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Abstract
The phytochemical content and antioxidant activity of leaves from five varieties of Stevia rebaudiana (Morita II, SA178, 
SA17, SA124, and Heam) were evaluated. Among the aqueous extracts of all varieties tested, the highest phytochemical con-
tent and antioxidant activity were both observed in the SA-178 variety. The values obtained from SA-178 for total phenolic, 
flavonoid, and FRAP content were 18.69 ± 0.014 mg of gallic acid equivalents per gram of dry weight, 3.91 ± 0.014 mg of 
quercetin equivalents per gram of dry weight, and 56.66 ± 0.01 mmol of  Fe2+ per gram of dry weight, respectively. Extrac-
tions from this cultivar also showed the highest DPPH, ABTS, and Nitric oxide scavenging activity with  IC50 values of 
65.71 ± 0.56 µg  mL−1, 15.74 ± 0.27 µg  mL−1, 151 ± 0.03 µg  mL−1, respectively. For further analysis, alcohol extracts of 
SA-178 and Morita II (the most commonly used variety) were assessed for phytochemical content and antioxidant activity, 
and similar results were obtained. Aqueous and alcohol extracts of SA-178 were also studied for their antidiabetic properties, 
for which the aqueous extract showed the highest ɑ-amylase and ɑ-glucosidase activity with  IC50 values of 1.15 ± 0.010 and 
0.42 ± 0.01 mg  mL−1, respectively. As revealed by PCA analysis, a positive correlation was observed between phytochemical 
content and antioxidant activity. Therefore, SA-178 can be used as a sweetener in various products that will potentially also 
promote the management of oxidative-related diseases like diabetes.
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1 Introduction

Stevia rebaudiana Bertoni tastes 200–300 times sweeter 
than sucrose and belongs to the Asteraceae family (Prakash 
et al. 2014). It is widely used as a flavoring ingredient for a 
variety of foods and beverages as well as a low-carbohydrate 
component in various diets (Elnaga et al. 2016). Stevia is 
known for its anti-obesity, antidiabetic, anti-hyperlipidemic, 
antioxidant, and anti-inflammatory effects (Ranjbar and 
Masoumi 2018). Stevia extract has been shown to decrease 
blood glucose levels and improve insulin resistance, as per 
Scaria et al. (2017). Synthetic antioxidants are less effec-
tive than Stevia against oxidative agents, and they may 
lead to other side effects as well such as skin discoloration, 
itching, bloating, flatulence, and diarrhoea, among others 
(Ruiz-Ruiz et al. 2015; DiNicolantonio et al. 2015; Won-
dafrash et al. 2020). Among natural antioxidants, phenolic 
acids play an important role. They are secondary metabo-
lites formed from shikimic acid and pentose phosphate dur-
ing the phenylpropanoid metabolization process in plants 
(Randhir et al. 2004). Antioxidants are substances that help 
prevent or reduce damage to cells affected by unstable mol-
ecules or free radicals (Pham-Huy et al. 2008). Sources of 
antioxidants may be natural or artificial, and some plant-
based foods are considered especially rich in antioxidants 
(Brewer 2011). Natural antioxidants are generally the pre-
ferred alternative to manufactured antioxidants for defence 
against disease-causing free radicals (Nagmoti et al. 2012). 
Antioxidants also protect the body from other harmful mol-
ecules and reduce inflammatory reactions against allergens, 
toxins, and microbes (David et al. 2016). In this study, dif-
ferent varieties of Stevia were analyzed to determine which 
cultivar contains the highest quantity of plant-derived phy-
tochemicals and highest antioxidant activity. Each plant 
species contains a different number of phytochemicals with 
variable antioxidant activities due to the presence of differ-
ent enzymes in different plant lineages affecting secondary 
metabolites during their biosynthesis (Santos-Sánchez et al. 
2019). Antidiabetic therapy attempts to establish normogly-
cemia and reduce insulin resistance in insulin-dependent 
(Type 1 Diabetes) and insulin-independent (Type 2 Dia-
betes) diabetic patients to enhance metabolic control and 
avoid future complications (Önal et al. 2005). Phenolic com-
pounds, such as phenolic acids and flavonoids, covalently 
attach to alpha-amylase and change its activity by generating 
quinones or lactones that react with the nucleophilic groups 
of the enzyme molecule (Oyedemi et al. 2013). Polyphenols 

have also been shown to have various properties that block 
ɑ-amylase and ɑ-glucosidase, according to research. In this 
study, we evaluated the plant-based phytochemical content 
and antioxidant activity of various Stevia varieties.

2  Materials and methods

2.1  Plant materials

The different varieties of Stevia, i.e. Morita II, SA178, SA17, 
SA124, and Heam, were collected from Organic Innovation, 
Guwahati, Assam, and Jamuna Biotech farms in Pune, India. 
All plant varieties were identified as Stevia rebaudiana (Ref 
No. RC-14/2020-21) by taxonomist Dr. Keshava H Korse, 
Bhandimane Life Science Research Foundation, Karnataka. 
Plants were maintained in a greenhouse, and leaves were 
harvested from 3-month-old plants. The leaves were cleaned, 
air-dried at 28 ± 2 °C for 7–8 days, crushed into powder, and 
stored in an airtight container until use.

