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Abstract
The choroid plexus (CP), a highly vascularized endothelial–epithelial convolute, is placed in the ventricular system of the 
brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood–CSF barrier 
(BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB 
are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several 
serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the 
development of treatment options. In this review, we provide an overview on the available models and the advances that have 
been made toward more sophisticated and “in vivo near” systems as organoids and microfluidic lab-on-a-chip approaches. 
We go into the applications and research objectives for which the various modeling systems can be used and discuss the 
possible future prospects and perspectives.
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Introduction

The choroid plexus and the inner blood–
cerebrospinal fluid barrier

The central nervous system (CNS) is a highly sensitive 
structure that requires a specific milieu for proper function 
and needs to be protected against damage by influences from 
outside of the CNS. One mechanism to shelter the CNS is 
the surrounding of the brain and the spinal cord by a liquid 
layer of cerebrospinal fluid (CSF). A large part of the CSF 
is produced by the choroid plexus (CP), a highly vascular-
ized organ that is located in the ventricles, which constitute 
CSF-filled excavations in the brain. The structure of the CP 
includes an outer epithelial layer formed by cells that exhibit 
extensive microvilli, strongly enhancing the cellular surface 

bordering the CSF in the ventricles, and endothelial cells 
that are responsible for an extensive vascularization. Fur-
ther cells present in the CP are immune cells as dendritic 
cells, NK cells, lymphocytes as T cells, and macrophages, 
which (together with the vasculature) are embedded in the 
CP stroma. Macrophages termed Kolmer epiplexus cells are 
also located apically at the CP epithelium [1–3].

Due to its location in the ventricles, the CP presents a 
direct interface between the CSF and the blood, and there-
fore between the CNS and the remainder of the organism. 
To avoid that substances and also pathogens can unhindered 
cross the CP to enter the CNS, a barrier has to be present at 
the CP. For this purpose, the epithelial cells of the CP are 
connected to each other by tight junctions (TJs) that form 
tight strands and seal the epithelial layer, thereby generat-
ing the so-called inner blood–CSF barrier (BCSFB) [4]. 
Although the vasculature at the CP consists of fenestrated 
endothelial cells that have long been thought not to contrib-
ute to barrier function, more recent data indicate that the 
CP endothelium can modulate the barrier at the CP [5, 6].

Multiple functions of the CP

The CP fulfills several fundamental roles in the organ-
ism that are central to brain function, as exemplary the 
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production and secretion of the lion’s share of the CSF. 
Besides providing a “physical buffer” for the brain, the CSF 
is required to guarantee the maintenance of brain homeosta-
sis and of the intracranial pressure. Correct amounts of CSF 
with a defined composition are generated due to the pres-
ence of specific transporters and the production of proteins 
as transthyretin by the CP [7–9]. These transporter systems 
also contribute to the barrier function of the CP epithelium 
by selected and directed transport of large amounts of sub-
stances. The presence of the transporters helps to transport 
toxic substances out of the brain, but importantly also pre-
sents a major obstacle for the brain transport of pharmaceuti-
cal molecules during treatment of CNS diseases [10, 11]. A 
low pinocytotic activity and the presence of dense TJ strands 
complement the mechanisms to mediate the barrier function 
of CP epithelial cells [12, 13].

The barrier function is essential to protect the brain from 
inflammatory molecules, toxins, and several kinds of patho-
gens that can be present in the bloodstream [14, 15]. Another 
important function of the CP barrier function is the regula-
tion of the entry of immune cells into the CNS [3, 16, 17]. 
This regulation is integral in modulating brain immunity 
under healthy conditions, but immune cell transmigration 
into the CNS also plays a central role during several diseases 
of the CNS [18, 19].

Involvement of the CP in diseases

In addition to its multiple functions under healthy condition, 
the CP is also well known to play a role during a multitude 
of diseases [2, 14, 20–22]. There is evidence that the CP 
and the BCSFB respond to traumatic brain injury, and data 
suggest that CSF hypersecretion by the CP may contribute 
to post-hemorrhagic or post-infectious hydrocephalus [20, 
21, 23]. Involvement of the CP was also shown for neurode-
generative disorders as Alzheimer’s disease and Parkinson’s 
disease [20–22].

