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Abstract 
Pelvic floor dysfunction (PFDs), which include pelvic organ prolapse (POP), stress urinary incontinence (SUI) and anal 
incontinence (AI), are common degenerative diseases in women that have dramatic effects on quality of life. The pathology 
of PFDs is based on impaired pelvic connective tissue supportive strength due to an imbalance in extracellular matrix (ECM) 
metabolism, the loss of a variety of cell types, such as fibroblasts, muscle cells, peripheral nerve cells, and oxidative stress 
and inflammation in the pelvic environment. Fortunately, exosomes, which are one of the major secretions of mesenchymal 
stromal cells (MSCs), are involved in intercellular communication and the modulation of molecular activities in recipient 
cells via their contents, which are bioactive proteins and genetic factors such as mRNAs and miRNAs. These components 
modify fibroblast activation and secretion, facilitate ECM modelling, and promote cell proliferation to enhance pelvic tissue 
regeneration. In this review, we focus on the molecular mechanisms and future directions of exosomes derived from MSCs 
that are of great value in the treatment of PFD.

Keywords Exosomes (EXs) · Mesenchymal stromal cell (MSC) · Pelvic floor dysfunction (PFDs) · Fibroblast · 
Extracellular matrix (ECM)

Abbreviations
PFD  Pelvic floor disorders
POP  Pelvic organ prolapse
SUI  Stress urinary incontinence
AI  Anal incontinence
ECM  Extracellular matrix
MSC  Mesenchymal stromal cell
AI  Anal incontinence
PFMT  Pelvic floor muscle physiotherapy
BF  Biofeedback
FBR  Foreign body response
FDA  Food and drug administration
EMA  European medicines agency
HIF-1α  Hypoxia-inducible factor 1α
AGEs  Advanced glycation end products
MMPs  Matrix metalloproteinases

TIMPs  Tissue inhibitors of matrix 
metalloproteinases

OS  Oxidative stress
MnSOD  Mitochondrial superoxide dismutase
GPX  Glutathione peroxidase
EVs  Extracellular vesicles
TEM  Transmission electron microscopy
NTA  Nanoparticle tracking analysis
HSP70  Heat shock protein 70
TSG101  Tumour-susceptibility gene 101
MVBs  Multivesicular bodies
SNAREs  Soluble N-ethylmaleimide-sensitive factor 

attachment protein receptors
ESCRT   The endosomal sorting complex required for 

transport
MSCs-Ex  Mesenchymal stromal cell-derived exosomes
HUCMSCs  Human umbilical cord mesenchymal stromal 

cells
LPP  Leak point pressure
eMSCs  Human endometrial mesenchymal stromal 

cells
BMSCs  Bone marrow mesenchymal stromal cells
ADSC  Adipose-derived stromal cell
USC  Urine-derived stromal cell (USC)

 * Yisong Chen 
 cys373900207@163.com

1 Department of Gynecology, Obstetrics and Gynecology 
Hospital of Fudan University, 128 ShenYang Road, 
Shanghai 200011, People’s Republic of China

2 Shanghai Key Laboratory of Female Reproductive 
Endocrine-Related Diseases, Shanghai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13577-023-00887-6&domain=pdf
http://orcid.org/0000-0002-9234-8893


938 L. Xu et al.

1 3

SCs  Satellite cell
ERK  Extracellular-regulated protein kinases
SIRT1  Silent mating type information regulation 2 

homologue 1 (SIRT1)
DRG  Dorsal root ganglion
SMC  Smooth muscle cell
AIF  Apoptosis-inducing factor
PARP-1  Upregulating poly ADP-ribose polymerase 1
PAR  Poly ADP-ribose
JAG1  Jagged1
ROS  Reactive oxygen species
Nrf2  Nuclear factor-E2-related factor 2
TLR4  Toll-like receptor 4
dECM  Decellularized scaffold ECM
TFF  Tangential flow filtration

Introduction

Pelvic floor dysfunction (PFD) describes a series of clini-
cal diseases such as include pelvic organ prolapse (POP), 
stress urinary incontinence (SUI) and anal incontinence 
(AI), which have dramatic effects on the well-being and 
satisfaction of millions of adult women [1].

