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Abstract
Prunus domestica L. cv. Ximei fruit perishes quickly due to intense metabolic activity after being harvested. To prolong 
shelf life and maintain fruit quality, the effects of 1-methylcyclopropene (1-MCP) treatment on P. domestica fruit during 
storage at 4 ± 1 °C were investigated. The results showed that the soluble solid content (SSC), respiratory rate (29.8%), 
ethylene production (27.2%), anthocyanin content, malonaldehyde content (MDA), hydrogen peroxide content  (H2O2), and 
superoxide anion activity  (O2

·−) of P. domestica fruit were all significantly reduced by 1-MCP treatment (1.0 µL  L−1), while 
the content of ascorbic acid and total phenol, and the activity of SUPEROXIDE DISMUTASE (SOD, 61.3%), CATALASE 
(CAT, 39.0%), ASCORBATE PEROXIDASE (APX, 23.7%), and PEROXIDASE (POD, 38.0%) increased compared to 
untreated fruit after 35 days of cold storage. Overall, 1-MCP treatment could maintain high postharvest quality and anti-
oxidant activity in P. domestica fruit.
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1 Introduction

Prunus domestica L. cv. Ximei (Rosaceae), a plant native 
to Southwest France, is widely cultivated in Western China. 
P. domestica fruit does not contain fat or cholesterol, but is 
rich in bioactive compounds such as phenols, anthocyanins, 
vitamins, minerals, and trace elements. The bioactive com-
pounds in P. domestica fruit possess pharmacological effects 
that benefit human health such as immunity enhancement, 
antioxidation, anti-aging, vascular sclerosis prevention, and 
constipation relief (Smith et al. 2014). For these reasons, 
P. domestica fruit has been gaining commercial popular-
ity in recent years. However, P. domestica fruits deteriorate 

quickly after harvest and are susceptible to mechanical 
damage and microbial infection due to their fragile struc-
ture and high sugar content. Therefore, the abundant sup-
ply of P. domestica fruit during its short harvest season can 
lead to significant economic losses due to spoilage. In order 
to extend shelf life and abate these losses, semi-mature P. 
domestica fruit are harvested and held in cold storage before 
being sent to market. However, once removed from cold stor-
age and brought to room temperature, the fruit softens rap-
idly and becomes inedible, which can also lead to economic 
losses (Fan et al. 2018). Therefore, exploring more effective 
storage methods to prolong the shelf life of P. domestica 
fruit has attracted attention from researchers worldwide.

1-Methylcyclopropene (1-MCP), as an ethylene recep-
tor inhibitor that suppresses the expression of ethylene bio-
synthesis-related genes (such as ACO and ETR) in some 
respiratory climacteric fruit by competitively binding to 
ethylene receptors, delaying fruit ripening and senescence 
(Cheemaa et al. 2013). In addition, studies have revealed 
that 1-MCP not only suppresses the ethylene production and 
respiration rates, it also delays softening to improve post-
harvest quality in kiwifruit (Xu et al. 2019), winter jujube 
(Cheng et al. 2020), durian (Thongkum et al. 2018), plum 
(Lin et al. 2018), and pear (Escribano et al. 2017). Lien et al. 

Communicated by Jinwook Lee.

 * Shaobo Cheng 
 chengshaoboshzu@163.com

 * Guogang Chen 
 cgg611@163.com

1 School of Food Science and Technology, Shihezi University, 
Shihezi 832000, Xinjiang, People’s Republic of China

2 College of Food, Shihezi University, Shihezi 832000, 
Xinjiang, People’s Republic of China

http://orcid.org/0000-0002-3223-4034
http://crossmark.crossref.org/dialog/?doi=10.1007/s13580-022-00442-6&domain=pdf


858 Horticulture, Environment, and Biotechnology (2022) 63:857–867

1 3

(2016) reported that apricots treated with 1-MCP could be 
stored for 6 weeks at 1 °C. However, the effect of 1-MCP on 
suppressing ethylene synthesis in postharvest fruit depends 
on several factors, including fruit variety (Pan et al. 2016), 
harvest maturity (Rupavatharam et al. 2015), 1-MCP con-
centration (Cheng et al. 2019), fumigation time, and storage 
conditions (Xu et al. 2020). 1-MCP is generally applied in 
the form of tablets or powder, but these application meth-
ods make it difficult to accurately control concentrations 
(Chen et al. 2015, 2016; Lin et al. 2018). A recent study 
found that 1-MCP infused paper, one of several upgraded 
1-MCP products (Lytone Enterprise, Inc., Taipei, China), 
can enhance 1-MCP stability thanks to a special embed-
ding method (Chen et al. 2015). Chen et al. (2016) showed 
that 1-MCP paper treatment delayed the softening process 
of “Huanghua” pear. Cheng et al. (2020) applied 1-MCP 
paper to the storage of winter jujube, finding that it could 
effectively maintain the firmness of winter jujube, reduce the 
rate of weight loss, and extend shelf life.

