; Garrison et al. 2014).
Different planting and harvest dates among crops can prevent
or reduce weed establishment or seed production.
Furthermore, crop diversity can improve crop growth
(Kirkegaard and Hunt 2010), thereby increasing crop compet-
itiveness and tolerance to weeds (Anderson 2011).

Producers in the US Great Plains have reduced the cost of
weed management 50 % when using a multitactic approach
(Anderson 2008). Two trends observed with this program in
the Great Plains may be of benefit for organic producers. First,
weed dynamics are more disrupted when seasonal crops are
arranged in a sequence of two cool season crops followed by
two warm season crops. Long-term rotation studies show a 5-
to 6-fold difference in weed densities when comparing two-
crop rotations to four-crop rotations. By preventing weed seed
production across 2 years, such as eliminating seed rain of
cool seasonweeds during thewarm season crop interval, weed
seedling density is drastically reduced when a cool season
crop is grown in the third year with no-till.

Second, no-till enhances the impact of rotation design on
weed dynamics, but only with rotations composed of two cool
season crops followed by two warm season crops (Anderson
2008). Weed density increases in less diverse rotations with
no-till, such as two-crop rotations consisting of one cool sea-
son crop followed by one warm season crop. The reason no-
till benefits weed management in four-crop rotations is related
to the increased rate of weed seed decay when seeds are main-
tained on the soil surface (Mohler 2001; Gomez et al. 2014).
For example, in the first year after seed rain, density of weed
seedlings does not differ between no-till and tilled systems,
but by the third year, seedling emergence is 8-fold greater with

tillage (Fig. 1). Seedling emergence with tillage in the third
year is higher because weed seeds survive longer buried in
soil, leading to more weed seedlings in following years.

Designing rotations to include 2-year intervals of cool and
warm season crops has enabled conventional producers, in some
no-till rotations, to eliminate herbicide use in three crops out of
four because weed density is so low (Anderson 2008). These
findings led us to believe that integrating diverse rotations with
continuous no-till may enable producers to successfully manage
weeds in a no-till organic system. Therefore, we devised a con-
ceptual rotation for the US Great Plains consisting of 3 years of
alfalfa (Medicago sativa L.), followed by a 6-year sequence of
corn (Zea mays L.)-soybean (Glycine max Merr.)-winter wheat
(Triticum aestivum L.)-oat (Avena sativa L.)-soybean-corn, and
then alfalfa established with an oat nurse crop (Anderson 2010).
The annual crop sequence alternates 2-year intervals of cool
season and warm season crops to gain the synergy of no-till
and seasonal crop intervals. Alfalfa was included to further en-
hance the rotation effect on weed dynamics; alfalfa suppresses
weeds, especially warm season weeds, due to frequent mowing
for forage harvest and competitiveness of the alfalfa canopy
(Ominski et al. 1999). We suggested 3 years based on weed
seedling emergence across time in alfalfa (Fig. 2). Number of
weed seedlings emerging in alfalfa decreases to a minimum 3 or
4 years after establishing alfalfa due to natural decline of viable
weed seeds in soil. Seedling emergence increases after 4 years
because weeds adapted to alfalfa, such as dandelion (Taraxacum
officinale Weber in Wiggers) or downy brome (Bromus
tectorum L.), increase in density.

Guided by our conceptual rotation, we review benefits
gained by integrating a complex rotation with no-till to manage
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Fig. 1 Weed seedling emergence as affected by tillage and time,
averaged across several studies in conventional agriculture. Weed seeds
were not added to the soil after initiation of studies; tilled treatment was
tilled once a year. Data are expressed as a percentage of the treatment with
the highest emergence in the study. Standard error bars were derived
from yearly means among studies (adapted from Egley and Williams
1990; Popay et al. 1994; Anderson 2007; Anderson 2009)
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weeds, based on information from both the literature and recent
results from our research program. Currently, a common rota-
tion for organic farming in the Great Plains is a 4-year sequence
of alfalfa-corn-soybean-spring wheat with extensive tillage to
control weeds and prepare seedbeds. The climate is subhumid,
with yearly precipitation ranging from 500 to 650 mm.

