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Abstract
In order to improve photosynthesis efficiency and crop growth, it is important to predict CO2 concentration as well as CO2 
consumption in greenhouses. The objective of this study was to predict greenhouse CO2 concentration via an artificial neural 
network (ANN) that incorporated environmental factors. Temperature, relative humidity, atmospheric pressure, solar radia-
tion, and CO2 concentration were measured every 10 min over a 6-month period in a greenhouse located in Boryeong, Korea. 
Measured environmental data were used to train the ANN. Among the 14,866 data points used in the experiment, 10,000 
and 4866 data points were used for training and testing, respectively. An ANN with an input layer with input neurons, two 
hidden layers with 32–2048 neurons, and an output later with one neuron was selected. A rectified linear unit was used as 
the activation function in each node of the ANN. An ANN structure that included 256 neurons in the hidden layers showed 
the highest test accuracy (R2 = 0.97) was selected from all the structures, while multivariate linear regression showed lower 
test accuracy than the ANN (R2 = 0.78). The ANN accurately estimated CO2 concentration in the greenhouse using big data 
for changing patterns of the inside environmental factors without vent position data. Furthermore, it is possible to estimate 
crop CO2 consumption in greenhouses with this ANN using the change in greenhouse CO2 concentration.
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1  Introduction

Greenhouses allow farmers to actively control growth 
environmental conditions such as temperature, light, rela-
tive humidity, and CO2 concentration. By controlling these 
environments, crops can be produced year-round regardless 
of the climate. Based on the benefits of environmental con-
trol, greenhouse use and size in agriculture is continuously 
increasing (Guo et al. 2012).

To maximize the benefits of greenhouse cultivation, it 
is necessary to control growth environments efficiently. 
Research that predicts environmental factors has been stead-
ily conducted in order to better control greenhouse envi-
ronments (Ehret et al. 2001; Sonneveld et al. 2005; Min 

et al. 2012; Cha et al. 2016; Yu et al. 2016). However, since 
greenhouses are not completely isolated from the outside, 
environmental changes within the greenhouse are affected 
by external factors. Therefore, it is not easy to predict and 
control the environmental changes within greenhouses. The 
concentration of CO2 is an important environmental factor 
in greenhouses and has a major influence on crop growth 
(McMurtrie and Wang 1993). Previous studies have reported 
the importance of CO2 concentration during crop growth 
and have attempted to estimate CO2 concentration (Critten 
1991). Furthermore, there have been attempts to estimate 
and control CO2 concentration via artificial neural networks 
(ANNs) using overall greenhouse environments for a short 
period (Linker et al. 1998).

Recently, eco-friendly greenhouses have been studied 
with regard to environmental conservation (Cuce et  al. 
2016). In order to reduce CO2 emissions that are accel-
erating global warming, greenhouses that utilize surplus 
resources from power plants have been being studied. It is 
necessary to estimate and accurately control CO2 concen-
tration within these greenhouses to effectively reduce CO2 
emissions. However, CO2 concentration is affected not only 
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by various environmental factors, but also by photosynthesis 
and respiration of the plants grown within the greenhouse 
itself. Therefore, although greenhouse environments can be 
controlled in many aspects, CO2 concentration has a com-
plex nonlinear relationship with environmental variables.

ANNs have been used in recent studies to derive mean-
ingful results from complex nonlinear data (Vaidyanathan 
2015; Wang et al. 2016). ANN is gaining popularity over 
other algorithms because it can achieve high-level abstrac-
tion from raw data (LeCun et al. 2015). From the 1980s 
to the early 2000s, ANNs made simple estimations using 
small ANN structures. Since 2009, ANNs have been applied 
to various fields with the emergence of big data and hard-
ware that has superior computational power compared to 
first-generation technology. The purpose of this study was 
to estimate CO2 concentration in greenhouses with an ANN 
that incorporates environmental factor data.

