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Abstract
Senna is a diverse and paraphyletic genus in the subfamily Caesalpinioideae (Fabaceae Lindl.) comprising various species 
of industrial and medicinal value. To date, the genome-based taxonomic relationship among several Senna species remains 
enigmatic. Cytogenetic information is invaluable in deciphering phylogenetic relationships and evolutionary history. However, 
insufficient chromosomal research for many Senna species impedes comparative cytotaxonomic analyses aimed at under-
standing their genomic evolution. To provide additional Senna-related molecular cytogenetic information, we karyotyped 
11 Senna species by employing triple-color fluorescence in situ hybridization using 5S rDNA, 45S rDNA, and Arabidopsis 
thaliana-type telomeric pre-labeled oligonucleotide probes. Chromosome numbers were predominantly 2n = 28, but 2n = 22 
(S. marilandica) and 2n = 24 (S. uniflora) were also observed. While most species revealed only one interstitial 5S rDNA 
locus, except for S. uniflora which has two loci, a range of one to three 45S rDNA loci were detected at distal chromosomal 
regions. Additionally, we observed a hemizygous 45S rDNA locus in S. auriculata. In addition to chromosome termini, 
weak signals for telomeric repeats were found in interstitial regions in S. hirsuta, S. corymbosa, and S. alexandrina. These 
cytogenetic data can be integrated with molecular phylogenetic data for more comprehensive Senna cytotaxonomic analyses.
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1 Introduction

Senna Mill., a representative genus from the family Fabaceae 
Lindl. (Resende et al. 2014), comprises approximately 350 
morphologically diverse species of herbs, shrubs, and trees 
(Cordeiro and Felix 2018). Senna species are distributed 
throughout circumtropical regions with an extremely wide 
range of habitats (Marazzi et al. 2006; Pellerin et al. 2019). 
They are morphologically distinguished based on their 
androceu, corolla, floral architecture, bracteole, and fruit 
characteristics (Marazzi et al. 2006). Many Senna species 

have been recognized for their medicinal and industrial 
uses such as for treating diverse diseases (e.g., digestive 
ailments, skin disorders, respiratory illnesses, visual prob-
lems, and even heart disease) and producing compounds 
used in commercial goods, flavoring, perfume, pet food, and 
coffee (Rahman et al. 2013; Pellerin et al. 2019). Despite 
their economic and health benefits, a paucity of molecular 
cytogenetic data has impeded comparative analyses for the 
evaluation of Senna genome evolution. Although a few com-
parative cytogenetic studies have been reported, only a few 
species have data based on fluorescence in situ hybridization 
(FISH) of 5S and 45S rDNA and telomeric repeats (Rosato 
et al. 2018; Youn and Kim 2018; Pellerin et al. 2019).

Karyotype data can be used to identify species, reveal 
past genome rearrangements, and infer taxonomic relation-
ships among related species (Guerra 2008; Jo et al. 2019; 
Chen et al. 2020). A karyotype, which is a genetically stable 
characteristic unique to a given species, provides the num-
ber, shape, size, and morphology of an organism’s chromo-
some complement (Pellerin et al. 2019; Zhou et al. 2019a). 
Chromosomal rearrangements can alter karyotype features 
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resulting in changes in chromosome number (dysploidy) or 
organization, which often reflect evolutionary events such as 
speciation (Wölk et al. 2015). Descending dysploidy occurs 
when chromosomal fusion leads to species with fewer chro-
mosome numbers, whereas ascending dysploidy results from 
retention of centromere function after a chromosome fission 
(Winterfeld et al. 2020; Ta et al. 2021; Waminal et al. 2021).