2.2  Chemicals

All chemicals and reagents used in this analysis were analyt-
ical grade. SRL Pvt. Ltd. (Mumbai) provided 2,4,6-tripyri-
dyl-S-triazine (TPTZ), sodium nitroprusside (SNP), p-nitro-
phenyl glucopyranoside (pNPG), 2,4-dinitrophenylhydrazine 
(DNPH), naphthylethylenediamine dihydrochloride (NED), 
sulphanilamide, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 
ascorbic acid, gallic acid (GA), Trolox, quercetin (Q), cur-
cumin, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic 
acid) (ABTS), α-amylase, and α-glucosidase. Commercial 
acarbose  (Glucobay®) was purchased from the market.

2.3  Stevia leaf extraction

The aqueous extract (AE) was made according to the pro-
cedure given by Woelwer-Rieck et al. (2010) with slight 
modifications. The dried leaf powder (3 g) was combined 
with 50 mL distilled water, vortexed for 1 h in a water bath 
at 100 °C, then centrifuged for 15 min at 4500 RPM. The 
filtrate was collected using Whatman no. 1 (11 μm pore size) 
filter paper and kept at 0–4 °C until use. The varieties with 
high phytochemical content and antioxidant activity were 
used for the alcohol extractions.

Methanol (MEs) and ethanol extracts (EEs) of dried 
leaves were obtained according to Al-Manhel and Niamah 
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(2015). The leaf powder (5 g) was combined with 50 mL of 
methanol or ethanol and kept for 24 h in a shaking incubator 
at 200 rpm. The supernatants were filtered using Whatman 
no. 1 filter paper and kept at 0–4 °C until needed.

2.4  Phytochemical content

2.4.1  Determination of total phenolic content

The phenolic compounds were determined using the Folin-
Ciocalteu technique, which is based on phenolics reducing 
the phosphorwolframate-phosphomolybdate complex, with 
slight modification (Singleton and Rossi 1965). Absorb-
ance was measured at 765 nm. Results were obtained by 
comparing the absorbance of each sample to a standard 
curve (0–250 mg  mL−1 gallic acid). Three replicates of the 
experiment were carried out. The total quantity of phenolic 
compounds in the sample was estimated as mg of gallic acid 
equivalents (GAE) per gram of dry weight of the sample 
(r = 0.99).

2.4.2  Determination of total flavonoid content

The flavonoid content was determined by measuring the 
absorbance at 415 nm using a modified aluminum chloride 
method (Dewanto et al. 2002). The results were obtained by 
comparing each sample's absorbance to a standard graph 
(0–100 mg  mL−1 of quercetin). Three replicates were used 
in the study. The total quantity of flavonoid components in 
a sample was measured in quercetin equivalents (QE) per 
gram of dry weight (r = 0.99).

2.5  Antioxidant assays

2.5.1  DPPH radical scavenging activity

All extracts were tested for their ability to scavenge DPPH 
radicals, according to Mitra and Uddin (2014). Thirty min-
utes of incubation in the dark at 27 ± 2 °C was performed 
on the samples. Absorbance at 517 nm was then measured 
against a methanol blank. Ascorbic acid was employed as a 
positive control. Percent inhibition may be calculated using 
this formula:

The  IC50 (µg  mL−1) of an antioxidant extract was also 
determined, which is the lowest inhibitory concentration 
necessary to quench 50% of the preliminary DPPH.

%Inhibition =
Absorbance(Blank − Test)

Absorbance(Blank)
× 100

2.5.2  ABTS scavenging activity

The ABTS scavenging analysis of all extracts was per-
formed according to Ayyash et  al. (2018), with some 
changes. After adding 2.45 mM potassium persulphate to 
a 7 mM ABTS aqueous solution, the mixture was incu-
bated for 16 h at 27 ± 2 °C in the dark. This mixture was 
incubated for an additional 30 min in the dark at 27 ± 2 °C 
after plant extracts at various doses (0–10 mg  mL−1) were 
added. As a control, we used ABTS and methanol instead 
of an extract to evaluate the absorbance at 734 nm. In this 
test, Trolox was utilized as a control. The formula used to 
determine the percentage of inhibition:

The  IC50 (µg  mL−1) of an antioxidant extract, which is 
the lowest inhibitory concentration necessary to quench 
50% of initial ABTS, was also determined.

2.5.3  Ferric reducing antioxidant power (FRAP) assay

According to Chu et al. (2000), the FRAP test was con-
ducted with all extracts. To fit within the linearity range, 
sample solutions were first diluted with deionized water 
to a specific concentration before being analyzed. 3 mL 
of FRAP reagent was preheated to 37 °C. The absorbance 
was measured at 593 nm after 4 min, with 100 μL of sam-
ple being added to the FRAP reagent along with 300 μL 
of deionized water. Values were calculated using the  Fe2+ 
equivalent (FE) calibration curve and expressed in mM of 
 Fe2+ equivalent (FE) per gram of dry weight of the sample. 
There was a linearity range of 0.1–1.0 mM on the calibra-
tion curve, and ascorbic acid was utilized as a reference.