Much attention has been paid to the roles of the CP 
and the BCSFB during autoimmune disorders, in particu-
lar concerning multiple sclerosis, where the CP can serve 
as entry gate for immune cells into the CNS [18, 20, 21]. 
The CP is also involved in infectious diseases of the CNS, 
since several types of pathogenic organisms can enter the 
brain across the BCSFB. These pathogens include viruses, 
bacteria, fungi, and parasites that, following CNS invasion, 
cause an inflammatory response culminating in meningitis, 
encephalitis, and meningoencephalitis. Host immune cells 
that subsequently to infection enter the brain, again includ-
ing across the BCSFB as entry gate, contribute substantially 
to the inflammatory reactions and damage [15, 17, 23, 24].

The CP can also develop tumors that range from papil-
lomas that cytologically and architecturally closely resem-
ble the normal CP to carcinomas displaying a morphology 

without resemblance to the healthy CP. As for immune cells, 
the CP can also serve as a portal for tumor cells, includ-
ing neuroblastoma and leukemia cells, to get access to the 
CNS with subsequent formation of metastasis [20, 25, 26]. 
Finally, the CP–CSF interface has also been implicated in 
neuropsychiatric diseases such as schizophrenia and autism 
[27].

Involvement of the CP in the described multitude of dis-
eases, additionally to the functions under healthy conditions, 
is a major reason for the necessity of appropriate in vitro 
models of the BCSFB for use in basic research, drug test-
ing and drug development, and permeability studies. An 
overview of the available in vitro models of the CP and the 
BCSFB is given in Fig. 1 and will be summarized in detail 
in the following chapter.

In vitro models of the choroid plexus 
and the blood–cerebrospinal fluid barrier

“Classical” models

When generating models of the CP and the BCSFB, 
researchers have often focused on CP epithelial cells, which 
are to a large part responsible for major functions of the CP 
including barrier function (based on TJs and transporter sys-
tems) and the production of CSF. Primary CP epithelial cells 
have been prepared from several species as rodents, pigs, and 
non-human primates, and tend to retain these major func-
tions to a large extent, e.g., by providing a sufficient barrier 
function for in vitro studies of the BCSFB when grown on 
cell culture filter inserts [28–32]. Furthermore, CP epithelial 
cells of human origin (HCPEpiC) are commercially avail-
able. Since primary cells are hard to obtain in large numbers, 
can only be cultured for a limited range of passages, and are 
often difficult to manipulate genetically, they are only sub-
optimally suited to achieving certain research objectives. To 
overcome these obstacles, immortalized cell lines have been 
generated, which, on the other hand, often do not faithfully 
recapitulate major properties of the CP epithelium as barrier 
function or CSF production [33–38]. CP epithelial cell lines 
with strong barriers that are derived from pig and human 
have been described [38, 39].

The CP epithelial cells can be grown on membrane sup-
ports provided by cell culture filter inserts to create a system 
consisting of two compartments, a “CSF” compartment and 
a “blood” compartment. The experimenter has the choice to 
culture the cells on the upper side (“standard” model) or the 
lower side (“inverted” model) of the membrane, dependent 
on the desired orientation of the two compartments [40, 41]. 
These “classical” models of the BCSFB have been used with 
success for studies of drug transport and the pathology of 
several diseases of the CNS [10, 15, 30]. Still, these models 
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only partly reflect the in vivo CP, since they only consist of 
epithelial cells and the other cell types contained in the CP 
are missing. Also, the CP has a specific morphology that is 
only partially mimicked by growth of CP epithelial cells on 
cell culture filter inserts.

“Advanced” models

Integrating additional cell types

An obvious step to advance in vitro models is to integrate 
additional cell types. Concerning the BCSFB, the endothe-
lial cells of the CP are of major interest, since the CP is 
highly vascularized and recent research has indicated a 
role of the CP endothelium during modulation of barrier 

function [5, 6]. It is known that endothelial cells of distinct 
organs display specific properties that distinguish them from 
other endothelia [42]. The endothelial cells of the human 
CP form a fenestrated endothelium characterized by the 
expression of the plasmalemma vesicle-associated pro-
tein (PLVAP) and the presence of caveolae and fenestrae 
[43]. The recent generation of immortalized choroid plexus 
endothelial cells (iHCPEnC), which retain major character-
istics of the CP endothelium in vivo, enabled the set-up of 
a two-cell type model of the BCSFB that consists of CP 
epithelial and endothelial cells grown on opposite sides of 
cell culture filter inserts. This model displays an enhanced 
barrier function compared to a model based on epithelial 
cells alone [6], and holds significant promise for advanced 
studies of the BCFSB in vitro, especially concerning the 