FISH is an invaluable technique in karyotyping (Wami-
nal et al. 2018; Youn and Kim 2018). The 5S rDNA and 
45S rDNA sequences are commonly used as FISH probes 
because they are highly repetitive and widely conserved 
across taxonomic groups (Pellerin et al. 2018a, b; Waminal 
et al. 2018; Zhou et al. 2019b). The Arabidopsis thaliana-
type telomeric repeat (TTT AGG G)n, the canonical plant 
telomeric repeat most commonly found at chromosome 
termini, is also widely conserved across taxonomic groups 
(Watson and Riha 2010; Peska and Garcia 2020). Interspe-
cies divergence in the chromosomal distribution of rDNA 
and the telomeric repeat sequences provide phylogenetically 
useful information for analyzing genome dynamics.

While the predominant diploid chromosome number in 
Senna is 2n = 28 (Rice et al. 2015), descending dysploid kar-
yotypes of 2n = 22–26 are also commonly observed (Cord-
eiro and Felix 2018; Pellerin et al. 2019). Published data 
on chromosome number is lacking in a number of Senna 
species. To broaden the karyotype information in Senna, 
we performed triple-color FISH using rDNA and telomeric 
repeat sequence probes in 11 Senna species. To our knowl-
edge, there are currently no reports of FISH karyotyping 
using rDNA and telomeric probes in these Senna species. 
This analysis revealed interspecific karyotype variations that 
provide insight into karyotype dynamics in Senna. These 
preliminary data will also facilitate cytogenetic mapping of 
major species-specific repeats, improve our understanding of 

taxonomic relationships and evolutionary history, and pro-
vide useful information for future Senna genomic research 
and breeding projects.

2  Materials and methods

2.1  Plant materials and chromosome preparation

Seeds of the 11 Senna species were purchased from the 
National Plant Germplasm System (NPGS, USA) and Rare 
Palm Seeds (RPS, Germany) (Table 1). Concentrated sulfu-
ric acid (Sigma-Aldrich Co., St. Louis, MO, USA) was used 
to treat the seeds before germination to break seed dormancy 
and expedite germination (Baskin et al. 1998). Root tips 
were collected and pre-treated in 2 mM 8-hydroxyquinoline 
for 5 h at 18 °C then stored in 70% ethanol at 4 °C until use.

Chromosome preparation was performed according to 
our published protocol (Waminal and Kim 2012; Peniton 
et al. 2019) with minor alterations. Briefly, fixed root tips 
were washed in distilled water and digested in an enzyme 
solution containing 1% pectolyase Y-23 (Duchefa, Haarlem, 
The Netherlands) and 2% cellulase R-10 (Phytotechnology 
Laboratories, USA) for 60–90 min at 37 °C. Chromosomes 
were then fixed in chilled Carnoy’s solution and centrifuged. 
Supernatants were aspirated, and the precipitates were resus-
pended in aceto-ethanol (9:1 v/v) and mounted onto slides 
in a humid chamber. After air drying, slides were soaked in 
2% (v/v) formaldehyde fixative (Merck Schuchardt OHG, 
Hohenbrunn, Germany) for 5 min to preserve the chro-
mosomes, quickly dipped into distilled water, and finally 
dehydrated in a series of ethanol concentrations (70, 90, and 
100%) (Vrána et al. 2012).

Table 1  List of Senna species used in this study with their published chromosome information

z National Plant Germplasm System (NPGS, USA), yRPS = Rare Palm Seed Company (RPS, Germany)

No. Species Seed source Native range 2n References

1 Senna alata (L.) Roxb NPGSz Argentina, Australia, Belize, Bolivia, Brazil, 
Caribbean, Ecuador, Mexico

28 Souza and Iseppon (2004)

2 S. alexandrina Mill NPGS Brazil, Caribbean, Ecuador, India, Mexico 28 Al-Turki et al. (2000)
3 S. auriculata L RPSy India 28 Ohri et al. (1986)
4 S. corymbosa (Lam) H.S Irwin & Barneby NPGS Argentina, Brazil, United States, Uruguay 28 Irwin and Turner (1960)
5 S. hirsuta var. leptocarpa (Benth.) NPGS Brazil, El Salvador 28 Irwin and Turner (1960)
6 S. lindheimeriana (Scheele) NPGS Mexico, United States 28 This study
7 S. marilandica (L.) Link NPGS United States 22 This study
8 S. notabilis (F.Muell) Randell RPS Australia 28 Randell (1970)
9 S. polyphylla (Jacq) H.S Irwin & Barneby RPS Brazil, Caribbean, Guyana, Mexico, United 