Although several studies have investigated the role of 
1-MCP during postharvest storage, several questions remain 
regarding how paper containing 1-MCP maintains the con-
tent of non-enzymatic antioxidants and the activity of anti-
oxidant enzymes in P. domestica fruit at low temperatures. 
Therefore, considering the importance of P. domestica fruit 
in commercial agriculture and its perishability, the objec-
tives of this study were (1) to evaluate changes in non-enzy-
matic antioxidants (ascorbic acid, total phenols, and antho-
cyanin) in P. domestica fruit during postharvest storage; (2) 
to investigate changes in the content of reactive oxygen spe-
cies  (H2O2 and  O2

·−) and the activity of antioxidant enzymes 
(SUPEROXIDE DISMUTASE [SOD], CATALASE [CAT], 
ASCORBATE PEROXIDASE [APX], and PEROXIDASE 
[POD]) during postharvest storage; and (3) to clarify the 
correlations between non-enzymatic antioxidants, reactive 
oxygen species, and antioxidant enzyme activities.

2  Materials and methods

2.1  Plant materials and storage conditions

P. domestica fruit was harvested from an orchard in Qiemo 
County, Korla City, Xinjiang Province, China (38°13'N, 
85°53'E) on September 5, 2020 and immediately taken to 
the lab in Shihezi University. Fruit with similar maturity 
(firmness: about 3.5 N, soluble solid content [SSC]: about 
24.2%), size, uniform color, and without mechanical dam-
age or surface defects were selected for experiments. The 
selected fruit was randomly divided into 4 groups (7 baskets 
per group, 2.8 kg per basket), including (1) control group: 
fruit were put directly into breathable microporous fresh-
keeping bags without any treatment; (2) 0.5 µL  L−1 1-MCP 

treatment; (3) 1.0 µL  L−1 1-MCP treatment; and (4) 1.5 µL 
 L−1 1-MCP treatment. The four groups were pre-cooled for 
24 h at 4 °C. All fruit was stored in breathable micropo-
rous fresh-keeping bags at 4 °C with relative humidity of 
85–90% for 35 d. During storage, the physiological quality 
and antioxidant activity were measured every 7 d. One hun-
dred and fifty fruits were selected from each group and used 
for measurement. One half of each fruit sample was used 
immediately for the determination of physiological indices, 
and the other half was frozen in liquid nitrogen at − 80 °C 
for the determination of enzymatic activity. All experiments 
were done in triplicate, and the results were averaged.

2.2  1‑MCP paper treatment

1-MCP paper (AnsiP-S) was purchased from Taiwan Litong 
Co., Ltd., China, being 25 × 20 cm in size. The concentra-
tions of 1-MCP including 0.5 µL  L−1, 1.0 µL  L−1, and 1.5 µL 
 L−1 were determined according to the size of the paper, and 
a small amount of distilled water was sprayed on the paper 
to release 1-MCP gas into a 1  m3 airtight container. The P. 
domestica fruit was fumigated for 24 h in the airtight cham-
ber with an ambient temperature of 4 °C, and then stored at 
4 °C for further analysis.

2.3  Determination of weight loss rate, firmness, 
SSC, TA, respiration rate, and ethylene 
production

Fresh P. domestica fruit (1.0 kg) was taken from each group 
to determine the rate of weight loss. The fresh samples were 
weighed before cold storage (initial weight) and at each sam-
pling time (final weight). The calculation formula was as fol-
lows: Weight loss rate (%) = [(initial weight − final weight)/
initial weight] × 100%.

Firmness (N) was determined by using a durometer (GY-
B, Yueqing Aidebao Instrument Co., Ltd., China) with a 
3.5-mm probe. Six fruits were selected from each group, and 
two spots on opposite sides of the fruit equator were peeled 
off to measure the firmness of each fruit.

SSC (%) was determined by using a portable refractom-
eter (LB90T, Guangzhou Suwei Electronic Technology Co., 
Ltd., China). Five fruits were measured for each group.

Titratable acidity (TA) content was determined by titra-
tion with 0.1 mol  L−1 of sodium hydroxide. Six fruits were 
selected from each group for analysis. The results were 
expressed as% malic acid.