2.5.4  Nitric oxide radicals scavenging activity

Nitric oxide in the SNP solution combines with oxygen 
to generate nitrite ions at physiological pH, which can be 
measured using the Griess-Ilosvay reaction (Mandal et al. 
2011). Sulphanilamide was used to diazotize nitrogen ions, 
which were subsequently coupled with NED, and the pink 
color generated was measured spectrophotometrically at 
540 nm and compared to the blank sample. Triplicates of 
each test were run and curcumin was used as standard. 
The formula to estimate the percentage of inhibition is 
as follows:

%Inhibition =
Absorbance(Blank − Test)

Absorbance(Blank)
× 100

%Inhibition =
Absorbance(Blank − Test)

Absorbance(Blank)
× 100
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The  IC50 (µg  mL−1) of an antioxidant extract, which is 
the lowest inhibitory concentration necessary to quench 
50% of initial nitric oxide, was also determined.

2.6  Antidiabetic assays

The variety with the highest phytochemical content and anti-
oxidant activity was used in the following assays.

2.6.1  In vitro α‑amylase inhibitory assay

Extracts were tested for their ability to inhibit α-amylase 
using a modified Ali et al. (2006) protocol. Absorbance 
was measured at 595  nm using commercial acarbose 
 (Glucobay®) in the range of 0–2.5 mg  mL−1, and the inhibi-
tory activity of α-amylase was calculated as follows:

2.6.2  α‑Glucosidase inhibitory assay

A study by Kim et al. (2000) investigated the impact of 
extracts on the activity of α-glucosidase. By measuring 
p-nitrophenol generated from pNPG at 405 nm and using 
commercial acarbose  (Glucobay®) at concentrations of 
0–10 μg  mL−1 as a standard, α-glucosidase activity was 
determined. The following formula was used to determine 
the activity:

%�−amylase Inhibition =
Absorbance(Blank − Test)

Absorbance(Blank)
× 100

2.7  Statistical analysis

For the analysis, Graph pad Prism 8 was utilized. The find-
ings of each experiment were acquired from three separate 
experiments done in triplicate and were represented as 
mean ± SD. Tukey’s Multiple Comparisons Tests was used 
to assess significance, and the findings were expressed as 
p < 0.05*, p < 0.01**, or p < 0.001***. ANOVA was used 
to generate confidence intervals for all pairwise differences 
in factor level means while keeping the family error rate to 
a minimum. This approach modifies the confidence level for 
each interval to ensure that the resulting simultaneous confi-
dence level equals the specified value. Principal component 
analysis (PCA) was used to perform multivariate analysis 
using MINITAB software version 20.3.0.0 for data analysis.

3  Results and discussion

3.1  Plant varieties

Five different varieties of Stevia, i.e. Morita II, SA178, 
SA17, SA124, and Heam, were used in this study (Fig. 1).

%� − glucosidase Inhibition =
Absorbance(Blank − Test)

Absorbance(Blank)
× 100

Fig. 1  Varieties of Stevia plants



939Horticulture, Environment, and Biotechnology (2022) 63:935–948 

1 3

3.2  Extraction yield

The effects of water and organic solvents (methanol and 
ethanol) on the extraction yield of Stevia rebaudiana were 
investigated. The results revealed a considerable variation in 
extraction yield when different solvents were used. Among 
the solvents studied, distilled water gave the highest extrac-
tion yield (80%), followed by methanol (75%), and ethanol 
(70.2%), showing that the strong polarity of water improves 
extraction efficiency.

3.3  Phytochemical

3.3.1  Total phenolic content

Phenolics are mainly associated with defence mechanisms 
in plants as they are essential in dealing with oxidative 
stress (Lin et al. 2016). Due to this property of phenolics, 
the total phytochemical content of all Stevia varieties was 
estimated. The total phenolic content of all varieties showed 
a significant level of p < 0.001 when compared with the 
Morita II variety. The total phenolic content of all varieties 
was in the range of 4–19 mg GAE  g−1 DW (Fig. 2). With 
a significance level of p < 0.001, SA-178 had the highest 
phenolic content, at 18.69 ± 0.014 mg GAE  g−1 DW, while 
SA-17 had the lowest phenolic content at 4.27 ± 0.010 mg 
GAE  g−1 DW. A study by Yu et al. (2017) revealed that 
Stevia extract contains 20.85 mg GAE  g−1 DW. Stevia AE 
was found to have 15.50 mg GAE  g−1 DW of phenolics 
by Gaweł-Bęben et al. (2015), 25.6 mg GAE  g−1 DW by 
Yildiz-Ozturk et al. (2015), and 28.40 mg GAE  g−1 DW by 
Ruiz-Ruiz et al. (2015). According to Shukla et al. (2012), 
Stevia AE has 56.74 mg GAE  g−1 DW of phenolic. This 
difference in values might be attributed to different plant 
varieties being used or environmental variables such as min-
erals present in the growing area and geographical location 

(Lopes et al. 2018). The alcohol extracts contained 5–11 mg 
GAE  g−1 DW of total phenolic content (Fig. 2). SA-178 had 
the highest phenolic content among all alcohol extracts at 
10.49 ± 0.044 mg GAE  g−1 DW in an ME with a p < 0.001 
significance value. Meanwhile, EE of SA-178 contained only 
5.91 ± 0.022 mg GAE  g−1 DW, with p < 0.001. This varia-
tion in values may be due to differences in the polarity of the 
compounds, which can explain changes in solvent efficiency 
(Ngo et al. 2017). Results from Garcia-Mier et al. (2021) and 
Yu et al. (2017) showed MEs of Stevia content led to 0.948 
and 25.25 mg GAE  g−1 DW of phenolics, respectively. Other 
studies reported EEs of Stevia contained 86.47 and 85.91 mg 
GAE  g−1 DW of phenolics (Ciulu et al. 2017; Covarrubias-
Cárdenas et al. 2018).