In addition to the reduction in various types of cells, 
such as fibroblasts, smooth muscle cells and neural cells, 
in pelvic tissues, PFD develops as a result of qualitative 
or quantitative defects in pelvic connective tissues, includ-
ing ligaments, fascia, and the levator ani, urethra and anal 
sphincter, which cannot provide sufficient support for the 
pressure from the abdominal cavity [2, 3]. Therefore, any 
biological event that interferes with the functional capac-
ity of connective tissue or its repair process, as well as 
the depletion of any pelvic component without adequate 
supplementation, may promote the occurrence and devel-
opment of PFD [4, 5].

Currently, the treatments for PFD can be divided into 
nonsurgical and surgical therapies, which are still conserv-
ative and based on symptoms. The former mainly includes 
pelvic floor muscle physiotherapy (PFMT), biofeedback 
(BF) and electronic stimulation, which can alleviate symp-
toms but fail to restore anatomic structures and have a 
high recurrence rate of up to 20–30% [6, 7]. The latter 
could help to achieve better anatomical and functional 
restoration but is concomitant with many medical com-
plications [7–10], such as foreign body response (FBR), 
scarring, chronic pain and especially erosion in the mesh 
implantation site [11–14]. Because of the warnings of 
the Food and Drug Administration (FDA) and European 
Medicines Agency (EMA), many types of meshes have 
been banned from gynaecologic surgical operations [12]. 

Thus, alternative treatments to promote the regeneration 
and repair of damaged tissue are urgently needed.

Recently, the use of mesenchymal stromal cells (MSCs) 
has become a promising therapeutic approach for PFD 
and regenerative medicine and has attracted much inter-
est because of the various capacities of these cells, such 
as self-renewal, multipotency, immunoregulation and 
secretory functions [5, 15, 16]. Under specific conditions, 
MSCs can migrate to the damaged site and differenti-
ate into certain local cells to replace the lost, senescent, 
apoptotic and diseased cells and accelerate the repair pro-
gress. Furthermore, MSCs have powerful antiapoptotic, 
anti-inflammatory and neuroprotective effects. Although 
it has been gradually studied and appreciated (Table 1), 
stem cell therapy has many limitations, such as the het-
erogeneity of progeny stem cells, cell ageing, potential 
tumorigenesis, immune rejection and thrombosis [17, 18], 
which hinders its use in human regenerative medicine [19, 
20]. Therefore, finding a new biological product to replace 
MSC therapy is an essential research subject due to these 
limitations.

MSCs promote tissue repair and regulate immunity 
primarily via paracrine factors instead of differentiation. 
Exosomes, which are one of the major secretory prod-
ucts of MSCs, are considered a cell-free approach that is 
superior to stem cell transplantation [21–23]. Accumulat-
ing evidence suggests that stem cells can mediate tissue 
regeneration and functional improvements via paracrine 
effects, rather than undergoing de novo differentiation, as 
confirmed by the administration of conditioned medium 
containing the secreted factors inducing equivalent ben-
eficial effects. Compared to local exosome administration, 
MSC administration without exosomes delayed wound 
healing and decreased M2 macrophage polarization [24]. 
Exosomes reduce the risk of cell-based therapies, such 
as tumorigenesis, thrombosis and malformation, as men-
tioned previously. In addition, exosomes are convenient to 
collect and store and have low immunogenicity. Further-
more, they are enriched with various kinds of molecular 
cargo (such as mRNAs, miRNAs, and proteins) that affect 
numerous biological processes in target cells [25]. In sum-
mary, exosomes provide a safer and more efficient novel 
treatment with broader prospects than MSCs.

This review is intended as an overview of the effects and 
mechanisms of MSC-derived exosomes (MSC-Exs) in PFD, 
as well as future directions (Fig. 1).

The mechanisms of PFD

Pelvic floor connective tissues mainly consist of fibroblasts 
and extracellular matrix (ECM), which is the product of 
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fibroblasts and contains type I and III collagen fibres, elas-
tin, fibulins, fibronectin, laminins, hyaluronic acid and a 
variety of glycoproteins [26, 27]. The major components 
of the ECM are collagen I and collagen III; the former pro-
vides tension, while the latter is important for the elasticity 
and resilience of connective tissues. Fibroblasts can remodel 
the ECM to maintain the pelvic microenvironment through 
the production of collagens and the activation of catabolic 
enzymes (e.g. matrix metalloproteinases (MMPs)) [28].