Respiratory rate was measured with a respiration tester 
(FS-3080A, Shijiazhuang Fanseng Technology Co., Ltd., 
China) according to the instructions. Fruit (1.0 kg) was put 
into a response breathing chamber with a volume of 1 L 
and sealed at 25 °C. The measurement was performed every 
15 min. The results were expressed as ng  kg−1  s−1.
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P. domestica fruit (600 g) was sealed in a 1 L glass container 
and placed at 25 °C for 1 h. Then, 1 mL of headspace gas was 
collected from the glass container and injected into a gas chro-
matograph equipped with a hydrogen flame ionization detector 
(FID) and a stainless-steel column (30 m × 0.25 mm × 0.5 µm) 
(7890B, Agilent, USA). The carrier gas was  N2, the fuel gas 
was  H2, the combustion-supporting gas was air, the column 
temperature was 200 °C, and the detector temperature was 
280 °C. Ethylene production was identified by standard peak 
time and quantified by standard curve. The results were 
expressed as μL  kg−1  s−1 (Cai et al. 2019).

2.4  Determination of color difference, ascorbic acid, 
total phenol, and anthocyanin

A color difference meter (YS3060, Shenzhen Sanenshi 
Technology Co., Ltd., China) was used to measure the color 
parameters including L* (brightness), a* (− green, + red), 
and b* (− blue, + yellow) of flesh pulp at each sampling time, 
where  L0,  a0, and  b0 are the values obtained before cold stor-
age. Six fruits were taken from each group for color analysis. 
After peeling (1 mm), three spots one each fruit were ran-
domly selected for measurement and the color difference was 
expressed as ΔE.

The content of ascorbic acid was determined according to 
Yang et al. (2021). Oxalic acid solution (10 mL of 2%) was 
mixed with 10 g of fruit pulp, ground into a homogenate in an 
ice bath, and transferred to a volumetric flask with 2% oxalic 
acid solution to make the volume 100 mL. After 10 min, it 
was filtered and the filtrate was collected. Then, 10 mL of 
filtrate was dripped with 2, 6-dichlorophenol indophenol 
solution. When the solution became reddish and did not fade 
within 15 s, the amount of dye was recorded. The results were 
expressed as g  kg−1.

To assess total phenol and anthocyanin content, fruit pulp 
was ground into powder with liquid nitrogen. About 2.0 g 
of pulp powder was extracted with 1% HCl methanol solu-
tion for 20 min under dark conditions at 4 °C. After that, the 
filtrate was taken and the absorbance value was determined 
using a spectrophotometer (UV-2600, Shimazu Instruments 
Co., Ltd., China). The total phenol content was calculated 
based on the absorbance value at 280 nm combined with the 
standard curve of gallic acid, and the result was expressed as 
g  kg−1. The anthocyanin content was expressed as  A(530–600) 
 kg−1 (Khaleghnezhad et al. 2019).

2.5  Determination of MDA, O2
·−, and H2O2 content

Pulp tissues (0.5 g) were mixed with 2 mL of phosphate 
buffer solution (0.1 mol  L−1; pH = 7.4), homogenized in 

ΔE =
√

L ∗ −L02 + (a ∗ −a0)2 + (b ∗ −b0)2

an ice bath, and centrifuged at 4000 × g for 10 min. The 
supernatant was collected and the content of malonaldehyde 
(MDA),  O2

·−, and  H2O2 were determined.
The content of MDA in homogenized pulp was deter-

mined according to the reaction characteristics of thiobar-
bituric acid (TBA) using the MDA test kit (A003, Nanjing 
Jiancheng Institute of Biological Engineering, Nanjing, 
China). The red product of the reaction was quantified at 
532 nm with a spectrophotometer (UV-2600, Shimadzu 
Instruments Co., Ltd., China). Other operations were carried 
out in accordance with the instructions (Zhu et al. 2014). 
The results were expressed as mmol  kg−1 pro.

The content of  O2
·− was determined using the  O2

·− test kit 
(A052; Nanjing Jiancheng Institute of Biological Engineer-
ing, Nanjing, China).  O2

·− is produced from the reaction of 
xanthine and xanthine oxidase in fruit, and a color reagent 
was added to make it become purplish red. The absorption 
value at 550 nm was determined using a spectrophotometer 
(UV-2600, Shimadzu Instruments Co., Ltd., China) with 
vitamin C as the standard, and the  O2

·− activity was calcu-
lated. The results were expressed as U  kg−1 pro (Zhu et al. 
2014).

The content of  H2O2 in fruit pulp was determined using 
the  H2O2 test kit (A064, Nanjing Jiancheng Institute of Bio-
logical Engineering, Nanjing, China). The  H2O2 reacted with 
molybdic acid and then the amount of product was measured 
by spectrophotometer (UV-2600, Shimadzu Instruments Co., 
Ltd., China) at 405 nm, after which the  H2O2 content was 
calculated. The results were expressed as mol  kg−1 pro (Tir-
yaki et al. 2019).