3.3.2  Total flavonoid content

Flavonoids play an important role in oxidative stress by 
regulating cellular activity and protecting against free radi-
cals (Kumar and Pandey 2013). They also assist the human 
body in protecting itself from regular stress and toxins 
(Panche et al. 2016). As per Ruiz-Cruz et al. (2017), they 
are beneficial to the body because of their antioxidant, anti-
diabetic, and antiglycation properties and they protect the 
body from oxidative stress by acting as radical scavengers. 
Therefore, the total flavonoid content of all extracts was 
measured and 0.5–4 mg QE  g−1 DW were detected with a 
significance level of p < 0.001, as shown in Fig. 2. SA-178 
had the highest flavonoid yield of 3.72 ± 0.014 mg QE  g−1 
DW, with a significance value of p < 0.001 compared to the 
other samples. The AE of SA-17, on the other hand, had 
the lowest flavonoid concentration at 0.59 ± 0.010 mg QE 
 g−1 DW, with a significance level of p < 0.001. This dis-
parity might be explained by plants developing in differ-
ent environments, leading to varying primary and second-
ary metabolite synthesis and deposition (Marrassini et al. 
2018). In an AE of Stevia, Gaweł-Bęben et al. (2015) and 
Lemus-Mondaca et al. (2018) reported 3.85 and 0.79 mg 
QE  g−1 DW, respectively. Jahan et al. (2010) and Ruiz-Ruiz 
et al. (2015) reported 125.64 and 36.7 mg QE  g−1 DW of 
flavonoids in an AE of Stevia, respectively. A significance 
level of p < 0.001 was reported for all alcohol extracts, with 
flavonoid concentrations in the range of 2–4 mg QE  g−1 
of DW (Fig. 2). Accordingly, the ME of SA-178 had the 
highest flavonoid content of 3.91 ± 0.044 mg QE  g−1 of DW 
(p < 0.001), while the ME of Morita II had the lowest flavo-
noid content of 2.20 ± 0.036 mg QE  g−1 of DW (p < 0.001) 
(Fig. 2). Differences in the polarity of the compounds can 
explain the observed variation in the efficacy of solvents 
(Ngo et al. 2017). Garcia-Mier et al. (2021) and Atas et al. 
(2018) reported MEs of Stevia containing 0.165 ± 0.030 mg 
Rutin equivalents  g−1 and 98 mg QE  g−1 of DW of flavo-
noids, respectively. The EE of Stevia showed 125.64 and 

Fig. 2  Total phenolic and flavonoid content of Stevia extract. Results 
are reported as mean ± SD of triplicate tests, with the same signifi-
cance levels (***p < 0.001). (M-A-Morita II AE; M-M-Morita II ME; 
M-E-Morita II EE; 178-A-SA178 AE; 178-M-SA178 ME; 178-E-
SA178 EE; 17-SA-17; 124-SA124; HE- Heam)
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10.91 mg QE  g−1 DW of flavonoids in Jahan et al. 2010 and 
Zaidan et al. (2019), respectively.

3.4  Antioxidant assay

Antioxidants improve general health by helping to neutralize 
free radicals (Lobo et al. 2010) which are formed continu-
ously in the human body. In the absence of antioxidants, 
free radicals are thought to cause significant damage very 
quickly, potentially leading to death (Sharma et al. 2012). As 
a result, our bodies must maintain a healthy equilibrium of 
free radicals and antioxidants (Lobo et al. 2010).

3.4.1  DPPH assay

DPPH can donate hydrogen molecules (Baumann 1979). 
As a result, it is a widely-accepted method for evaluating 
plant extract antioxidant activity. By adding the extract 
in a concentration-dependent manner, the DPPH solution 
is reduced to diphenyl picryl hydrazine, and the remain-
ing DPPH content is determined. This technique has been 
widely utilized to predict antioxidant activity due to the 
small amount of time needed for analysis. In this investiga-
tion, the DPPH scavenging activity of the Stevia varieties 
was found to range from 65 to 95 µg  mL−1. SA-178 exhib-
ited the highest DPPH activity and the lowest  IC50 value of 
65.71 ± 0.56 µg  mL−1 with a significance level of p < 0.001 
(Fig. 3). This might be because polyphenols and tocopherol 
can scavenge DPPH radicals by donating hydrogen (Rah-
man et al. 2015). The SA 178 variety showed a similar  IC50 
value to ascorbic acid, and therefore was not significant. 
SA-17, on the other hand, exhibited the lowest DPPH activ-
ity and the highest  IC50 value of 94.87 ± 0.47 µg  mL−1 with 
a significance value of p < 0.001. According to the findings, 

all Stevia extracts exhibited radical scavenging activity via 
electron transfer or hydrogen donation. Therefore, these 
extracts may be utilized as antioxidants that readily produce 
protons that can be used as free radical inhibitors. The  IC50 
values published by Kharchouf et al. (2017) and Rahim 
et al. (2016) were 0.56 and 38.87 mg  mL−1, respectively. 
Shukla et al. (2012) and Ruiz-Ruiz et al. (2015), on the other 
hand, reported  IC50 values of 83.45 and 335.94 µg  mL−1, 
respectively. The alcohol extracts’ DPPH scavenging activi-
ties were determined to be 11–71 µg  mL−1 (Fig. 3). Among 
all extracts, the ME of SA-178 exhibited the lowest  IC50 
value of 10.84 ± 0.52 µg  mL−1 with a significance level of 
p < 0.001. ME of Morita II possessed the highest  IC50 value 
of 70.31 ± 0.47 µg  mL−1 (p < 0.001) (Fig. 3b). Jahan et al. 
(2010) and Tavarini and Angelini (2013) observed  IC50 val-
ues of 23.7 and 250 µg  mL−1, respectively, for ME. The 
 IC50 value for ethanol extracts against DPPH was reported 
to be 93.46 µg  mL−1 (Shukla et al. 2009) and 23.70 µg  mL−1 
(Jahan et al. 2010). These differences in results might be 
explained by the various extraction methods employed.