Fig. 1   Overview of available CP and BCSFB in  vitro models. 1 
“Classical” models of the BCSFB are mostly based on primary or 
immortalized CP epithelial cells that can be grown on cell culture 
filter insert supports for generation of a barrier, separating a “CSF” 
compartment from a “blood” compartment. The orientation of the 
two compartments in the model system depends on whether the cells 
are cultivated on the upper side (“standard” model) or the lower side 
(“inverted” model) of the filter membrane. 2 A first step toward an 
“advanced” model is the integration of further CP cell types, as the 
endothelium constituting the vasculature in the CP. A two-cell type 
model of the CP can be generated by growing CP endothelial cells on 

the upper side and CP epithelial cells on the lower side of the mem-
brane of cell culture filter inserts. 3 CP explant cultures and organoids 
with CP-like features (CP organoids) present a detailed 3D structure 
resembling the CP in vivo. Strategies have been developed to vascu-
larize organoids to overcome the disadvantage of a lacking vascula-
ture. 4 Microfluidic organ-on-a-chip model systems further consider 
fluid movements that impact on cellular structures. Incorporation of 
CP cells, explants, and organoids into organ-on-a-chip models prom-
ises the generation of highly advanced CP and BCSFB in vitro mod-
els
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endothelial–epithelial interplay at the CP under healthy and 
pathological conditions.

Explants, stem cells, and organoids

The model systems described so far consist of isolated pri-
mary cells or generated cells lines representing components 
of the CP. These models certainly have the advantage that 
specific research questions can be addressed in rather defined 
experimental settings consisting of selected cell types. Still, 
despite an increased complexity obtained by combining dif-
ferent cell types, several disadvantages further exist as the 
lack of a shear stress caused by flow and the absence of a 
detailed 3D structure resembling the CP in vivo.

To overcome some of these disadvantages, more 
advanced 3D-culture models have been developed. Explant 
cultures are based on tissue dissected from CP material, e.g., 
human tissue taken postmortem or during surgery, or tissue 
taken from different animal models [44]. Tissues represent-
ing the CP obtained from rats and mice, from guinea pig, 
and from shark have been used to study the location of sev-
eral transporters and receptors, transport processes, or the 
migration of immune cells, respectively [45–50]. A disad-
vantage of these explant cultures is, however, that they are 
mostly derived from non-primates as rodents.

Limitations of the BCSFB in vitro models based on pri-
mary cells, cell lines, or explant cultures can be overcome 
with the help of stem cells that are induced to represent CP 
tissue. Bone morphogenetic protein 4 (BMP4) was suffi-
cient to derive CP epithelium from mouse and human neu-
roepithelial stem cells, and employing both BMP4 and Wnt 
signaling strongly induced choroid plexus-like tissues from 
human embryonic stem cells in 3D culture [51, 52]. When 
taken into culture, the induced stem cells can be grown fur-
ther into cellular assemblies that recapitulate the structure of 
organs. These so-called organoids are defined as 3D struc-
tures that by self-assembly and differentiation are able to 
mimic at least some functions of defined organs [53]. 3D 
organoids derived from human pluripotent stem cells were 
established that presented discrete brain regions includ-
ing the CP [54, 55]. Treatment with BMP4 in combination 
with Wnt activation after the organoids were embedded in 
Matrigel lead to structures enriched in cuboidal epithelium 
representing polarized CP epithelial cells. Notably, these CP 
organoids presented a robust barrier function and developed 
compartments filled with a CSF-like fluid [56]. Recently, 
brain organoids consisting of a core of functional corti-
cal neurons that are surrounded by an epithelium present-
ing CP-like features have been generated using an induced 
pluripotent stem cell line derived from a patient with Down 
syndrome and its isogenic euploid counterpart, respectively 
[57].