The content of MDA,  O2
·− and  H2O2 were expressed in 

protein units. Protein content was determined by using a pro-
tein test kit (A045, Nanjing Jiancheng Institute of Biological 
Engineering, Nanjing, China) based on the Coomassie Bril-
liant Blue method.

2.6  Determination of antioxidant enzyme activities

The SOD activity in P. domestica fruit was determined by 
using a superoxide dismutase assay kit (Beijing Solarbio Sci-
ence and Technology co., Ltd., China) based on the xanthine 
oxidase assay (Zhang et al. 2014).  O2

·− was produced from 
the xanthine-xanthine oxidase reaction system and reacted 
with a chromogenic agent to make it blue. The absorbance 
was measured at 560 nm. This determination was performed 
three times to obtain the average value.

The CAT activity was determined following the method 
of Zhang et  al. (2015). The absorbance of the reaction 
mixture (20 mmol  L−1, 2.9 mL  H2O2, and 0.1 mL enzyme 
extract) was measured at 240 nm. The amount of enzyme 
required to reduce the absorbance value by 0.01 per minute 
was defined as a unit of catalase activity.
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The APX activity was determined following the method 
of Chu et al. (2018). Fruit pulp (5 g) was transferred into a 
precooled mortar, and then 5 mL of extraction buffer (con-
taining 0.1 mmol  L−1 EDTA, 1 mmol  L−1 ascorbic acid, and 
2% PVPP) was added. The APX activity was determined 
after an incubation at 4 °C and centrifugation at 8000 × g 
for 30 min.

The POD activity was determined following the method 
of Zhang et al. (2015). The data were recorded every one 
min.

2.7  Statistical analysis

Data were analyzed by one-way ANOVA at the significance 
level of P < 0.05 using SPSS software (version 25.0, SPSS 
Inc., Chicago, IL, USA). OriginPro software (version 2020b, 
Origin Lab Co., Massachusetts, USA) was used for plotting. 
Pearson correlation tests were performed to analyze the cor-
relations between physicochemical indexes and antioxidant 
enzyme activity using SPSS software (version 25.0, SPSS 
Inc., Chicago, IL, USA).

3  Results

3.1  1‑MCP treatments positively affected firmness, 
SSC, TA, and negatively affected weight loss 
rate, respiration rate, and ethylene production 
of P. domestica fruit

The weight loss rate of P. domestica fruit increased continu-
ously during cold storage. However, the weight loss rate of 
the 1-MCP groups were lower than that of the control group 
(Fig. 1A). At the end of storage, the weight loss rate of fruit 
of 0.5 and 1.5 µL  L−1 1-MCP groups were 15.1% and 14.0% 
lower than that of the control group, respectively, but there 
was no difference between the two groups (P > 0.05). The 
1.0 µL  L−1 1-MCP group had the lowest weight loss rate 
(37.6% lower than control).

Fruit firmness decreased slowly at the early stage of stor-
age and then the rate accelerated. The fruit firmness of the 
1.0 µL  L−1 1-MCP group was 22.4%, 9.9%, and 7.2% higher 
than that of the control on day 21, 28, and 35 (P < 0.05), 
respectively. However, a difference between the 1.5 µL  L−1 
1-MCP group and the control was only found on day 21. The 
fruit firmness of 0.5 and 1.5 µL  L−1 1-MCP groups were 
2.6% and 0.7% higher than that of the control, respectively, 
at the end of storage (Fig. 1B).

The SSC first increased, and then decreased after reach-
ing a peak on day 14 (Fig. 1C). The changes in SSC of 
the 1-MCP groups showed the same trend, but the peak 
value occurred later in the control. At the end of stor-
age, the SSC of 0.5, 1.0, and 1.5 µL  L−1 1-MCP groups 

were 5.5%, 10.3%, and 7.1% higher than that of the control 
(P > 0.05), respectively. Among them, the SSC of the 1.0 
µL  L−1 1-MCP group was the highest.

The change in TA content of P. domestica fruit during 
storage is shown in Fig. 1D. There were no differences 
in the content of TA between the 1-MCP groups and the 
control (P > 0.05).

At the early stage of storage, the respiratory rate of P. 
domestica fruit in the control group increased rapidly and 
peaked on day 14 (4277.8 ng  kg−1  s−1) (Fig. 1E). The peak 
respiration rate of the 0.5, 1.0, and 1.5 µL  L−1 1-MCP 
groups were 26.1%, 29.8%, and 17.6% lower than that of 
the control, respectively (P < 0.05).