Defects in the number and function of pelvic 
fibroblasts

Unfortunately, several studies have confirmed that the mor-
phology and essential functions of the fibroblasts of PFD 
patients are severely damaged, which results in the grad-
ual weakening of supportive tissues. Chen found that POP 
patient fibroblasts may be more likely to have fewer orga-
nelles, more irregular shapes [29], higher apoptosis rates 
[30, 31] and large declines in adhesion capacity, collagen 
gel shrinkage, mechanical reactivity and collagen secretion 
[28, 32–34]. There have been insights into the overexpres-
sion of apoptotic proteins, including cytochrome c, bax, bad, 
caspase 3, caspase 9 [35–38] and hypoxia-inducible factor 
1a (HIF-1a), which can mediate fibroblast apoptosis through 
death receptor and mitochondrial apoptotic pathways [39]. 

Chen provided direct evidence of an increase in advanced 
glycation end products (AGEs) in POP sites, which showed 
that the activation of AGE receptors could trigger the down-
stream MAPK/NF-κB signalling pathway to suppress cell 
proliferation [40].Similarly, there is reduced cellularity and 
less muscle content in prolapsed pelvic tissue than in women 
with normal pelvic support [41–43]. The main reasons for 
SUI may be injuries to the pubococcygeal muscle [44] and 
pudendal nerve [45].

Disorganized ECM proteins

Because of the decreased number of fibroblasts with normal 
functions, collagen fibres and elastin have great quantitative 
and qualitative defects in the tissues of PFD patients [27, 29, 
31, 32, 46–50]. ECM degradation is precisely regulated by 
MMPs and their endogenous suppressors, tissue inhibitors 
of matrix metalloproteinases (TIMPs) [51, 52], and these 
processes involve a variety of signalling pathways [53, 54]. 
Studies have shown that MMP1 and MMP3 expression are 
increased [31, 55, 56] and TIMP1 and TIMP2 expression are 
decreased [50, 57, 58] in PFD patient tissues.

Table 1  MSC-based therapies for PFD

Human umbilical cord mesenchymal cells (HUCMSCs); Leak point pressure (LPP); Human endometrial mesenchymal stromal cells (eMSCs); 
Bone marrow mesenchymal stromal cells (BMSCs)

Condition Model Cell type Treatment Results References

Bilateral ovariectomy Rat HUCMSCs Subepithelial injection Normalized the fibromuscular struc-
tures of the vagina

[92]

Ovariectomy Rhesus monkey HUCMSCs Vagina was implanted with SIS grafts 
seeded with HUCMSCs

Significantly promoted the regen-
eration of ECM, smooth muscle 
bundles and vascularization

[93]

Subcutaneous rat 
model of wound 
repair

Rat eMSCs Scaffolds seeded with eMSCs Enhanced collagen growth and 
organization

[94]

SUI Rat BMSCs Periurethral injection The restoration of LPP [95]
SUI Rat BMSCs Periurethral injection restored the damaged external ure-

thral sphincter
[96]

POP In vitro BMSCs Combination of electrospun core–
shell nanofibers of poly(l-lactic 
acid)-hyaluronic acid (PLLA/HA) 
and BMSCs

Improved cellular function in stem 
cells in the composite nanofibers

[97]

PFD Rat BMSCs Injection of PLGA-loaded bFGF-NPs 
and BMSCs

Promoted the outcome of urody-
namic tests

[98]

PFD Rat BMSCs Downregulation of the endogenous 
microRNA-29a-3p in BMSCs

Increased expression and secretion of 
elastin and improved outcomes of 
the urodynamic test results

[99]

POP In vitro ADSCs Stable overexpression of basic 
fibroblast growth factor (bFGF) in 
ADSCs

Increased pelvic reconstruction and 
fibroblast growth

[100]
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Pelvic oxidative stress (OS) and inflammatory 
imbalance

Many chronic diseases share the feature of complex interac-
tions between OS and inflammatory imbalance. Increasing 
lines of evidence have demonstrated that OS and inflamma-
tion are widespread in the pelvic floor. For instance, antioxi-
dant proteins, including mitochondrial superoxide dismutase 
(MnSOD) and glutathione peroxidases (GPX1, GPX3) [59, 
60], are downregulated, whereas there is an opposite trend 
in molecules related to inflammation (cyclooxygenase 2 and 
prostaglandin E2) [58, 61] and OS (8-OHdG and 4-HNE) 
[39]. It was previously suggested that changes in the synthe-
sis of ECM occur in fibroblasts treated with hydrogen via 
the TGF-β signalling pathway [62]. Moreover, Hong showed 
that mechanical stress can promote intracellular reactive 
oxygen species (ROS) levels and decrease mitochondrial 
membrane potential, which indicates that mechanical stress 
leads to the development of PFD via intracellular OS [63]. 
Wu demonstrated that t high concentrations of COX-2 could 
improve the level of PGE2, resulting in the upregulation of 

MMP1 expression [64]. Thus, OS participates in PFD by 
influencing the activities of fibroblasts and collagen metabo-
lism [39, 59, 60, 62, 63, 65].