2 � Materials and methods

2.1 � Greenhouse and cultivation conditions

A double-span arch-type plastic house (34.4 W × 30.0 
L  ×  5.7 H, m), 1,032  m2] located at Boryeong, Korea 
(36°23′34″N 126°29′12″E) was used for the experiment 
(Fig. 1). Polyolefin films with a thickness of 0.15 mm and 
a light transmittance of approximately 92% were used as 
a greenhouse covering material. The inside temperature 
was maintained at 25 ± 1 °C using a hot-water heating sys-
tem. The ventilation system was automatically opened at 
a set point of 27 °C. One hundred 3-year-old Irwin man-
goes (Mangifera indica L. Irwin) were planted in pots 
0.8 m in diameter with a planting density of 6.25 m2 in the 
greenhouse. Organic content of the soil ranged from 38 
to 120 g kg−1. Stem training and pruning were conducted 

periodically to induce vegetative growth of crops and to 
fix tree structure. A drip irrigation system was used for 
watering.

2.2 � Data collection and preprocessing

Environmental factors such as temperature, relative humid-
ity, light intensity, atmospheric pressure, and CO2 concentra-
tion were measured using a complex sensor module devel-
oped by Korea Electronics Technology Institute (Seongnam, 
Korea). The sensor modules were placed at nine locations 
throughout the greenhouse. Environmental data from the 
greenhouse were measured every 10 min from July 27 to 
December 9 2016 and the mean value from the nine loca-
tions was used. Weather data such as temperature, relative 
humidity, wind direction, wind velocity, and atmospheric 
pressure measured at Boryeong Meteorological Station were 
used. The time of measuring environmental factors was also 
used for training. The outside CO2 concentration was con-
stant at approximately 410 μmol mol−1. Table 1 shows the 
ranges of the environmental factors measured. In order to 
improve the training efficiency of the ANN, environmental 
data was normalized from 0 to 1. A total of 14,866 data 
points was used for estimating the CO2 concentration via 
the ANN.

2.3 � Artificial neural network (ANN)

The ANN consisted of an input layer, hidden layers, and an 
output layer, each of which had neurons. In this study, 10 
neurons of the input layer corresponded to environmental 
data, two hidden layers, and one neuron of the output layer 
for CO2 concentration were selected (Fig. 2). In the hidden 
layers, the value received from the input layer was multi-
plied by weight and the input information was transmitted 
through the activation function. A Rectified Linear Unit 
(ReLU) function was used as the activation function f(x), 

Fig. 1   A double-span arch-type plastic house (34.4 W × 30.0 L × 5.7 
H, m) used for Irwin mango cultivation located at Boryeong, Korea

Table 1   Ranges of the measured environmental factors

PPFD photosynthetic photon flux density

Environmental factor Range

Inside temperature (°C) 14.2–39.0
Inside relative humidity (%) 25.4–93.1
Inside atmospheric pressure (hPa) 992.6–1036.0
Inside PPFD (μmol m−2 s − 1) 0.0–1213.6
Outside temperature (°C) − 0.1–36.1
Outside relative humidity (%) 0.0–95.0
Outside atmospheric pressure (hPa) 989.9–1033.3
Wind direction (°) 0.0–360.0
Wind velocity (ms−1) 0.0–23.0
Inside CO2 concentration (μmol mol−1) 337.0–794.5
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where x corresponds to the input value given to each neuron 
(Eq. 1, Fig. 3).

Training and testing of the ANN were conducted after 
classifying 14,866 data randomly obtained from the col-
lection process into 10,000 training data and 4866 test 
data. The training data helped to adjust and generalize the 
ANN according to the differences between estimated and 
measured values. The test data were used to confirm the 
accuracy of the trained ANN. In addition, data sequences 
were randomly mixed so that they would not be skewed to 
a certain period of time. The experiments were performed 
using Tensorflow (v. 0.11, Python Deep Learning Library, 

(1)f (x) = max(0, x)

Google, Menlo Park, CA, USA). During the adjustment of 
the ANN, root mean square error (RMSE) was used for its 
optimization (Eq. 2).

where Yi and Pi are the CO2 concentrations measured by 
the sensor and estimated by the ANN, respectively. n refers 
to the total number of training data and i represents each 
training data point. The coefficient of determination (R2) 
was used for training accuracy and test accuracy to verify 
model robustness.