Ethylene production in postharvest P. domestica fruit 
in all groups increased rapidly until day 21 and then 
decreased (Fig. 1F). The three 1-MCP treatments sup-
pressed ethylene production in P. domestica fruit during 
storage. On day 21, the peak values of 0.5, 1.0, and 1.5 µL 
 L−1 1-MCP groups were 16.3%, 27.0%, and 22.1% lower 
than that of the control, respectively (P < 0.05). The 1.0 
µL  L−1 1-MCP group had the lowest ethylene production.

3.2  1‑MCP treatments positively affected total 
phenol, and negatively affected color 
difference, ascorbic acid, and anthocyanin 
content of P. domestica fruit

During storage, the peel color of P. domestica fruit 
changed from light purple to dark purple, and the flesh 
color also changed. The ΔE of flesh tissue increased with 
prolonged storage time (Fig. 2A). At the end of storage, 
the ΔE value of the 0.5, 1.0, and 1.5 µL  L−1 1-MCP groups 
were 26.9%, 33.7%, and 25.6% lower than that of the con-
trol, respectively (P < 0.05).

During the whole storage process, the content of 
ascorbic acid continued to decrease. At the end of stor-
age, the content of ascorbic acid of the 0.5, 1.0 and 1.5 
µL  L−1 1-MCP groups were 3.9%, 13.3% (P < 0.05), and 
1.8% higher than that of the control group, respectively 
(Fig. 2B).

The total phenol content increased rapidly at the early 
stage of storage, and then decreased slowly. From day 21 
to day 35, the total phenol content of 1-MCP groups were 
higher than that of the control. At the end of storage, the 
total phenol content of the 1.0 and 1.5 µL  L−1 1-MCP treat-
ment groups were 2.7% and 2.5% higher than that of the 
control, respectively (Fig. 2C).

Anthocyanin content showed the same trend as ΔE. At the 
end of storage, the anthocyanin content of the 0.5, 1.0, and 
1.5 µL  L−1 1-MCP groups were 11.9%, 37.9%, and 27.0% 
lower than that of the control group (P < 0.05), respectively 
(Fig. 2D).
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3.3  1‑MCP treatments negatively affected MDA 
content, H2O2 content, and O2

·− production rate 
of P. domestica fruit

The content of MDA in fruit from the control group 
increased continuously during cold storage, especially on 
day 7 and 35. At the end of storage, the MDA content of 
0.5, 1.0, and 1.5 µL  L−1 1-MCP groups were 46.9%, 51.2%, 
and 48.6% lower than that of the control group (P < 0.05), 
respectively (Fig. 3A).

The trends of  H2O2 and  O2
·− content were similar to that 

of MDA content (Fig. 3B and C). The content of  H2O2 and 
 O2

·− of the 1-MCP groups were always lower than that of the 
control group during storage. The trend of  H2O2 content in 
the 0.5 and 1.5 µL  L−1 1-MCP groups were similar, and the 
trend of  O2

·− production in the 1.0 and 1.5 µL  L−1 1-MCP 

groups were similar. At the end of storage, the content of 
 H2O2 and  O2

·− in the 1.0 µL  L−1 1-MCP group was the low-
est, being 41.2% and 39.7% lower than that of the control 
group  (H2O2 = 535.4 mol  kg−1 pro,  O2

·− = 1.6 U  kg−1 pro), 
respectively (P < 0.05).

3.4  1‑MCP treatments positively affected SOD, CAT, 
APX, and POD activity in P. domestica fruit

1-MCP treatments significantly altered the activities of sev-
eral active oxygen scavenging enzymes in P. domestica fruit 
during storage at 4 °C, stimulating a rapid increase in SOD 
activity until day 14. On day 14, the SOD activity of the 0.5, 
1.0, and 1.5 µL  L−1 1-MCP groups were 35.8%, 61.3%, and 
39.0% higher than that of the control group, respectively 
(P < 0.05) (Fig. 4A).

Fig. 1  Effect of 1-MCP treat-
ments on weight loss rate (A), 
firmness (B), soluble solid 
content (C), titratable acid 
(D), respiration rate (E), and 
ethylene production (F) of P. 
domestica fruit. Vertical bars 
represent means ± SE. LSD 
shows significant difference at 
P < 0.05
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Fig. 2  Effect of 1-MCP treat-
ments on ΔE (A), ascorbic 
acid (B), total phenols (C), 
and anthocyanin content of P. 
domestica fruit. Vertical bars 
represent means ± SE. LSD 
shows significant difference at 
P < 0.05

Fig. 3  Effect of 1-MCP treat-
ments on MDA (A),  H2O2 
(B), and  O2

·− (C) content of P. 
domestica fruit. Vertical bars 
represent means ± SE. LSD 
shows significant difference at 
P < 0.05



863Horticulture, Environment, and Biotechnology (2022) 63:857–867 

1 3

The CAT activity increased sharply until day 14, and then 
decreased (Fig. 4B). The changes in CAT activity for the 
1-MCP groups and the control group were similar. The CAT 
activity in the 0.5, 1.0, and 1.5 µL  L−1 1-MCP groups were 
13.0%, 39.0%, and 29.9% higher than that of the control 
group on day 14, respectively (P < 0.05). At the end of stor-
age, CAT activity in the 1.0 µL  L−1 1-MCP group was 2.5 
times higher than that of the control group (P < 0.05).