3.4.2  ABTS assay

Potassium permanganate or potassium persulphate are 
strong oxidizing agents that react with the ABTS salt to form 
ABTS. This approach is fast and may be utilized in both 
aqueous and organic solvent systems with a wide variety of 
pH values. It also offers a high degree of repeatability and 
is easy to implement, receiving significant attention as a 
result (Ratnavathi and Komala 2016). The ABTS technique 
is commonly used to measure antioxidant activity because 
ABTS free radicals become stable by absorbing a hydrogen 
ion from the antioxidant, resulting in a reduction in blue 
coloration (Lee et al. 2015). In comparison to Trolox, the 

Fig. 3  DPPH activity of Stevia extract. Results are reported as 
mean ± SD of triplicate tests, with different significance levels 
(**p < 0.01, ***p < 0.001, ns: non-significant). (C-control; M-A-
Morita II AE; M-M-Morita II ME; M-E-Morita II EE; 178-A-SA178 
AE; 178-M-SA178 ME; 178-E-SA178 EE; 17-SA-17; 124-SA124; 
HE-Heam)

Fig. 4  ABTS activity of Stevia extract. Results are reported as 
mean ± SD of triplicate tests, with the same significance levels 
(***p < 0.001). (C-control; M-A-Morita II AE; M-M-Morita II ME; 
M-E-Morita II EE; 178-A-SA178 AE; 178-M-SA178 ME; 178-E-
SA178 EE; 17-SA-17; 124-SA124; HE-Heam)
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ABTS test assesses the antioxidant’s capacity to recover 
ABTS produced in the aqueous phase. The ABTS scaveng-
ing activity of all varieties was found to be in the range 
of 4–132 µg  mL−1. Morita II exhibited the highest ABTS 
activity and the lowest  IC50 value of 4.52 ± 0.07 µg  mL−1, 
with a significance level of p < 0.001 (Fig. 4). SA-178, on 
the other hand, had an  IC50 of 15.74 ± 0.15 µg  mL−1, while 
SA-17 had the lowest activity, again with a significance 
level of p < 0.001. For the AE of Stevia against ABTS, 
Phansawan and Poungbangpho (2007) and Tadhani et al. 
(2007) found  IC50 values of 1.67 and 38.24 µg  mL−1, respec-
tively. ABTS scavenging activity of the alcohol extract was 
determined to be 3–172 µg  mL−1. Of all extracts, Morita 
II had the lowest  IC50 at 3.62 ± 0.07  µg   mL−1, which 
was statistically significant (p < 0.001) (Fig. 4). The EE 
of SA-178, on the other hand, exhibited the highest  IC50 
value of 171.54 ± 0.15 µg  mL−1, with a significance level 
of p < 0.001. The synthesis and accumulation of different 
primary and secondary metabolites are affected by plant 
growth conditions, which could explain this variation in 
results (Labarrere et al. 2019). Phansawan and Poungbang-
pho (2007) reported an  IC50 value of 2.85 ± 0.92 µg  mL−1 
for ME against ABTS. Gaweł-Bęben et al. (2015), on the 
other hand, reported an  IC50 value of 1.34 µg  mL−1 for an 
EE of Stevia.

3.4.3  FRAP assay

Reducers, which function as antioxidants by disrupting 
superoxide radical chains by donating electrons, are typi-
cally associated with the presence of reducing power (May-
akrishnan et al. 2013). In the FRAP assay, the  Fe3+/ferri-
cyanide complex is reduced to  Fe2+/ferrous by reducers in 
the antioxidant sample. Stevia AE was tested for its ability 
to reduce the  Fe3+ ferricyanide complex to the ferrous form 
by donating an electron. Reducing abilities varied from 13 
to 57 mmol of  Fe2+  g−1 of dry weight (p < 0.001) for the 
extracts. Among all varieties, the highest FRAP activity 
(56.66 ± 0.02 mmol of  Fe2+  g−1 DW) was observed for AEs 
of SA-178 with a significance level of p < 0.001 (Fig. 5). 
Conversely, the lowest FRAP activity of 13.14 ± 0.07 mmol 
of  Fe2+  g−1 DW was observed for the AE of SA-17 with 
a significance threshold of p < 0.001. Alvarez-Robles et al. 
(2016) reported the FRAP activity of 1.00 mmol of  Fe2+ 
 g−1 DW for an AE of Stevia. In contrast, Ortiz-Viedma 
et al. (2017) reported FRAP activity varying from 0.12 
to 0.18 mmol  Fe2+  g−1 DW in various extracts of Stevia. 
The FRAP activity of the alcohol extracts was found to be 
in the range of 14–36 mmol of  Fe2+  g−1 DW. Among all 
extracts, the highest FRAP activity of 35.43 ± 0.24 mmol 
of  Fe2+  g−1 DW was observed for the ME of SA-178 with a 
significance of p < 0.001 (Fig. 5). The lowest FRAP activ-
ity of 14.16 ± 0.02 mmol of  Fe2+  g−1 DW was observed for 