2 Impact of no-till on weed management in a complex
rotation

2.1 Controlling weeds during the cool season interval

Cover crops can replace tillage for weed control (Kruidhof
et al. 2008; Wilke and Snapp 2008), especially during the cool
season interval because of more opportunities to successfully
establish cover crops.

2.1.1 Underseeding annual clovers in winter wheat

Weed growth after winter wheat harvest can be controlled by
underseeding annual clovers into winter wheat (Blaser et al.
2011; Fisher et al. 2011). In our cool season sequence of winter
wheat-oat, mammoth red clover (Fig. 3) drilled into winter wheat
in the spring reduced weed biomass and volunteer wheat density
after winter wheat harvest of 98 % compared with a control
(Anderson 2014a). Furthermore, tillage is not needed to termi-
nate annual clovers because they winter-kill.

Underseeded red clover also controlled downy brome by
enhancing winterkill. Red clover did not affect seedling emer-
gence of downy brome, but winterkill eliminated all seedlings;

in contrast, 60 % of plants emerging in the fall with the control
survived the winter. Downy brome produced 9500 seeds m−2 in
the control, but only 23 seeds m−2 in the red clover treatment. A
mixture of oat/pea planted after oat harvest was also tested in
this study, but it reduced downy brome seed production less
than 20 % compared with the control (Anderson 2014a).

No-till contributed to brome suppression by red clover.
Downy brome seed production in the red clover treatment
occurred only with plants emerging in the spring. Yet, several
plants of the spring cohort did not vernalize and produce any
seeds. Andersson et al. (2002) showed that downy brome
emergence was delayed in no-till; in our study, spring emer-
gence of downy brome began inMay, 2 to 3 weeks later than it
occurs in tilled systems (Werle et al. 2014). Finnerty and
Klingman (1962) found that downy brome vernalization was
greater with short day lengths. Delay in emergence with no-till
led to plants experiencing longer day lengths and warmer
temperatures, thus reducing vernalization.

Underseeding red clover eliminated the need for tillage to
control weeds after harvesting winter wheat. Winter wheat
yield was not reduced by red clover, but some red clover
plants survived the winter and infested oat the following year.
Therefore, red clover has been replaced with crimson clover
(Trifolium incarnatum L.), which is not as winter hardy and
completely winterkills (Clark 2012).

2.1.2 Controlling weeds during the interval from oat
to soybean

Weeds could be controlled in this interval with cover crops
that are mechanically terminated (Mischler et al. 2010). For
example, Wells et al. (2014) effectively controlled weeds in no-
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Fig. 2 Seedling emergence of the weed community in alfalfa across time.
Data are expressed as a percentage of emergence in the first year and
averaged across several studies (adapted from Ominski et al. 1999; Entz
et al. 2002; Anderson 2014a)

Fig. 3 One benefit of no-till is preserving crop residues on the soil
surface to protect soil. Underseeding annual clovers into winter wheat
suppresses weeds after harvesting wheat, eliminating the need for
tillage to control weeds
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till soybean by crimper-rolling winter rye (Secale cereale L.).
However, in the Great Plains, this approach often reduces crop
yield because of water use by the cover crop, and control of
weeds is inconsistent (Carr et al. 2012). Underseeding annual
clovers in oat is an option, but possible yield losses of 15 to
20 % in oat may occur (Anderson 2014a). In the eastern US
Corn Belt, the cover crop, forage radish (Raphanus sativus L.),
effectively controlled winter annual weeds in a corn-soybean
rotation (Lawley et al. 2011). Radish winterkilled, thus elimi-
nating the need for tillage, but radish did not control weeds in
corn the next year. In contrast, in the Great Plains, a radish-oat
mixture planted after oat harvest not only controlled weeds in
the fall, but also reduced weed growth 63 % in soybean the
following year compared to the tilled control (Anderson
2014b). Soybean yield loss due to weed interference in the
no-till, cover crop system was only 17 %, but 33 % in the tilled
control. Weed interference was less because weed emergence
was reduced and delayed in the no-till, cover crop system
(Fig. 4). In the tilled control, 50 weed seedlings m−2 emerged
in the first 2 weeks after planting soybean, but with no-till,
6 weeks passed before 50 seedlings had emerged. Total weed
emergence after 8 weeks was 4-fold higher in the tilled control.