These findings support the connective tissue injury the-
ory that impaired fibroblasts and muscles and an imbalance 
in ECM metabolism result in supportive connective tissue 
weakness [28], eventually causing PFD [66].

Exosomes

Extracellular vesicles (EVs) were first reported by E Char-
gaff in 1946 [67], and secretory membrane fragments were 
shown to be a universal phenomenon in 1977 [68]. Hard-
ing and Johnstone pronounced that transferrin receptors 
were released into the ECM during reticulocyte maturation 
via vesicles (50 nm in diameter), which were later named 
exosomes [69–71]. To date, EVs have been divided into 
three types: apoptotic bodies (800–5000 nm in diameter), 
microvesicles (200–1000 nm in diameter) and exosomes 
(30–150 nm in diameter) depending on size, contents, and 
mechanism of formation [72]. The first two vesicle types 

Fig. 1  Exosome-mediated reconstruction of the pelvic floor envi-
ronment. MSCs from various sources (bone marrow, adipose tissue, 
endometrial biopsy, umbilical cord blood, skeletal muscle, etc.) can 
promote the function of fibroblasts and regulate immunity by releas-

ing exosomes. These extracellular vesicles contain lipids, proteins and 
RNAs, which could promote the proliferation of fibroblasts and mod-
ulate the metabolism of ECM, as well as regulate immunity
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originate from the plasma, and the third is endogenous [73, 
74]. Exosome contents can not only indicate their origins but 
also be passed to other cells as messengers to change cell 
functions [21–23, 75]. Exosomes were regarded as cellular 
waste in the past; however, the contents carried in exosomes 
play major roles in cellular activities and pathological pro-
cesses, including the immune response, angiogenesis, cell 
death, neurodegenerative diseases and cancers [76, 77]. 
Exosomes are also one of the major secretory products of 
MSCs and are considered a cell-free approach that is supe-
rior to stem cell transplantation.

The formation of exosomes

The identification of exosomes is of great importance and 
could indicate their sources and biological functions. Well-
recognized methods vary from physical properties to bio-
chemical characteristics, such as transmission electronic 
microscopy (TEM), nanoparticle tracking analysis (NTA) 
and Western blotting, to confirm exosome morphology, 
size, porosity and surface markers [78, 79]. NTA, one of 
the key biophysical technologies, can measure exosome 
concentrations and size distribution by tracking the Brown-
ian motion of individual vesicles. Moreover, NTA can also 
determine exosome phenotype through the association of 
fluorescent measurements [80]. Transmembrane proteins 
(such as CD9 and CD63) and some molecules associated 
with biological functions, including heat shock protein 70 
(HSP70) and tumour-susceptibility gene 101 (TSG101), are 
common components used to identify exosomes, which can 
be detected by Western blot analysis [81].

Exosome biogenesis, which is tightly regulated, consists 
of three main stages: (1) endocytic vesicle generation via 
invagination of the plasma membrane; (2) formation of mul-
tivesicular bodies (MVBs) via inward budding of the endo-
somal membrane; and (3) fusion of these MVBs with the 
plasma membrane to release internal vesicles as exosomes 
[82–85]. Exosomes are protected from degradation by ribo-
nucleases by their lipid bilayer and communicate with other 
cells with the help of soluble N-ethylmaleimide-sensitive 
factor attachment protein receptors (SNAREs) and the endo-
somal sorting complex required for transport (ESCRT) [85, 
86]. As a type of messenger, exosomes play a significant role 
in intercellular communication, which is mainly mediated 
by three distinct mechanisms. First, exosomes can activate 
intracellular signalling pathways through the interactions 
of exosome membrane proteins and receptors. For exam-
ple, after the binding of TNF on the surface of dendritic 
cell-derived exosomes (DCexs) and its specific receptor on 
NK cells, the Based on the data in Table 2, latter could be 
stimulated to secrete interferon-γ (IFNγ) [87]. Secondly, 
exosomes can be actively transported along the cytoskel-
eton, actin filaments or microtubules in a rapid and directed 
pattern after internalization, which leads to signal transfer 
to targeted organelles such as lysosomes [88]. Thirdly, the 
exosome membrane can fuse with the target cell, leading 
to the release of its contents, including proteins, mRNAs 
and microRNAs, into the cytoplasm. Both the vesicle and 
the target cell express proteins and glycoproteins, by which 
they can complete exosome uptake [89]. Compared with 
traditional gene therapies, MSC-Exs, which are a type of 
nanocarrier, transfer specific molecules to recipients via 