the EE of SA-178 with a significance value of p < 0.001. 
Tavarini et al. (2013) showed that an ME of Stevia had a 
total antioxidant capacity of 0.813 mmol of  Fe2+  g−1 DW. 
Lucho et al. (2018, 2019), reported 1350 and 48 µmol  Fe2+ 
 g−1 DW FRAP activity of the EE, respectively. In contrast, 
Ortiz-Viedma et al. (2017) reported FRAP activity varying 
from 0.12 to 0.18 mmol  Fe2+  g−1 DW in various extracts of 
Stevia. These variations might be attributed to different Ste-
via varieties, harvest season, and solvent extraction methods 
used in their studies (Silva et al. 2018).

3.4.4  RNS assay

Sodium nitroprusside in an aqueous pH solution creates 
nitric oxide, which then interacts with oxygen to yield nitrite 
ions, which may then be detected using the Griess reagent, 
according to the method in Boora et al. (2014). Because of 
their redox capabilities, phenolics can operate as reductants, 
simple hydrogen donors, and oxygen quenchers, as well as 
potential metal chelators (Boora et al. 2014). Using in vitro 
nitric oxide radical quenching, antioxidant activity may be 
determined (Nagmoti et al. 2012). Scavengers of nitric oxide 
compete with oxygen, resulting in a reduction in nitrite ion 
production (Ebrahimzadeh et al. 2010). Nitric oxide is read-
ily scavenged by flavonoids (Lakhanpal and Rai 2007). In its 
aerobic form, nitric oxide is a highly unstable species that 
interact with oxygen to create the stable products nitrate and 
nitrite via the intermediates  NO2,  N2O4, and  N3O4 (Patel 
et al. 2010). The extract's nitric oxide scavenging activity 
was determined to be between 151–390 µg  mL−1. Among all 
extracts, the maximum activity with the lowest  IC50 value of 
151 ± 0.028 µg  mL−1 was observed for SA-178, which was 
still higher than curcumin (55.87 ± 0.054 µg  mL−1), with a 
significance of p < 0.001 (Fig. 6). Morita II was found to 

Fig. 5  FRAP activity of Stevia extract. Results are reported as 
mean ± SD of triplicate tests, with the same significance levels 
(***p < 0.001). (C-control; M-A-Morita II AE; M-M-Morita II ME; 
M-E-Morita II EE; 178-A-SA178 AE; 178-M-SA178 ME; 178-E-
SA178 EE; 17-SA-17; 124-SA124; HE-Heam)
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have the highest  IC50 value, with a significance threshold 
of p < 0.001. Shukla et al. (2012) found that Stevia AE had 
a nitric oxide scavenging activity of 98.73 µg  mL−1. The 
alcohol extract's nitric oxide scavenging activity ranged from 
150 to 197 µg  mL−1. The ME of Morita II had the great-
est activity and the lowest  IC50 value at 150 ± 0.04 µg  mL−1 
among all alcohol extracts, with a significance of p < 0.001 
(Fig. 6b). The EE of SA-178 had the lowest activity and 
the highest  IC50 value of 197 ± 0.04 µg  mL−1, with a sig-
nificance threshold of p < 0.001. Shukla et al. (2009) found 
that Stevia EE has a nitric oxide scavenging efficiency of 
132.05 µg  mL−1. Although these effects are modest, they 
are notable because secondary metabolites are responsible 
for reacting to environmental changes, suppressing protein 
synthesis, and regulating enzyme activity, but can also lead 
to cell death (Ozcan and Ogun 2015; Marrassini et al. 2018).

Among the varieties analyzed in this study, Morita II and 
SA178 showed the highest phytochemical content and anti-
oxidant activities in the AE, so they were used for further 
studies using different solvent systems like methanol and 
ethanol.

3.5  In vitro α‑amylase and α‑glucosidase inhibitory 
assays

In managing type 2 diabetes, Krentz and Bailey (2005) recom-
mended blocking the enzymes α-amylase and α-glucosidase 
to prolong carbohydrate digestion, which leads to low post-
prandial glucose levels and reduces the impact one’s diet on 
hyperglycemia (Bischoff 1994). When α-glucosidase is inhib-
ited, carbohydrate digestion is limited and blood sugar levels 
are lowered (Van de Laar et al. 2006). Acarbose and miglitol 
are two α-glucosidase inhibitors that prevent carbohydrates 
from being absorbed in the gut. Several studies have shown 
that these inhibitors are effective in preventing or postponing 