Our results differ fromLawley et al. (2011) for two reasons.
First, our study involved a winter wheat-oat-soybean se-
quence rather than a corn-soybean rotation. In conventional
agriculture, tilling after a 2-year interval of no-till in winter
wheat-oat sequence increased weed emergence in soybean 5-
fold compared to continuous no-till (Anderson 2009), a sim-
ilar trend as shown in Fig. 4. The 2 years of cool season cereal

crops followed by no-till soybean favored the decline of viable
weed seeds in the soil, thus reducing weed density (as shown
in Fig. 1). A second difference is our continued no-till into the
soybean growing season preserved crop residues lying on the
soil surface. Crop residues delay the time of weed emergence
(Teasdale et al. 2007; Bernstein et al. 2014).

Cover crops eliminated the need for tillage to control weeds
in the no-till winter wheat-oat-soybean sequence of our 9-year
rotation. Weed interference in no-till soybean can be further
reduced by between-row mowing (Donald et al. 2001) and in-
row control of weeds (Wortman 2014).

2.2 Converting a perennial legume to cropland without tillage

Perennial legumes can be converted to annual cropland without
tillage by mowing twice in the fall (between September 1 and
October 31) in the third year of forage (Anderson 2014a). This
tactic effectively suppressed medium red clover (Trifolium
pratenseL.) such that corn could establish in the following year.
Death of red clover occurred over winter because mowing re-
duced carbohydrate levels in the crown and roots; perennial
legumes use 50 % of their stored carbohydrates to survive the
winter (Sheaffer et al. 1988). Producers in the Great Plains are
encouraged to not harvest legumes in the fall to avoid stand loss
due to winterkill (Haagenson et al. 2004).

Biomass of fall-mowed red clover was more than 80% less
than mowed alfalfa 3 and 6 weeks after planting corn (Fig. 5).
Furthermore, stand density of mowed red clover was 85 %
lower than alfalfa (Anderson 2014a). Corn established only in
mowed red clover, but not in any of the alfalfa treatments nor
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Fig. 4 Weed emergence pattern in soybean, comparing a no-till, cover
crop system (circle symbols) with a tilled control (triangle symbols). Crop
sequence before treatments were established was winter wheat-oat in no-
till. Data were collected weekly for the first 8 weeks after soybean
planting; data averaged across two studies. Asterisks beneath the X-axis
indicate that emergence in that week differed between systems at the 0.05
level of probability. Study conducted at Brookings SD, USA (adapted
from Anderson 2014b)

0

50

100

150

200

250

Biomass 
(g m -2)

Alfalfa Red Clover Alfalfa Red Clover

3 Weeks 6 Weeks

a a
a

c

b
b

c

d

Sampling 
(weeks after corn planting)

Control (no mowing)

Fall Mowing

Fig. 5 Biomass of alfalfa or red clover in corn planted the fourth year
after mowing the legumes in the fall of the third year. Data were averaged
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the red clover control where early season competition killed
corn seedlings. Corn grain yield was reduced 45 % by volun-
teer red clover and weeds in the mowed red clover treatments,
but weeds reduced corn similarly in a tillage-based control
(tillage in the fall and before corn planting). Producers in a
tilled system can control weeds in the crop with tillage to
minimize yield loss, but producers in no-till also can control
weeds and volunteer clover because of innovations with
equipment. Donald et al. (2001) designed a mower that effec-
tively controls weeds between rows of corn and soybean,
eliminating the need for tillage or herbicides between rows.
Other implements can remove weeds in the crop row (Van der
Weide et al. 2008; Wortman 2014). With these implements,
weeds and volunteer red clover in corn can be controlled
without tillage. Late season growth of red clover would be
suppressed by shading of corn.