The trend of APX activity was similar to that of SOD 
activity (Fig. 4C). On day 14, the peak APX activity of 0.5 
and 1.0 µL  L−1 1-MCP groups were 22.3% and 23.7% higher 
than that of the control group, respectively (P < 0.05).

The POD activity increased slowly until day 21, and then 
stabilized. The POD activity of the 1-MCP groups, espe-
cially 1.0 µL  L−1 1-MCP group, were higher than that of 
the control group. On day 21, the POD activity of the 0.5, 
1.0, and 1.5 µL  L−1 1-MCP groups were 25.7%, 38.0%, 
and 24.9% higher than that of the control group (P < 0.05), 
respectively (Fig. 4D).

3.5  Correlation analysis

Person correlation analysis showed that fruit firmness was 
negatively correlated with weight loss rate (r = − 0.961, 
P < 0.01), and positively correlated with respiration rate 
(r = 0.853, P < 0.05). ΔE was positively correlated with 
anthocyanin content (r = 0.962, P < 0.01). MDA content 

was positively correlated with  H2O2 (r = 0.970, P < 0.01) 
and  O2

·− (r = 0.960, P < 0.01). Respiration rate was nega-
tively correlated with  H2O2 (r = − 0.921, P < 0.01) and 
 O2

·− (r = − 0.851, P < 0.05). The MDA,  H2O2, and  O2
− con-

tents were negatively correlated with SOD, CAT, and APX. 
The content of ascorbic acid was negatively correlated with 
 H2O2 (r = − 0.995, P < 0.01) and  O2

·− (r = − 0.885, P < 0.05), 
while SOD activity was positively correlated with CAT 
activity (r = 0.961, P < 0.01) and APX activity (r = 0.945, 
P < 0.01) (Fig. 5).

4  Discussion

Water loss during fruit storage is primarily caused by meta-
bolic activities such as respiration. In this study, fruit firm-
ness was negatively correlated with weight loss rate, and 
positively correlated with respiration rate. Therefore, it 
could be speculated that moisture loss from the fruit sur-
face increases along with storage time, resulting in a con-
tinuous loss of weight. Therefore, the difference in weight 
loss rate of fruit in the 1-MCP groups may be due to the 
1-MCP treatment reducing oxidative damage to the fruit 
and slowing down oxidation of the cell membrane (Habibi 
and Ramezanian 2017), which could inhibit water loss and 
maintain freshness during long-term storage. This is consist-
ent with the results of a previous study on pears (Escribano 

Fig. 4  Effect of 1-MCP treat-
ments on SOD (A), CAT (B), 
APX (C), and POD (D) activity 
of P. domestica fruit. Vertical 
bars represent means ± SE. LSD 
shows significant difference at 
P < 0.05
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et al. 2017). The firmness of fruit is one of the important 
indexes for evaluating fruit quality. It affects not only the 
texture but also the storage time and shelf life of fruit. In this 
study, the 1-MCP treatments maintained a higher firmness 
of P. domestica fruit (P < 0.05). Chen et al. (2015) found 
that 1-MCP treatment (0.9 µL  L−1) could prolong the stor-
age period of “Huanghua” pears and improve fruit firmness. 
Thongkum et al. (2018) found that1-MCP treatment (500 
µL  L−1) could slow down the decreasing firmness of durian 
pulp. The differences in 1-MCP concentrations for delaying 
postharvest fruit ripening between our study and others’ is 
possibly due to differences in fruit variety. For instance, it 
has been reported that the most effective concentration of 
1-MCP was 1.2 µL  L−1 in “Younai” plum (Lin et al. 2018) 
but 0.9 µL  L−1 in kiwifruit (Xu et al. 2019).