States
28 This study

10 S. siamea (Lam.) H.S Irwin & Barneby RPS Brazil, Cambodia, Caribbean, Ecuador 28 Souza and Iseppon (2004)
11 S. uniflora (Mill.) H.S Irwin & Barneby RPS Brazil, Cambodia, Caribbean, Ecuador, Mexico 24 This study
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2.2  Fluorescence in situ hybridization (FISH)

FISH was performed according to Waminal and Kim (2012) 
with some modifications. Pre-labeled oligoprobes (PLOPs) 
for 5S rDNA, 45S rDNA, and Arabidopsis-type telomeric 
sequences are described in Waminal et al. (2018). Hybridi-
zation solutions consisted of 50% formamide, 10% dextran 
sulfate, 2 × saline sodium citrate buffer (SSC), 50 ng/µL of 
each PLOP, and nuclease-free water to a total volume of 40 
µL. Slides were denatured at 80 °C for 5 min, then placed 
in a humid chamber at 37 °C for at least 45 min. Slides 
were then washed carefully in 2 × SSC and dehydrated in 
a series of ethanol concentrations (70, 90, and 100%) for 
3 min each at room temperature. Finally, chromosomes were 
counterstained with DAPI premixed in Vectashield antifade 
solution. Chromosome images were captured using a BX53 
fluorescence microscope (Olympus, Tokyo, Japan) equipped 
with a DFC365 FS CCD camera (Leica Microsystems, Wet-
zlar, Germany), and analyzed with Cytovision ver. 7.2 soft-
ware (Leica Microsystems). Images were finalized using 
Photoshop CS6 (Adobe Inc., San Jose, California, USA).

2.3  Karyotyping

We used at least three metaphase spreads with the best mor-
phology for total chromosome length (TCL, 2n) measure-
ments using Image J software ver. 1.51 k (Schneider et al. 
2012). Homologous chromosomes were paired and arranged 
based on rDNA and telomeric repeat FISH signals, chromo-
some length, and centromere position. Chromosome type 

was classified according to the criteria of Levan et al. (2009). 
Karyograms and idiograms were generated using Adobe 
Photoshop CS6.

3  Results

3.1  Chromosome counts

The 11 species could be grouped into three groups according 
to their diploid chromosome number, 2n = 22, 24, and 28 
(Table 2). Because 2n = 28 is considered the predominant 
chromosome number in Senna (Cordeiro and Felix 2018), 
and was most frequently represented in our data, all spe-
cies with different 2n numbers were regarded as descending 
dysploidy karyotypes (Winterfeld et al. 2020; Ta et al. 2021; 
Waminal et al. 2021).

Chromosome morphology, differential intensities, and 
chromosomal distribution of rDNA and telomeric repeats 
enabled the identification of homologous chromosomes in 
the 11 Senna species. The total chromosome length (TCL) 
among these 11 species ranged from 54.16 to 133.2 μm 
(Table 2). S. uniflora had the longest chromosomes, whereas 
S. notabilis had the shortest chromosomes. The average 
chromosome length (TCL/2n) also differed among the spe-
cies, indicating that cyclic changes in genome size may have 
occurred during genus diversification (Seijo and Fernández 
2003).