Table 2  Studies in which exosomes or EVs have been used to treat PFD

MSC (MSC), adipose-derived stromal cell (ADSC), urine-derived cell (USC), satellite cells (SCs), extracellular-regulated protein kinases (ERK), 
silent mating type information regulation 2 homologue 1 (SIRT1), dorsal root ganglion (DRG)

Condition Model Cell source Results References

SUI Rat iPSCs Alleviation of urethral LPP and tissue structure in the SUI rat [101]
SUI In vitro M2 macrophages Repair of damaged pubococcygeal muscle by promoting myotube formation, 

myoblast differentiation and improvements in inflammatory cell infiltration
[102]

SUI Rat ADSCs Improved function and histological recovery of the urethra caused by ADSC-
EXs by promoting the proliferation of skeletal muscle and Schwann cells

[21]

SUI Rat USCs The recovery of injured muscle tissue and urethral function by the activation, 
proliferation and differentiation of SCs mainly via the phosphorylation of 
ERK

[22]

SUI Rat BMSCs Induction of the proliferation, differentiation and activation of SCs via BMSC-
Exs overexpressing SIRT1

[23]

SUI Rat ADSCs Increased collagen levels by inhibiting degradation and enhancing the synthe-
sis in vaginal fibroblasts

[103]

Mesh exposure model Pig Increased epithelial thickness and capillary density after local injection of 
exosomes

[104]

DRG cells In vitro Schwann cell lines Facilitating the proliferation and inhibiting apoptosis and senescence in 
injured DRG cells

[105]
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endocytosis and membrane fusion, achieving therapeutic 
effects with safety and precision [90, 91].

The role of MSC‑Exs in PFD

Crucial changes in PFD pathology are deficiencies in fibro-
blast functions and ECM structure, OS in the pelvic floor 
and impaired muscle and nerves [41–43, 45]. MSC-Exs can 
stimulate the proliferation of fibroblasts, smooth muscle cells 
(SMCs) and Schwann cells and enhance fibroblast functions 
[106, 107]. Studies have shown that exosome therapy can 
reduce mesh exposure and promote hyperplasia in tissue and 
capillaries in mesh implantation sites in vivo [104, 108]. 
Exosomes tagged with the fluorescent dye PKH67 were 
internalized into target cells in vitro. Therefore, exosomes 
purified from MSCs may be a promising treatment for PFD 
via the consistent release of miRNAs and proteins to regu-
late targets (Table 2) [109].

Based on the data in Table 2, we can see various sources 
of MSCs that have been studied as cell-based therapies, and 
Fig. 2 shows the study designs of the references in Table 2. 
However, it is unclear which exosomes were more applica-
ble and efficient. Given the concern regarding immunologic 
rejection, using autologous would be an ideal treatment 
option that could reverse the underlying pathologic condi-
tion. Adult MSCs are mainly isolated from adipose tissue, 

bone marrow or skeletal muscle, which can be more applica-
ble than cells from other sources. Liposuction from the hip 
and thigh regions of the patient exemplifies an easy approach 
to ADSC isolation. The majority of MSC-Exs show pow-
erful anti-inflammatory effects and promote proliferation-. 
However, we cannot determine which is the best choice for 
the treatment of PFD because each of the types has unique 
advantages and disadvantages. Moreover, there are apparent 
limitations in current studies: almost none of these studies 
used large animals. Finally, the effective exosome dose and 
injection sites vary in the current studies. As a result, the 
heterogeneity of the reviewed studies makes it difficult to 
draw firm conclusions.