For comparison with ANN, multivariate linear regres-
sion was conducted with the same data set using Eq. 3. 
The model was analyzed using the statistical programming 
language R (The University of Auckland, Auckland, New 
Zealand).

where y, x, a, and b are the dependent variable (CO2 concen-
tration), independent variable (environmental factor), regres-
sion coefficient, and intercept, respectively. The subscript of 
i indicates the number of independent variables.

In order to train the ANN, the AdamOptimizer was used, 
which is a method widely used for optimization (Kingma 
and Ba 2014). The parameters for the AdamOptimizer were 
set to the commonly used values (Table 2). The number of 
training was 5000 times in total, where the case of using 
entire data is called 1 time. In order to confirm the optimal 
ANN structure, the number of neurons in the hidden layer 
was changed to 32, 64, 128, 256, 512, 1024, and 2048. The 
two hidden layers consisted of the same number of neurons.

(2)RMSE =

�

∑n

i=1

�

Yi − Pi

�2

n

(3)y = �aixi + b

Fig. 2   Structure of an artificial 
neural network including the 
input layer (I), hidden layer I 
(H1), hidden layer II (H2), and 
output layers (O). Inside and 
outside environmental factors 
that were used as inputs for I 
are listed

Fig. 3   A rectified linear unit (described in Eq. 1) was used as the acti-
vation function in each node of the artificial neural network
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3 � Results and discussion

3.1 � Accuracy of the artificial neural network

The maximum test accuracy (R2) and RMSE were 0.97 and 
19.90, respectively, using 256 neurons in the hidden layer of 
the ANN structures (Table 3). When an ANN has an exces-
sive number of neurons compared to the training data, the 
ANN cannot generalize the data and is adjusted to fit only 
the trained data, which is called overfitting (Tetko et al. 
1995). When the number of neurons exceeded 256, the train-
ing accuracy increased while the test accuracy decreased 
because of overfitting. Therefore, increasing the ANN struc-
ture will not increase the estimation accuracy infinitely.

In addition, the R2 and RMSE of the multivariate regres-
sion model were 0.78 and 54.70, respectively (Eq. 4), indi-
cating that the ANN estimated the CO2 more accurately than 
the multivariate linear regression (Fig. 4).

(4)

C
i
= − 55.87 ∗ t + 11.28 ∗ T

i
+ 1.760 ∗ RH

i
− 241.7 ∗ P

i

− 0.05812 ∗ L
i
− 9.114 ∗ T

o
+ 1.010 ∗ RH

o

+ 0.04140 ∗ D
o
− 0.7791 ∗ v

o
+ 243.8 ∗ P

o
− 1237

where C, t, T, RH, P, L, D, and v are the CO2 concentration, 
time, temperature, relative humidity, atmospheric pressure, 
light intensity, wind direction, and wind velocity, respec-
tively. Subscripts of i and o mean inside and outside of the 
greenhouse.

In the ANN, the accuracy was lower at about 
500–600 μmol mol−1 CO2 concentrations. The measured 
CO2 concentration ranged from 337.0 to 794.5 μmol mol−1, 
but CO2 concentration data were lacking at approximately 
500–600 μmol mol−1. Therefore, the ANN might not accu-
rately estimate CO2 at these concentrations due to insufficient 
data at lower and higher concentrations.