a decrease in glucose tolerance in diabetics. Because plant 
phenols may partially block α-amylase, they can be utilized as 
therapeutic agents to treat secondary complications of diabe-
tes (Chethan et al. 2008). According to Rasouli et al. (2017), 
the binding affinity of most phenolic compounds is higher 
for α-amylase than α-glucosidase, which has higher docking 
energy and reduces the inhibitory effect. As a result, poly-
phenols' primary structure can affect their inhibitory action 
on α-amylase and α-glucosidase activity (Zaidan et al. 2019). 
It has been shown by Kazi (2014) that plant-based phenolic 
compounds can inhibit the digestive enzymes α-amylase and 
α-glucosidase, lowering blood sugar levels and making them 
effective antidiabetic medications. Inhibition of α-amylase 
and α-glucosidase activity by Stevia was investigated using 
AE, ME, and EE of the SA178 variety as it showed higher 
phytochemical content and antioxidant activity than the other 
varieties tested. The AE showed the highest α-amylase and 
α-glucosidase inhibitory activity. In the AE, α-amylase, and 
α-glucosidase showed the lowest  IC50 value of 1.15 ± 0.010 
(p < 0.001) and 0.42 ± 0.01  mg   mL−1 (p < 0.01), which 
was higher than the values for acarbose of 0.25 ± 0.01 and 
0.49 ± 0.01 mg  mL−1, respectively (Table 1). The ME and EE 
showed 1.23 ± 0.02 and 1.70 ± 0.02 mg  mL−1 of α-amylase and 
0.54 ± 0.03 and 0.56 ± 0.01 mg  mL−1 of α-glucosidase activity, 
respectively. Ruiz-Ruiz et al. (2015) reported the  IC50 values of 
200 µg  mL−1 for the α-amylase activity of the Morita II vari-
ety. Recent research by Zaidan et al. (2019) found that Stevia 
leaf extracts had an  IC50 value of 13.73 µg  mL−1 for α-amylase 
activity. Compared to other extracts, AEs exhibited the high-
est activity, which may be linked to the presence of steviol 
glycosides (Rasouli et al. 2017). This can be utilized for the 
management of diabetic complications (Ruiz-Ruiz et al. 2015).

3.6  Statistical analysis

3.6.1  Correlation between phytochemicals 
and antioxidants

Phenolic and flavonoid compounds are essential antioxi-
dants that deactivate free radicals by donating hydrogen 
atoms. As reported in previous research and the present 

Fig. 6  Nitric oxide scavenging activity of Stevia extract. Results are 
reported as mean ± SD of triplicate tests, with the same significance 
levels (***p < 0.001). (C-control; M-A-Morita II AE; M-M-Morita II 
ME; M-E-Morita II EE; 178-A-SA178 AE; 178-M-SA178 ME; 178-
E-SA178 EE; 17-SA-17; 124-SA124; HE-Heam)

Table 1  Inhibition of ɑ-amylase and ɑ-glucosidase activity of Stevia 
extracts

Data presented as mean ± SD (n = 3)

Extracts IC50 value

ɑ-amylase (mg  mL−1) ɑ-glucosidase (mg  mL−1)

Acarbose 0.25 ± 0.035 0.49 ± 0.020
AE 1.15 ± 0.010*** 0.42 ± 0.01**
ME 1.23 ± 0.02*** 0.54 ± 0.03*
EE 1.70 ± 0.02*** 0.56 ± 0.01**
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study, polyphenols are present in AEs, MEs, and EEs. 
Studies on Ipomoea aquatica, Rosa damascene, Foenicu-
lum vulgare, Stachys lavandulifolia, Stevia rebaudiana, 
and Salvia hydrangea have revealed that total phenol and 
flavonoid content and antioxidant capacity are linearly 
related (Shukla et al. 2009; Safari et al. 2018; Aryal et al. 
2019; Ali et al. 2021). In this study, the AEs of Morita II, 
SA-17, SA-124, the ME of Morita II, and EE of SA-178 
had the greatest correlation between DPPH and ABTS 
(Table 2) and between DPPH and RNS. The ME of SA-178 
showed the highest correlation of 0.995. In the case of 
FRAP, however, a strong correlation between DPPH and 
ABTS was observed in SA-124 and Heam (Table  3). 
Rajurkar and Hande (2011) observed a strong relation-
ship between ABTS and FRAP levels for herbal medicines 
using a similar technique. Leaf extracts with high amounts 
of phenolics and flavonoids may have significant levels 
of antioxidant activity (Khiraoui et al. 2017). Aryal et al. 
(2019) observed substantial associations between antioxi-
dant capacity and total phenols (DPPH,  R2 = 0.75;  H2O2, 
 R2 = 0.71) and total flavonoids (DPPH,  R2 = 0.84;  H2O2, 
 R2 = 0.66) at a 95% confidence interval.

3.6.2  Principal component analysis

Principal component analysis (PCA) reduces the complex-
ity of high-dimensional data while preserving trends and 
patterns. PCA geometrically projects data onto smaller 
dimensions known as principal components (PCs) in order 
to obtain the best statistical summary using a limited num-
ber of PCs (Jolliffe and Cadima 2016). PCA was used to 
examine the multidimensional properties of five different 
Stevia plant varieties. It accomplishes this by reducing the 
data to fewer dimensions, which serve as feature summaries. 
High-dimensional data are particularly prevalent in biology 
and develop when several characteristics, such as the activ-
ity of many enzymes, are assessed for each Stevia variety. 
The PCA findings were used to create the projection plot 
(Fig. 7), which shows the similarity of Stevia leaf extracts 
from different varieties. PCA should be used primarily for 
highly linked variables. To minimize data dimensionality 
and extract the signal, a simple scatterplot may be used to 
view the data and discover clusters if two major components 
concentrate more than 80% of the total variance (Lever et al. 
2017). In this study,  IC50 values from the DPPH, ABTS, 
Nitric oxide scavenging analysis, FRAP, total phenolic, and 