Promoting cell proliferation

PFD patients exhibit impairments in function and decreased 
numbers of fibroblasts, myocytes, and nerve cells [110] in 
the pelvic floor environment [28]. The main cause of SUI is 
injuries to the pubococcygeal muscle, which is important for 
supporting pelvic organs [44, 111]. MSC-Exs exhibit obvi-
ous beneficial effects in rescuing these essential cells, which 
makes treatment based on MSC-Exs a viable therapeutic 
strategy [21, 112]. Increasing lines of evidence suggest a 
time- and dose-dependent increase in cell proliferation and 
migration and a decrease in apoptosis [21, 22, 113, 114], 

Fig. 2  Schematic presentation of the study design according to the references in Table 2
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which can restore cell and nerve fibre density and involves 
the TGFβ/SMAD [115], PI3K/AKT, Jak-STAT, Wnt, and 
Ras/ERK pathways. Ni indicated that local injection of 
exosomes promoted functional and histological recovery 
after SUI, which involved the PI3K-Akt, Jak-STAT, and Wnt 
pathways, as revealed by proteomic analysis [21]. Activation 
of the AKT pathway by MSC-Exs was related to a decrease 
in fibroblast apoptosis in vivo [107]. The PI3K/AKT/eNOS 
pathway mediates the biological events of MSC-Exs [116]. 
The Ras/ERK signalling pathway is crucial for the activation 
and proliferation of SCs, which is the first step in muscle 
regeneration and promotes the recovery of pubococcygeal 
muscle. MSC-Exs could enhance the phosphorylation of 
ERK1/2 and mediate significant improvements in urody-
namic parameters and the function of injured muscle tissue 
[22, 117]. Wnt4 was contained in MSC-Exs, which promoted 
β-catenin nuclear translocation to enhance the proliferation 
and migration of cells in vivo, and this phenomenon could 
be reversed by the β-catenin inhibitor ICG001 or knockdown 
of Wnt4 in MSC-Exs in vitro [107]. Mechanistically, Wnt 
signalling targets the c-Myc gene, which regulates the cell 
cycle via the transition from G1 to S phase and shortens the 
cell cycle [118]. Similarly, Jagged 1, which is detected in 
MSC-Exs, is a ligand of the Notch pathway that shows the 
same effect on cell proliferation [119]. Zhao showed that 
MSC-Ex treatment could suppress cell apoptosis through 
another approach in  vivo and in  vitro, which inhibited 
nuclear translocation of apoptosis-inducing factor (AIF) 
and upregulated poly ADP-ribose polymerase 1 (PARP-1) 
and poly ADP-ribose (PAR), which play predominant roles 
in  H2O2-induced cell death [120]. Furthermore, crosstalk 
between pathways could provide a foundation for MSC-Ex 
therapy. For example, Jagged1 (JAG1), the direct agonist of 
Notch, was recognized as an evolutionarily conserved target 
of the WNT/beta-catenin signalling pathway [121]. Wnt/β-
catenin signalling was notably increased in response to the 
expression of JAG1 in vivo [118].

Regulating ECM metabolism

The major components of pelvic ECM, especially colla-
gen I and III, constitute the supportive strength for pelvic 
organs. MMPs, especially MMP2 and MMP9, and TIMPs 
play fundamental roles in the balance of collagen synthesis 
and degradation, greatly contributing to ECM homeostasis 
[52]. However, severe disruption to this balance in the pel-
vic environment in PFD patients contributes to the weak-
ness of pelvic connective tissues [5]. Luckily, accumulating 
evidence has suggested that MSC-Exs could enhance the 
supportive ability of pelvic connective tissues and obtain 
ideal therapeutic effects by overexpressing type I and III 
collagen and MMPs and downregulating TIMPs [106, 107, 
122–125], resulting in increased collagen production [126] 

and ordered mature collagen [127]. Guo reported that the 
enhancement in ECM was achieved by activating TGF-β, 
which increased the phosphorylation level of SMAD and 
AKT [128]. However, MSC-Exs not only accelerate collagen 
production to repair ECM but also control these processes 
by delivering 14–3-3ζ to recruit YAP and p-LATS. As a 
result, the complex of YAP and p-LATS restricts excessive 
collagen deposition and subsequently inhibits Wnt/β-catenin 
signalling [129].