One disadvantage of the CP organoids described above is 
that they lack a vasculature. This restriction leads to cellular 
stress and cell death due to hypoxia and lack of nutrient, and 
limits the size of the organoids. Also, endothelial cell signal-
ing is missing, which is required for correct organoid devel-
opment [58]. Several approaches to vascularize brain orga-
noids have been published. These include the transplantation 
of organoids into the brains of immunodeficient rodents, the 
addition of vasculature-deriving cells, co-culture of human 
umbilical vein endothelial cells (HUVECs) with induced 
pluripotent or embryonic stem cells for the production of 
organoid precursors that, following neural induction, display 
a vascular system, and co-culture of brain organoids with 
blood vessel organoids [58, 59]. Furthermore, the heteroge-
neity of different types of brain endothelia should be consid-
ered. To generate an organoid model with an “in vivo near” 
vascularized CP, the use of CP-specific endothelial cells 
is advisable—conceivably without or together with other 
types of brain endothelia as the microvascular endothelial 
cells of the BBB. It can be anticipated that with ongoing 
research progress, highly advanced CP organoid models will 
be available.

Microfluidic “choroid plexus‑on‑a‑chip” models

To faithfully mimic the physiology of organs, it is neces-
sary to consider the fluid movements that impact on the 
respective cellular structure, as the flow of blood through 
endothelial vessels. So-called “organ-on-a-chip” microflu-
idic devices have been invented, in which living cells can 
be cultured under fluid flow conditions that recapitulate the 
in vivo conditions [60].

A human microfluidic BCSFB model has recently been 
described that consists of commercially available CP epi-
thelial and brain microvascular endothelial cells, which 
can be exposed to medium mimicking the dynamic flow 
of blood and CFS [61]. In this model, the architecture of 
the BCSFB could be reproduced, exemplified by the pres-
ence of TJs and the formation of a physiologically relevant 
permeability for macromolecules. When this model was 
exposed to inflammatory stimuli as tumor necrosis factor 
(TNF)-α, neuropathological consequences as the regulation 
of key innate immunity response genes and barrier damage 
were observed. Still, the authors did not achieve a co-culture 
with immune cells, which would be important, e.g., for the 
study of immune cell transmigration across the BCSFB [61]. 
Also, the use of CP-specific endothelial cells instead of brain 
microvascular endothelial cells should be better suited to 
correctly model the CP and the BCSFB. In another approach, 
Lim and coworkers generated a microfluidic chip that was 
used to reconstitute the CP with commercially available 
human brain microvascular endothelial cells, pericytes, and 
CP epithelial cells on an engineered extracellular matrix and 
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under dynamic conditions mimicking the CSF flow in vivo 
[62]. In this system, the authors could show physiologically 
relevant drug responses by breast cancer cells that were 
added to the model. Furthermore, immune responses in the 
CP were recapitulated by applying macrophages, the most 
common immune cells in the CP, to the system.

Generally, BCSFB-on-chip models and other model sys-
tems as organoids represent distinct approaches and can sup-
plement each other. In this regard, the application of micro-
fluidics is not limited to BCSFB models based on single or 
multiple cell types, but can just as well employed to improve 
the quality and usefulness of organoid models that have been 
subjected to vascularization [63].

Applications of the in vitro models

The in vivo properties of the CP should be mirrored by 
in vitro models as exactly as possible to enable their use 
as research tools on CP functions. Models that faithfully 
reproduce the major tasks of the CP will be very helpful in 
elucidating the “biology” of the CP. Here, interesting aspects 
concern the interplay between different cell types present 
in the CP, e.g., during development, maturation, and aging 
[64]. Noteworthy, suitable models that produce CSF-like 
fluids [29, 56] can be used to study the functions of a secre-
tory epithelium. Since in vitro organoids and CSF-like fluid 
can mature to a state strongly resembling postnatal stages or 
adulthood, they might allow the identification and investiga-
tion of disease-related biomarkers [56].

The involvement of the CP in diseases has been already 
addressed in this review. Suitable models of the CP will 
help to investigate the development of these diseases, includ-
ing CP papillomas and carcinomas [65]. In vitro models of 
the CP and the BCSFB have also been intensively used to 
research the pathogenetic processes during infectious dis-
eases of the CNS caused by viruses, bacteria, and parasites 
[41, 66–69]. In this regard, experiments taking advantage 
of organoids have contributed to elucidate the involvement 
of the CP by viral diseases that came recently into focus 
as Zika virus and SARS-CoV-2 [68, 70, 71]. Interestingly, 
the application of organoids with a functional CP-like epi-
thelium generated from an induced pluripotent stem cell 
line derived from a down syndrome patient has shown that 
neurotropism of SARS-CoV-2 is enhanced by CP defects in 
Down syndrome brain organoids [57].