Homologous chromosome complements of the 11 species 
included metacentric, submetacentric, and sub-telocentric 

Table 2  Triple-target FISH karyotype analysis of 11 Senna species

a Number of signals in a haploid chromosome set
b Chromosomes bearing rDNA signals
c Hemizygous locus
d Numbers in parentheses denote number of chromosomes with interstitial telomeric repeats (ITRs)
e Extremely weak signals
x m = metacentric, ysm = submetacentric, zst = subtelocentric

No. Species 2n TCL (µm) TCL/2n (µm) Arm ratio (L/S) rDNA signals Telomeric signals Karyotypic formula

5S 45S

1 S. alata 28 54.16 1.93 1.20 1a (13)b 3 (2, 7,11) + 14 m
2 S. alexandrina 28 100.8 3.60 1.50 1 (1) 3 (6, 11, 12) + (2)d 10  mx + 4  smy

3 S. auriculata 28 69.62 2.49 1.31 1 (3) 3 (5,  6c, 7) +*e 13 m + 1sm
4 S. corymbosa 28 75.54 2.70 1.92 1 (13) 1 (11) + (3) 7 m + 6 sm +  1stz

5 S. lindheimeriana 28 75.24 2.69 1.68 1 (13) 1 (11) + 8 m + 5 sm + 1st
6 S. hirsuta 28 70.97 2.53 1.41 1 (13) 1 (2) + (3) 12 m + 2 sm
7 S. marilandica 22 54.70 2.49 1.81 1 (10) 1 (9) + 6 m + 5 sm
8 S. notabilis 28 48.04 1.72 1.60 1 (13) 3 (2, 4, 5) + 8 m + 6 sm
9 S. polyphylla 28 59.10 2.11 1.93 1 (13) 3 (2, 5, 7) + 4 m + 10 sm
10 S. siamea 28 74.15 2.65 1.84 1 (4) 3 (2, 5, 6) + 7 m + 6 sm + 1st
11 S.uniflora 24 133.2 5.55 1.98 2 (7, 9) 2 (11, 12) + 4 m + 8 sm
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chromosomes. Only S. alata had all metacentric chromo-
some pairs. Other species included metacentric and submeta-
centric chromosomes. In addition, S. siamea, S. corymbosa, 
and S. lindheimeriana had one pair each of sub-telocentric 
chromosomes (Table 2, Fig. 3).

3.2  Chromosomal distribution of rDNA 
and telomeric probes

The rDNA probes displayed varied chromosomal distri-
butions and signal intensities across the 11 Senna species 
(Fig. 1). All species presented a single 5S rDNA locus, 
except for S. uniflora, which possessed two loci (Fig. 2). 
The 5S rDNA signals were frequently detected in the penul-
timate chromosome number and were generally localized 
to proximal chromosome regions (Figs. 2 and 3). The num-
ber and intensity of 45S rDNA signals varied considerably 
among the species. Three pairs were detected in S. alata, S. 

alexandrina, S. auriculata, S. notabilis, S. polyphylla, and 
S. siamea. Two pairs were found in S. uniflora, and one pair 
each was found in S. corymbosa, S. hirsuta var. leptocarpa, 
S. lindheimeriana, and S. marilandica. Most of these signals 
were found in the terminal regions of the short arms of the 
respective chromosomes. A hemizygous 45S rDNA locus 
was observed in chromosome 6 of S. auriculata (Fig. 2), and 
we did not observe any juxtaposition between 5S rDNA and 
45S rDNA signals in any species.

The Arabidopsis-type telomeric repeat hybridized to the 
terminal regions of all chromosomes in all species (Table 2, 
Figs. 1, 2, and 3). In addition, some chromosomes also dis-
played weak interstitial telomeric repeat (ITR) signals in 
peri-centromeric regions in S. alexandrina, S. corymbosa, 
and S. hirsuta (Fig. 2). A pair of ITR signals was detected 
on chromosome 1 in all three species. The remaining pairs 
were localized to chromosome 12 in S. alexandrina, 2 and 6 
in S. corymbosa, and 9 and 12 in S. hirsuta (Fig. 2).