Inhibiting OS and the inflammatory response

An increase in OS activates the PARP pathway, which 
is responsible for regulating proinflammatory cytokine 
expression [60]. The involvement of inflammation and 
OS accelerates the disease process and has direct toxic 
effects on fibroblasts and Schwann cells [130]. MSC-Exs 
have been shown to play significant roles in the treat-
ment of PFD because of their antioxidative effects against 
ROS and inflammation in fibroblasts [131, 132], which 
can be resolved by the induction of M1-M2 macrophage 
polarization [133]. There are several different mechanisms 
to explain this effect. In MSC-Ex, the level of the anti-
inflammatory factor IL-10 was increased, while proinflam-
matory factors such as IL-1β, IL-8, IL-2 and IFN-γ were 
significantly decreased [134]. Liu reported that this effect 
was mediated by inhibiting the phosphorylation of AKT 
and overexpression of PTEN [135]. Another study showed 
that miR-223 in MSC-Exs played a fundamental role in 
the regulation of macrophage polarization by binding to 
homeobox domain PBX/Knotted 1 [136].

Taken together, these studies demonstrate the notable 
reparative function of MSC-Exs, such as improving the 
proliferation and activity of cells that are important for 
pelvic tissues and the release of inflammatory mediators 
via different signal pathways, suggesting that the admin-
istration of MSC-Exs is a potentially efficacious therapeu-
tic strategy for PFD and could be of tremendous value in 
clinical settings.

Challenges in the use of MSC‑Ex therapy for PFD

Despite the undeniable benefits of MSC-Exs in regen-
eration, great challenges still exist that impair their clini-
cal application. It remains unclear which molecule in 
exosomes plays a key role in regulating the function of 
cells and the microenvironment in the pelvic floor. There-
fore, more basic research should be conducted to explain 
the mechanism. At present, common methods in labs 
cannot meet these requirements, such as classical differ-
ential ultracentrifugation, commercial precipitation kits 
and physical separation approaches (e.g. ultrafiltration, 
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concentration and size-exclusion chromatography 
[137–139], and while differential ultracentrifugation is 
the gold standard for obtaining exosomes, with demands 
for operators and equipment, commercial precipitation 
kits can more easily obtain targets with smaller diame-
ters; moreover, high costs and with the use of chemicals 
affect follow-up studies. Certain physical methods can 
avoid chemical contaminants; however, these methods 
may destroy exosome membrane structure and morphol-
ogy, altering outcomes. Therefore, a suitable separation 
method should be developed to efficiently obtain purified 
exosomes, which is important for carrying out experi-
ments and clinical applications. At present, local injection 
of exosomes is mainly used, but these particles rapidly 
dissipate. It is impossible to perform repeat injections 
in the clinic, which urges the search for better delivery 
approaches with good tissue receptivity, safety and ease of 
degeneration. Thus, to promote research on the application 
of exosomes, promising methods should be developed to 
produce exosomes on a large scale and establish efficient 
delivery systems and recognized administration protocols.

Future directions for MSC‑Ex therapy in PFD

Currently, some methods are being developed to attain more 
exosomes with higher quality, which can help researchers 
obtain optimal results. It is acceptable and feasible to use 
technologies including preconditioning of MSCs, various 
types of biomaterial scaffolds and improved modification 
approaches to purify exosomes.

Preconditioning parental MSCs

Preconditioning, which enhances the function of exosomes, 
is a promising strategy to improve transplantation efficacy 
in vitro and in vivo [140]. Some studies have shown that 
pretreating or modifying parental MSCs can change exo-
some contents, including proteins and noncoding RNAs, 
which influences key downstream signalling pathways and 
improves treatment efficacy [25, 141, 142]. For example, it 
has been demonstrated that exosomes derived from MSCs 
infected by a lentivirus overexpressing TSG-6 can decrease 
the secretion of inflammatory molecules and ameliorate 
collagen deposition in vivo much more robustly than con-
ventional exosomes [141]. Similarly, SIRT1-overexpressing 
human BMSCs showed improved effects via their exosomes 
by augmenting the proliferation, differentiation and activa-
tion of SCs via ERK signalling, resulting in the repair of 
urethral function in vivo [23]. The ability of MSC-Exs to 
augment the levels of growth factor expression and decrease 
the levels of proteins related to inflammation and OS can be 
increased by overexpressing nuclear factor-E2-related factor 

2 (Nrf2), a transcription factor [132]. Interestingly, changes 
in the noncoding RNA levels in exosomes after precondi-
tioning can greatly enhance their curative effects. MSCs 
preconditioned with lithium produce exosomes with more 
miR-1906, a new regulator of Toll-like receptor 4 (TLR4) 
signalling, which inhibits the NF-κB signalling pathway 
and enhances neuroprotective effects [113]. Coincidentally, 
other studies have shown that exosomes from MSCs that 
were pretreated with deferoxamine [142] or transfected with 
lncRNA H19 [143] were enriched in miR-126 and lncRNA 
H19, which contribute to ECM remodelling, proliferation, 
migration and the inhibition of inflammation [23].