Weed biomass measured 9 weeks after planting corn in the
fall-mowed red clover treatment was less than 10 % of weed
biomass in the tilled treatment (Anderson 2014a). Volunteer
red clover was also present, but biomass of both was only
50 % of weed biomass in the tilled treatment. Part of this
contrast in weed biomass was related to no-till. Weekly as-
sessments of weed emergence in the weed-free subplots of
corn showed that weed emergence in the tilled treatment was
3 times higher than that in fall-mowed red clover (Fig. 6).
Tilling increased weed emergence in corn. Similar trends have
been observed in conventional agriculture; weed density in
annual crops is higher when alfalfa is terminated by tillage
compared with no-till (Ominski and Entz 2001).

2.3 Impact of preceding crop and seeding time on alfalfa
competitiveness with weeds

A common practice for organic farming is establishing alfalfa
after spring wheat harvest, with the field tilled to prepare a
seedbed. However, organic no-till alfalfa is most competitive
with weeds following soybean (Anderson 2014a). In the third
forage year (preceding fall mowing for conversion to crop-
land), weed biomass in alfalfa following spring wheat was
23 % of the plant community, but less than 1 % when alfalfa
followed soybean (Fig. 7). Alfalfa yield was also 19 % higher
following soybean.

Weed biomass increased because alfalfa density following
spring wheat was only 71 % of alfalfa following soybean
(Anderson 2014a). Weeds such as downy brome and dande-
lion were able to establish and produce biomass where alfalfa
stand was sparse. In the third forage year, downy brome
infested 21 % of the land area in alfalfa following spring
wheat, but was not observed in alfalfa following soybean.

Alfalfa establishment following spring wheat harvest was
reduced because some seedlings died due to competition from
spring wheat volunteers and growth of annual weeds that
established in spring wheat. Few volunteers of soybean and
corn established in alfalfa, and seedlings of warm season
weeds that infested soybean and corn the previous year did
not emerge until after alfalfa seedlings were established.
Alfalfa establishment following corn was disrupted somewhat
by corn residues on the soil surface interfering with proper
seed placement during alfalfa planting.
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3 Additional benefits of a no-till, complex rotation

3.1 Managing perennial weeds, insect pests, and diseases

Perennial weeds can be a major obstacle to successful organic
farming, especially in systems with less tillage (Albrecht
2005; Sooby et al. 2007). Yet, crop selection and sequence
within a rotation can help manage perennial weeds. In our
red clover conversion study described above, dandelion den-
sity in the third year of forage was 4-fold higher in alfalfa than
that in red clover (Anderson 2014a). Also, density of prickly
lettuce (Latuca serriola L.), an annual species whose seed is
wind-distributed like dandelion, was 10-fold higher in alfalfa
than that in red clover. Red clover is more competitive with
these weeds than alfalfa. Dandelion density in alfalfa also was
influenced by the crop which preceded alfalfa. Assessed in the
third year of forage, dandelion density was 10-fold higher in
alfalfa following spring wheat than following soybean, and 3-
fold higher when alfalfa followed corn compared with
soybean.

Canada thistle [Cirsium arvense (L.) Scop.] is also present
in the Great Plains. Perennial legumes effectively control
Canada thistle because repeated mowing and competition dis-
rupts carbohydrate storage in the crown and roots (Moore
1975). Donald (1990) reported that Canada thistle can be
eliminated with 3 years of perennial legumes. Sudangrass
[Sorghum sudanense (Piper) Stapf.] suppresses fall growth
of Canada thistle because of its rapid growth and canopy de-
velopment (Bicksler et al. 2012). A warm season plant,
sudangrass, can be planted as a cover crop after winter wheat
or oat harvest. Also, in-crop mowing in corn and soybean will
reduce Canada thistle growth (Donald et al. 2001).