Fig. 1  Triple-color FISH images of 11 Senna species. The predomi-
nant chromosome number was 2n = 28. The exceptions were S. mari-
landica and S. uniflora which have 2n = 22 and 2n = 24, respectively. 

One pair of 5S rDNA (green) and one to three pairs of 45S rDNA 
(red) were detected. Scale bar = 10 µm
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4  Discussion

Data on chromosome number and FISH-based karyotype 
in Senna are relatively scarce (Cordeiro and Felix 2018). In 
our previous work, we presented FISH karyotypes using 5S 
and 45S rDNA and telomeric repeats in 12 Senna species, 
including S. tora whose genome has been recently sequenced 
(Youn and Kim 2018; Pellerin et al. 2019; Kang et al. 2020; 
Ta et al. 2021; Waminal et al. 2021). To complement pre-
vious data and improve our understanding of karyotype 
diversity in Senna, we further analyzed the karyotypes of 11 
additional Senna species. To our knowledge, this is the first 
report on the chromosome numbers of S. lindheimeriana, 
S. marilandica, S. polyphylla, and S. uniflora.

Most Senna species investigated in this study were dip-
loid, with a predominant chromosome number of 2n = 28, 
corresponding with previous reports (Souza and Iseppon 
2004; Cordeiro and Felix 2018). However, S. marilandica 
(2n = 22) and S. uniflora (2n = 24) showed descending dys-
ploid karyotypes, which may have resulted from post-poly-
ploidy dysploidization after a polyploidization of ancient 
karyotypes with 2n = 14 (Biondo et al. 2012; Shchapova 

2013; Winterfeld et al. 2020). Similar processes have also 
occurred in several other plants such as Brassica, Cucumis, 
Nothoscordum, Brachyscome, and Senna tora (Maluszynska 
and Heslop-Harrison 1993; Watanabe et al. 1995; Koo et al. 
2010; Pellerin et al. 2019; Waminal et al. 2021). Indeed, 
changes in chromosome count may have played a role in the 
occurrence of reproductive isolation and speciation in Senna 
(Freyman and Höhna 2018).

Using FISH, we observed interspecific differences in the 
signal patterns of our markers, indicating species specific-
ity and the usefulness of our probes in distinguishing each 
species. A hemizygous 45S rDNA pattern similar to that 
observed in the short arm of chromosome 6 in S. corym-
bosa has been observed in other Senna and non-Senna spe-
cies (Lan and Albert 2011; Mancia et al. 2015; Waminal 
et al. 2016; Pellerin et al. 2019). This hemizygous locus 
may be explained by homology-mediated unequal crossing 
over between non-allelic homologous repeat units, which 
significantly shortened one site, making it undetectable by 
FISH (Pellerin et al. 2019).

Most species displayed a single locus proximal distribu-
tion of 5S rDNA, except for S. uniflora, which showed two 

Fig. 2  FISH karyograms of the 11 Senna species. Green, red, and blue signals indicate 5S rDNA, 45S rDNA, and telomeric repeats, respectively. 
Yellow arrowheads point to ITR signals. The white arrowhead points to the hemizygous 45S rDNA locus in S. auriculata. Scale bar = 10 µm
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loci. These results corroborate the reduced copy number 
and interstitial distribution of 5S rDNA often observed 
in flowering plants (Roa and Guerra 2012, 2015). Our 
results also revealed that 5S and 45S rDNA are not linked 
in the same chromosomal region; thus, genomic rearrange-
ments by conversion and crossing-over should occur with 
greater frequency (Waminal and Kim 2012). Independent 
localization suggests that 5S and 45S rDNA experienced 
distinct evolutionary processes (Mantovani et al. 2005). 
Variations in the distribution pattern of rDNA repeats in 
groups of related species have been explained via struc-
tural rearrangement events such as translocations, inver-
sions, duplications, and deletions. All of these events 

commonly result in structural changes in the karyotype 
(Silvestri et al. 2020).