Table 2  Relations between TPC 
and DPPH, RNS and FRA, and 
DPPH with ABTS

Data presented as mean ± SD (n = 3)

Extract TPC  (R2) DPPH and 
ABTS(R2)

DPPH and 
FRAP(R2)

DPPH ABTS Nitric oxide FRAP

Morita II-AE 0.961 0.990 0.916 0.980 0.984 0.908
Morita II-ME 0.950 0.969 0.759 0.960 0.963 0.927
Morita II-EE 0.766 0.967 0.911 0.869 0.609 0.833
SA 178-AE 0.719 0.992 0.863 0.970 0.822 0.715
SA 178-ME 0.525 0.911 0.459 0.998 0.529 0.781
SA 178-EE 0.910 0.913 0.499 0.966 0.967 0.718
SA 17-AE 0.985 0.957 0.975 0.957 0.962 0.958
SA 124-AE 0.879 0.887 0.610 0.947 0.928 0.996
Heam-AE 0.612 0.994 0.849 0.995 0.658 0.666

Table 3  Relations between TFC 
and DPPH, ABTS, RNS, and 
FRAP

Data presented as mean ± SD (n = 3)

Extract TPC  (R2) ABTS and 
FRAP  (R2)

DPPH and 
RNS(R2)

DPPH ABTS Nitric oxide FRAP

Morita II-AE 0.947 0.992 0.931 0.986 0.980 0.795
Morita II-ME 0.936 0.967 0.757 0.955 0.993 0.788
Morita II-EE 0.766 0.957 0.912 0.887 0.765 0.949
SA 178-AE 0.707 0.992 0.858 0.976 0.974 0.963
SA 178-ME 0.515 0.893 0.448 0.993 0.907 0.995
SA 178-EE 0.897 0.915 0.489 0.961 0.845 0.764
SA 17-AE 0.968 0.960 0.982 0.960 0.975 0.966
SA 124-AE 0.879 0.886 0.609 0.946 0.927 0.880
Heam-AE 0.604 0.993 0.860 0.994 0.999 0.785
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total flavonoid contents were used to generate the loading 
plot of Stevia.  IC50 values from DPPH, ABTS, Nitric oxide 
scavenging assays, FRAP, total phenolic, and total flavo-
noid contents of Stevia samples were shown in Fig. 7a. All 
samples were discovered to be scattered in an unorganized 
manner. PCA does not function effectively for data reduc-
tion if the association between variables is weak. However, 
by showing considerable similarities, some samples were 
classified into two clusters, one is of aqueous, methanol, and 
ethanol leaf extracts of the Morita II variety, and another 
is of EE from SA-178 with AE of 17 and Heam. The EE 
of SA-178 and Heam remained closer to each other in the 
PCA plot when the samples were grouped by all antioxi-
dant tests, as shown in Fig. 7b. As shown in Fig. 7c, when 
the samples were categorized by total flavonoid content and 
antioxidants, an EE of SA-178 and an AE of SA-124 formed 
a cluster. In contrast, when the samples were categorized by 
total phenolic content and antioxidants, as shown in Fig. 7d, 
an EE of SA-178 and an AE of SA-17 and SA-124 formed 
a cluster. The EE of SA-178 appeared in all clusters in all 
figures. Total phenolic content has a strong relationship with 
antioxidant activity (Garcia-Mier et al. 2021). The presence 
of phenolic compounds such as flavonoids (Pérez et al. 2014) 

and stevioside in Stevia leaves contributes to its antioxidant 
capacity (Tavarini et al. 2020). Even though total flavonoid 
concentration in Stevia is higher than total phenolic acids, 
total flavonoid content was less strongly linked to antioxi-
dant activity (Barroso et al. 2018).

4  Conclusion

The present study aimed to determine which type of Ste-
via has the highest phytochemical content and antioxidant 
properties. These active compounds in medicinal plants help 
treat diseases. Molecules derived from natural sources can 
be considered for use in the development of safer antidia-
betic medicines for long-term usage. The extract was shown 
to have relatively high amounts of total phenolics and flavo-
noids, both of which are important in preventing free radical 
oxidation. According to our findings, Stevia includes virtu-
ally all types of phytochemical components and has anti-
oxidant activity at varying doses. In this study, the AE of 
the SA-178 variety had a high phytochemical content and 
antioxidant activity. This result is also correlated with PCA 
analysis. The antioxidant capacity of the extracted fraction 

Fig. 7  Principal component analysis (PCA). a TPC, TFC, and antioxidants. b Antioxidant. c TPC and antioxidant. d TFC and antioxidant



945Horticulture, Environment, and Biotechnology (2022) 63:935–948 

1 3

may be useful in avoiding or delaying the progression of 
different oxidative stresses. The antioxidant activities of sec-
ondary metabolites in plants might explain their therapeutic 
properties. As a result, the antidiabetic effect of this variety 
was investigated further. The AE exhibited notable activity 
in this study, suggesting that it might be a promising option 
for advanced antidiabetic medicines. Because the plant has 
a high concentration of these bioactive chemicals, it is likely 
to have a wide range of therapeutic properties, including 
antioxidant and antidiabetic properties. The findings of this 
study show that Stevia AE might be employed as a potential 
natural antioxidant source.
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