The CP is also a regulatory gate for entry of immune cells 
into the CNS. During the course of diseases as multiple scle-
rosis and as response to infections of the brain, host immune 
cells enter the CNS and cause substantial damage. Mecha-
nisms of immune cell traversal across the CP, e.g., interac-
tions between immune cell and barrier cell surface proteins 
and migration pathways (paracellular and transcellular), 

have been investigated and deciphered in cell culture insert 
and explant systems recapitulating the CP and the BCSFB 
[50, 72]. The same models can be used to study the migra-
tion of cancer cells into the CNS across the BCSFB [26].

As one of the barriers separating the CNS from the blood, 
the BCSFB at the CP presents a major obstacle for the 
delivery of pharmaceutical substances into the brain for the 
treatment of diseases. In vitro models of the CP presenting 
an appropriate BCSFB, including cell culture filter-based 
systems as well as organoids, can be used to develop and 
evaluate brain accessible (neuro)pharmaceuticals for disease 
treatment and prevention, which should help to reduce the 
number of drug candidates that fail during clinical testing 
[10]. In this regard, expression of transporter proteins has 
been demonstrated in CP and BCSFB in vitro models [50, 
73, 74]. Recently, the extracellular vesicle biogenesis of CP 
organoids was investigated and also supported CP organoids 
as a model system for screening of drugs and development 
of drug delivery systems for treatment of neurological dis-
orders [75].

Perspectives

Significant progress has been made during the development 
of in vitro CP and BCSFB model systems, and the quantity 
of possible and established applications is steadily increas-
ing. Still, there are further tasks that are worth to pursue to 
increase the quality of the models and to widen their spec-
trum of research capabilities. We have already discussed the 
necessity, options, and attempts to include vasculature into 
the existing CP models. Another important component that 
deserves consideration is the integration of immune cells, 
especially since the CP is rated as an important gateway 
for immune cells into the CNS during health and disease 
[3, 16, 17].

One interesting step toward more complete in vitro sys-
tems would be to combine CP models with further struc-
tures, specifically CNS components, but also others. In this 
direction, a neurovascular unit with a complex 3D structure 
has been constructed by organ-on-a-chip technology that 
considers a “CSF”-side, but does not contain CP cells [76]. 
Furthermore, Alcendor and colleagues have suggested an 
organ-on-a-chip model that contains, besides a BBB and a 
brain–CSF barrier, also a BCSFB [77]. As pointed out by 
Ye, the combination of vascularized CP organoids with vas-
cularized brain organoids presenting further CNS structures 
could have the added advantage to generate a more complete 
vasculature [58].

Further promising perspectives for the use of CP and 
BCSFB models will concern the evaluation of molecular 
mechanism of diseases and possible treatment. Besides the 
detection of potential biomarkers, advanced model systems 
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as organoids can be employed for use in personalized med-
icine. The use of stem cells from patients suffering from 
neurological disorders as autism spectrum disorders, Par-
kinson’s disease, or Alzheimer’s disease allows the genera-
tion of organoids for individual disease modeling and testing 
of therapies in a personalized manner [78]. It is conceiv-
able that this approach can be successfully adapted for CP 
organoids.

Finally, it should be emphasized that organoid models 
are major candidates in replacing laboratory animals. In 
this regard, the CP organoid developed by Pellegrini and 
colleagues [56] has won the 2020 3Rs Prize, awarded by 
the NC3Rs and co-funded by GSK (https://​www.​nc3rs.​org.​
uk/​news/​cereb​ral-​organ​oid-​model-​wins-​3rs-​prize). It is to 
be expected that future advanced CP and BCSFB models 
will further contribute to the important task of reducing the 
amount of laboratory animals.

Conclusions

Several in vitro model systems of the CP and the BCSFB 
have been developed that can be employed to investigate 
biological CP functions in health and disease. With the 
improvement of these models toward more complex and “in 
vivo-like” conditions, their research options and applications 
will increase. It is promising that future advanced systems, 
e.g., organoid models and lab-on-a-chip approaches, can be 
employed for personalized medicine and will help to reduce 
animal experimentation.
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