In this study, 1-MCP treatments effectively delayed the 
reduction of SSC and TA during cold storage. This may 
be because 1-MCP treatments suppress the catabolism and 
respiration of fruit (Cheng et al. 2020). A previous study 
showed that the increase in SSC at the early stage of storage 
was related to starch hydrolysis, while the later decrease in 
SSC was due to a decreased respiration rate and increased 
metabolic rate (Petriccione et al. 2015). The gradual decrease 
of TA content in postharvest fruit could be attributed to the 

respiration and metabolic activities of organic acids in fruit 
(Habibi and Ramezanian 2017). However, in this study, the 
1-MCP treatments significantly delayed the decrease in TA 
content during storage (Fig. 1D). Agehara et al. (2018) opti-
mized the concentration of 1-MCP and soaking time, finding 
that 10 mg  L−1 1-MCP soaking for 0.5 min improved the 
SSC of melon. Cheng et al. (2019) treated “Yali” pears with 
0.25, 0.50, and 1.0 µL  L−1 1-MCP, and found that the effect 
of 1.0 µL  L−1 1-MCP treatment on maintaining the firmness, 
SSC, and TA content of fruit was greatest. The poor effect 
of low-concentration 1-MCP treatment in our study may be 
due to the low concentration not being enough to allow full 
binding with ethylene receptors. Previous studies showed 
that storage life of postharvest fruit was related to high res-
piratory rate (Ozturk et al. 2021). Xu et al. (2019) found that 
1-MCP treatments could suppress the respiration rate of fruit 
during long-term cold storage. Ethylene is a hormone that 
is necessary for the ripening of climacteric fruit through the 
conversion of starch into monosaccharides (Thongkum et al. 
2018). However, 1-MCP can inhibit ethylene production to 
delay fruit ripening and senescence (Thongkum et al. 2018). 
A previous study showed that 1000 nL  L−1 1-MCP treatment 
was the most effective in suppressing ethylene production in 
green tomato (Sabir and Agar 2011).

Fig. 5  Correlation analysis of 
antioxidant enzyme activity and 
physicochemical parameters of 
P. domestica fruit treated with 
1.0 µL  L−1 1-MCP paper under 
low temperature storage. The 
correlation coefficients are pro-
portional to numerical size and 
color intensity. Positive correla-
tions are displayed in red and 
negative correlations in blue
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Fan et al. (2018) found that 1.0 µL  L−1 1-MCP treat-
ment could suppress respiration rate, ethylene production, 
firmness decrease, and SSC increase while extending the 
shelf life of apricots. Our study obtained similar results. In 
a certain concentration range, the effects of 1-MCP treat-
ment could be enhanced by increasing the concentration. 
However, high concentration of 1-MCP treatment may 
accelerate senescence due to interference with the defense 
system of plant tissues, either inhibiting some favorable 
metabolic responses or stimulating some unfavorable met-
abolic responses (Ma et al. 2019). Ku et al. (1999) found 
that high concentration of 1-MCP treatment could promote 
the ripening and decay of strawberry while increasing the 
occurrence of diseases and insect pests. Therefore, appro-
priate 1-MCP concentrations should be adopted for differ-
ent fruit types to delay ripening and senescence. Another 
previous study found that ethylene production reached its 
peak when climacteric fruit was transferred from cold stor-
age to room temperature (Fan et al. 2018). The increase in 
ethylene production accelerates fruit softening. However, 
Hanxu et al. (2016) found that 1-MCP treatment could 
inhibit this softening in plum fruits during storage. The 
effect of 1-MCP treatment on the shelf life and soften-
ing of P. domestica fruit transferred to room temperature 
after cold storage will be further analyzed in subsequent 
experiments.

ΔE reflects the change of fruit color. The positive correla-
tion between ΔE and anthocyanin content indicates that the 
change in fruit color may be related to the accumulation of 
anthocyanins (Giménez et al. 2017). As important antioxi-
dants, ascorbic acid, total phenols, and anthocyanins reflect 
the antioxidant capacity of P. domestica fruit. In our study, 
the 1-MCP treatments, especially the 1.0 µL  L−1 1-MCP 
treatment, delayed the color change in P. domestica fruit 
flesh and the oxidation of anthocyanins, also slowing down 
the decrease in total phenols and ascorbic acid content. This 
is consistent with the results of Liu et al. (2019) and Ma 
et al. (2019). It suggests that 1-MCP treatment could sup-
press metabolic activity and ultimately delay fruit ripen-
ing. Ozturk et al. (2021) found that a high concentration of 
1-MCP (1000 nL  L−1) could suppress the production of eth-
ylene-promoting PAL to disrupt the biosynthesis of phenolic 
substances and reduce their content. This is similar to the 
results of our study. We found that the effect of 1.5 µL  L−1 
1-MCP treatment on the production of ethylene was weaker 
than that of 1.0 µL  L−1 1-MCP treatment. Moreover, Habibi 
et al. (2020) found that the decrease in ascorbic acid con-
tent during storage may be caused by endogenous oxidation 
under the action of various enzymes such as APX and POD. 
Baswal et al. (2020) found that 1.5 µL  L−1 1-MCP treatment 
could significantly delay the decrease in ascorbic acid con-
tent in 'Kinnow' mandarin fruit during storage. Ozturk et al. 
(2021) also found that 1000 nL  L−1 1-MCP treatment could 

maintain a high ascorbic acid content in jujube. Our study 
results are consistent with their results.