Our complex rotation will also help manage two prevalent
pests in the US Corn Belt. Soybean cyst nematode (Heterodera
glycines Ichinohe) is the most prominent disease infecting soy-
bean in the USA (Wrather and Koenning 2006). Miller et al.
(2006) found that red clover and alfalfa serve as quasi-hosts for
this nematode, stimulating eggs to break dormancy. But, nem-
atodes are unable to complete their life cycle and reproduce on
these species; thus, these legumes accelerate decline of nema-
tode density in soil. A major pest in corn is the corn rootworm
(Diabrotica spp.), and diversifying the crop rotation effectively
suppresses this pest also (Levine et al. 2002).

3.2 Improving soil functioning and porosity

This 9-year rotation can restore soil health and consequently,
increase crop yields. Karlen et al. (2006) found that soil health
improved when rotations included 3 years of perennial for-
ages, but soil health declined with continuous corn or corn-
soybean. Stanger and Lauer (2008) reported corn yields 17 %
more in a rotationwith 3 years of alfalfa than either continuous

corn or corn-soybean, which was attributed to improved soil
functioning.

This complex rotation will also aid nutrient management.
Annual crops have responded to biological N from perennial
legumes for 3 to 5 years after termination (Hoyt 1990;
Sweeney and Moyer 2004). Perennial legumes reduce nitrate
leaching in soil because of their deep rooting structure, thus
recycling more N for crop growth (Dinnes et al. 2002; Entz
et al. 2002). Legumes also increase organic P levels in soil by
releasing acids to solubilize fixed P (Gallaher and Snapp
2014). Long-term studies show that organic rotations with
perennial legumes maintain similar bioavailable P levels as
found with conventional rotations using P fertilizers
(Wortman et al. 2012; Gallaher and Snapp 2014). Grandy
et al. (2006) and Brussaard et al. (2007) both noted that nutri-
ent use efficiency is higher in no-till, diverse cropping systems
because of microbial changes in soil.

Red clover can alleviate soil compaction near the surface.
Papadopoulos et al. (2006) found that red clover increased soil
macroporosity and average pore size compared with spring
wheat or hairy vetch (Vicia villosa Roth). Also, Grandy et al.
(2006) noted that over time, soil compaction in no-till is ame-
liorated due to gradual buildup of organic matter and micro-
bial activity near the soil surface.

4 Conclusions

Integrating no-till with a rotation that includes seasonal inter-
vals of two cool season and twowarm season crops along with
a perennial legume improves weed management. Weed den-
sity is reduced, and time of emergence is delayed, thus less-
ening impact of weeds on crop growth. Furthermore, soil
functioning and porosity improves with no-till, diverse rota-
tions. Red clover can be converted to cropland with fall mow-
ing, thus eliminating the need for tillage when organic rota-
tions include a perennial legume.

Diverse crop rotations can reduce weed density in tillage-
based organic systems (Cavigelli et al. 2008; Koocheki et al.
2009); integrating no-till with diverse rotations should further
decrease weed density. Lower weed density and delayed
emergence also will lead to higher efficacy of cultural tactics
(Zasada et al. 1997; Dieleman et al. 1999; Rasmussen 2004).

Future research should field test this conceptual rotation,
especially if recently developed equipment, such as the
between-row mower, can be integrated with weed manage-
ment. Also, methods to establish cover crops in corn or soy-
bean to suppress late season weed growth are needed; aerial
applications of cover crop seed may be one possibility
(Wilson et al. 2014). The conceptual rotation has been revised
by replacing alfalfa with red clover and changing the sequence
of crops in the second warm season interval to corn-soybean.

972 R.L. Anderson



Barberi (2002) suggested that examples of system designs
for weed management in organic farming be described in the
literature to stimulate more consideration of the systems ap-
proach. Zwickle et al. (2014) also encouraged scientists to
provide examples that demonstrate how long-term, diverse
rotations are crucial for integrated weed management in or-
ganic rotations. Our proposed rotation is one example and
may provide ideas for producers and scientists elsewhere to
develop similar programs. Integrating no-till with a complex
rotation may improve weed management such that producers
could develop a continuous no-till organic system.
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