3.2 � Validation of CO2 concentration 
in the greenhouse

In general, the CO2 concentrations estimated by the ANN 
showed better agreement with those measured in the 
greenhouse than those estimated by the multivariate linear 

Table 2   Parameters for the 
AdamOptimizer artificial neural 
network

Dropout was set to 1.0 in the test to use the entire neural network

Parameter Value Description

Minibatch size 5000 Number of training cases over which each stochastic 
gradient descent update is computed

Learning rate 0.001 Learning rate used by the AdamOptimizer
β1 0.9 Exponential mass decay rate for the moment estimates
β2 0.999 Exponential velocity decay rate for the moment estimates
ε 1e−0.8 A constant for numerical stability
Dropout probability 0.7 Probability of dropping out units in the neural network
Training epoch 5000 Number of training iterations
Training data size 10,000 Size of data set used for training
Test data size 4881 Size of data set used for test

Table 3   Training and test accuracies of the artificial neural network 
according to the number of neurons in the hidden layers

Number of 
neurons

Training accuracy 
(R2)

Test accuracy 
(R2)

RMSE

32 0.924 0.916 34.219
64 0.944 0.927 27.620
128 0.967 0.956 23.275
256 0.979 0.968 19.904
512 0.978 0.966 19.827
1024 0.980 0.966 21.414
2048 0.959 0.953 22.085

Fig. 4   Comparison of estimated and measured CO2 concentrations in 
the greenhouse when using 256 neurons in the hidden layers of the 
artificial neural network and multivariate linear regression (Table 3)
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Fig. 5   Comparison of CO2 con-
centrations estimated using the 
artificial neural network (ANN), 
multivariate linear regression, 
and measured values in a single 
greenhouse between October 
10–16, 2016

Fig. 6   Estimated and measured 
CO2 concentrations (a); inside 
temperature, relative humidity 
and PPFD (photosynthetic pho-
ton flux density) (b); and vent 
position (c) over 24 h starting 
at 06:30 on October 13, 2016. 
Vent positions represent the 
opening ratio of the windows 
(0%—closed and 100%—fully 
open)
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regression (Fig. 5). Compared to the ANN, the multivariate 
regression model inaccurately estimated the CO2 concen-
trations with about 100 μmol mol−1 difference on days 15 
and 16.

The ANN accurately estimated CO2 concentrations in the 
greenhouse using big data for the changes in inside tempera-
ture, relative humidity, and CO2 concentration without vent 
position data (Fig. 6). It was estimated that the inside CO2 
concentration could be calculated based on ventilation and 
outside CO2 concentration after the ANN recognized the 
change in vent position from the sudden change in relative 
humidity. Due to the nature of black box modeling, it is dif-
ficult to determine exactly what environmental factors influ-
enced the results. However, the ANN accurately estimated 
changes in CO2 concentration even though the ventilation 
affected various environmental factors.

3.3 � Limitations and possibilities

The estimates performed in this study were limited to data 
obtained from a single greenhouse. ANNs should be trained 
with data from various measurement sites to generalize all 
possible situations (Lopez et al. 2001). Previous studies with 
high accuracy had more data points or more inputs related 
to the factor being estimated (Trejo-Perea et al. 2009). If 
conditions are difficult to measure, virtual conditions could 
be modeled with simulation (Beltramo et al. 2016). In this 
study, CO2 concentration could be estimated with a high 
coefficient of determination of 0.97 for the greenhouse 
located at Boryeong. To ensure that the ANN model used in 
this study is applicable to all greenhouses, it is necessary to 
verify the test accuracy using data from other greenhouses or 
simulation data. Despite experimental limitations, the ANN 
made significant estimations of the change in CO2 concen-
tration in the greenhouse. Therefore, the CO2 concentration 
within the greenhouse could be estimated using an ANN that 
incorporated nine environmental factors. This suggests that 
CO2 concentration in greenhouses can be estimated even 
in cases of CO2 fertilization (Fernandez and Bailey 1992). 
Further studies are needed to estimate CO2 consumption by 
plants in greenhouses using ANN systems.
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