Although telomeric sequences are normally located at 
chromosomal termini (Fuchs et al. 1995), some ITRs were 
detected in either three or two chromosome pairs in S. hir-
suta, S. corymbosa, and S. alexandrina (Fig. 2). ITRs have 
been observed in a few chromosomes in several Senna spe-
cies, especially in S. tora, where they are extensively ampli-
fied in all chromosomes (Pellerin et al. 2019). ITR signals 
have also been discovered in animals and some other plant 
species (Uchida et al. 2002; He et al. 2013; Souza et al. 
2016). ITR size, number, and distribution could vary inter- 
or intra-specifically. Although the origin and evolution of 

Fig. 3  Idiogram of the 11 Senna 
species. Red, green, and blue 
bars represent 45S rDNA, 5S 
rDNA, and telomere repeat, 
respectively
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ITRs remain largely unexplored in plants, some proposed 
mechanisms to explain ITR formation include unequal gene 
conversion, chromosomal fusion, crossing-over, DNA rep-
lication, transposition of telomeric repeats by mobile ele-
ments, or the translocation of an ITR during genetic recom-
bination (He et al. 2013; Aksenova and Mirkin 2019). The 
ITRs observed in Senna species suggest that telomere-medi-
ated inter-chromosomal rearrangements are a major pathway 
in the evolutionary dynamics of most Senna species (Sousa 
et al. 2014). This observation is supported by the high fre-
quency of descending dysploids in Senna, as dysploidy often 
arises from inter-chromosomal rearrangements including 
end-to-end translocations and nested chromosome inser-
tions (Winterfeld et al. 2020; Ta et al. 2021; Waminal et al. 
2021). Recent studies have shown that ITRs are dynamic 
elements that play essential roles in telomere maintenance 
and the regulation of gene expression through interactions 
with telomeres (Ruiz-Herrera et al. 2008; Aksenova and 
Mirkin 2019).

If these ITRs are formed by chromosomal fusion with 
reciprocal translocation, the product of this translocation 
would be a submetacentric chromosome with a weakly 
detectible ITR, plus a single chromosome and a small frag-
ment (Schubert and Lysak 2011). However, we did not find 
such small chromosomes in Senna. Another mechanism, 
called a fusion–fission cycle or a Robertsonian rearrange-
ment, has been used to explain ITRs in other plants (Schu-
bert et al. 1995). With these mechanisms, both centromeric 
and telomeric sequences are retained, although one of the 
centromeres and the interstitial telomeric sequences must be 
inactivated for proper mitosis (Sousa et al. 2014).

We observed that S. corymbosa and S. hirsuta had similar 
numbers and distributions of 5S rDNA, 45S rDNA, telo-
meric repeats, and even ITR signals (Figs. 2 and 3). This 
similarity was also observed in S. occidentalis (Pellerin 
et al. 2019; Ta et al. 2021), suggesting a closer relationship 
between S. hirsuta, S. corymbosa, and S. occidentalis. Based 
on FISH signal similarity, we speculate that S. alata, S. alex-
andrina, S. auriculata, S. notabilis, S. polyphylla, and S. 
siamea are closely related, whereas S. corymbosa is closely 
related to S. hirsuta and S. lindheimeriana in another clade. 
Molecular phylogenomic data will further clarify these 
relationships.

5  Conclusion

FISH karyotypes of 11 Senna species were established 
using three-color probes targeting 5S rDNA, 45S rDNA, 
and telomeric repeat sequences. The interspecific karyotypic 
variation in the species studied constitutes useful data for 
identifying each species and elucidating interspecific rela-
tionships in Senna. FISH karyotype analysis using major 

species-specific repeats as probes, and phylogenomic analy-
ses using chloroplast genomes may provide a clearer picture 
of the genome dynamics in Senna. The determination of 
highly abundant repeats using next-generation sequencing 
data and application of such markers in more Senna species 
are essential for further studies.
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