Combination with tissue‑engineered repair material

In addition to carrying out research on the contents, thera-
peutic mechanisms and effects of MSC-Exs, scholars have 
also focussed on safer and more effective delivery meth-
ods to replace injections. Tissue-engineered products are 
excellent candidates for delivery with outstanding bio-
compatibility, low cytotoxicity and immunogenicity and 
include but are not limited to hydrogels [144], decellular-
ized scaffold ECM (dECM) [145] and combinations with 
other emerging technologies. These biological scaffolds 
have several advantages. First, these scaffolds can retain 
loaded exosomes, hydrogels can highly control exosomes 
by timed release for a long, continuous duration [109, 
146], and the fibres of dECM can easily be combined with 
exosomes [109]. Furthermore, these materials can enhance 
therapeutic outcomes by providing a good environment in 
which cells obtain structure to activate biological events, 
such as adhesion, invasion, proliferation and the regenera-
tion of neurons [109, 146, 147]. Surprisingly, the incorpo-
ration of MSC-Exs into hydrogels could effectively pro-
mote collagen deposition and remodelling and neuronal 
ingrowth [148].

Moreover, these delivery systems promote MSC secre-
tion of more effective molecules (e.g. growth factors and 
cytokines) into exosomes to regulate MMP activity, the 
local inflammatory environment, and cell proliferation 
[109, 149]. It is also worth mentioning that these plat-
forms can deliver other necessary cargoes in addition to 
exosomes. Yuan Xiong produced HA@MnO2/FGF-2/
Exs that could provide rapid haemostasis and protection 
for wounds by concurrently releasing exosomes, oxygen 
and FGF-2 growth factor [150]. Thus, functional deliv-
ery approaches for exosomes offer emerging strategies for 
regenerative medicine, which can be applied to a variety 
of degenerative diseases [109].



945Exosomes derived from mesenchymal stromal cells: a promising treatment for pelvic floor…

1 3

Improving the yield of MSC‑Exs

The quality and quantity of exosomes depend the status 
and number of MSCs. Future studies should determine the 
detailed environmental parameters (pH and temperature) for 
MSC culture to obtain effective and homogeneous exosomes. 
The inherent secretory ability of MSCs is impaired after 
several generations because of replicative senescence [151]. 
Some physical approaches have been shown to increase the 
yields of exosomes, such as the tangential flow filtration 
(TFF) system-based method [152] and ultrasonic shearing of 
MSCs for 1 min before conventional centrifugation and fil-
tration [153]. Pretreatment of stem cells with lithium [113], 
cytochalasin B, and antifungal agents [154] can promote the 
production of exosomes.

Compared to conventional culture conditions, the hollow 
fibre 3D culture system was reported to enhance total exo-
some production up to 19.4-fold [155]. Moreover, the com-
bination of 3D MSC cultures and TFF [156] or other biologi-
cal materials can further promote the yields of exosomes. 
For example, 45S5 Bioglass® (BG), a well-known biomate-
rial, influences the formation and release of exosomes via the 
overexpression of neutral sphingomyelinase-2 (nSMase2) 
and Rab27a, which have been shown to activate the nSMase 
and Rab GTPase pathways, respectively [157].

Conclusion

PFD significantly compromises quality of life and confers 
great burdens on families and society. None of the current 
interventions provide satisfactory effects; therefore, studies 
are examining promising therapeutic approaches to escape 
this predicament. MSC-Exs have been reported to power-
fully regulate various biological events associated with tis-
sue regeneration, including cell proliferation, migration, 
ECM homeostasis and anti-inflammatory effects, and these 
methods are safe because of the lack of cell transplantation. 
Numerous findings have exciting therapeutic potential in 
PFD and other diseases. It is worth noting that these MSC-
Exs could be tailored to maximize clinical effects through 
MSC preconditioning or certain delivery systems.

To date, the use of MSC-Exs is still in its infancy and 
has many limitations. Additional basic studies should be 
conducted to obtain a full understanding of the properties 
of exosomes, which include but are not limited to sources, 
biomarkers and biological functions. In addition, standard-
ized treatment regimens and operating procedures should 
be established to ensure the effectiveness and safety of these 
interventions. Last but not least, larger reliable clinical stud-
ies will be required to validate previous findings and assess 
whether the balance between cost and benefits is reasonable.
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