Excessive reactive oxygen species (ROS) such as  H2O2 
and  O2

·− are produced due to environmental stress during 
cold storage, which causes oxidative damage to the cell 
membrane, loss of membrane integrity and functionality, 
fruit senescence, and quality loss. Moreover, excessive accu-
mulation of ROS and MDA could lead to tissue dysfunction 
and metabolic disorders (Gao et al. 2016). MDA, an indi-
cator of membrane damage, could be used to evaluate the 
integrity of cell membranes under oxidative stress (Cheng 
et al. 2020). In this study, 1-MCP treatments suppressed 
the accumulation of MDA (Fig. 3A) and the production of 
ROS  (H2O2 and  O2

·−) (Fig. 3B and C), and MDA content 
was positively correlated with  H2O2 and  O2

·− content. This 
indicates that 1-MCP treatments could suppress cell mem-
brane peroxidation by suppressing the excessive production 
of ROS (Xu et al. 2020). In addition, respiration rate was 
negatively correlated with the content of  H2O2 and  O2

·−, 
and the content of MDA,  H2O2, and  O2

·− were negatively 
correlated with the activity of SOD, CAT, and APX. This 
indicates that the accumulated ROS could be scavenged by 
the fruit through respiration, and the activated antioxidant 
enzymes could also scavenge ROS and convert them into 
water and oxygen to suppress cell membrane peroxidation 
and reduce ROS-mediated oxidative damage (Sun et al. 
2018). Moreover, it was found that the ascorbic acid content 
was negatively correlated with the content of  H2O2 and  O2

·−. 
This may be due to the utilization of ascorbic acid and  H2O2 
by antioxidant enzymes to produce water and dehydroascor-
bic acid (Xu et al. 2019). Cheng et al. (2020) reported that 
1-MCP treatment with chitosan application could improve 
antioxidant enzyme activity and reduce the accumulation 
of MDA in Chinese jujube. Feng et al. (2018) found that 
1-MCP treatment could reduce the accumulation of MDA 
in “Yali” pears.

The synergistic action of antioxidant enzymes such as 
SOD, CAT, APX, and POD is an important mechanism for 
scavenging ROS and protecting cell membranes. It has been 
found that high SOD activity could inhibit the accumulation 
of free radicals in the process of  H2O2 formation, leading 
to a reduced  O2

·− production rate and thus protecting cells 
from oxidative stress. To alleviate oxidative stress, exces-
sive  H2O2 must be converted into non-toxic molecules by 
enzymes such as CAT, APX, and POD (Cheng et al. 2020). 
Chen et al. (2015) found that antioxidant enzyme activity in 
“Huanghua” pears was increased by 1-MCP treatment, the 
accumulation of ROS was suppressed, and the aging process 
was delayed. Cheng et al. (2020) also found that 1.0 µL  L−1 
1-MCP treatment could increase the activities of APX, SOD, 
and POD in Chinese jujube. In this study, the 1-MCP treat-
ments, especially the 1.0 µL  L−1 1-MCP treatment, main-
tained higher CAT and APX activities during storage and 
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reduced the accumulation of  H2O2 compared with the con-
trol group. Moreover, correlation analysis showed that SOD 
activity was positively correlated with CAT and APX activi-
ties. The high SOD activity in P. domestica fruit induced 
by 1-MCP treatments could convert  O2

·− to  H2O2, CAT and 
APX could decompose  H2O2 into water and oxygen, and 
POD could oxidize toxic substances such as phenols into 
non-toxic substances, thus scavenging ROS and detoxify-
ing the body.

5  Conclusion

1-MCP paper treatment could reduce the loss of bioactive 
substances in P. domestica fruit and effectively prolong shelf 
life. A 1.0 µL  L−1 1-MCP paper treatment especially delays 
water loss, fruit color change, and anthocyanin degradation, 
maintains firmness and a high content of SSC, TA, ascorbic 
acid, and total phenol, reduces fruit respiration rate and eth-
ylene production, and enhances the activities of antioxidant 
enzymes (SOD, CAT, APX, and POD). Moreover, it could 
also reduce the accumulation of ROS  (H2O2 and  O2

·−) and 
the degree of lipid peroxidation in the cell membrane. The 
role of 1-MCP in antagonizing senescence and protecting 
physiological quality could be attributed to the increase in 
antioxidant enzyme activity, reduction of ROS, and allevia-
tion of lipid peroxidation of the cell membrane. Therefore, 
1.0 µL  L−1 1-MCP treatment could be used to prolong the 
storage life of P. domestica fruit at 4 °C, and is an effective 
measure to improve commercial quality.
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