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Abstract
The morbidity rate of ulcerative colitis (UC) in the world is increasing year by year, recurrent episodes of diarrhea, mucopu-
rulent and bloody stools, and abdominal pain are the main symptoms, reducing the quality of life of the patient and affecting 
the productivity of the society. In this study, we sought to develop robust diagnostic biomarkers for UC, to uncover potential 
targets for anti-TNF-ɑ drugs, and to investigate their associated pathway mechanisms. We collected single-cell expression 
profile data from 9 UC or healthy samples and performed cell annotation and cell communication analysis. Revealing the 
possible pathogenesis of ulcerative colitis by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), 
and Gene Set Enrichment Analysis (GSEA) analysis. Based on the disease-related modules obtained from weighted cor-
relation network analysis (WGCNA) analysis, we used Lasso regression analysis and random forest algorithm to identify 
the genes with the greatest impact on disease (EPB41L3, HSD17B3, NDRG1, PDIA5, TRPV3) and further validated the 
diagnostic value of the model genes by various means. To further explore the relationship and mechanism between model 
genes and drug sensitivity, we collected gene expression profiles of 185 UC patients before receiving anti-tumor necrosis 
factor drugs, and we performed functional analysis based on the results of differential analysis between NR tissues and R 
tissues, and used single-sample GSEA (ssGSEA) and CIBERSORT algorithms to explore the important role of immune 
microenvironment on drug sensitivity. The results suggest that our model is not only helpful in aiding diagnosis, but also 
has implications for predicting drug efficacy; in addition, model genes may influence drug sensitivity by affecting immune 
cells. We suggest that this study has developed a diagnostic model with higher specificity and sensitivity, and also provides 
suggestions for clinical administration and drug efficacy prediction.
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Introduction

Ulcerative colitis, a chronic inflammatory disease affect-
ing the colon, is frequently recurrent. The incidence of 
ulcerative colitis is on the rise globally, with an incidence 

of 2.2–14.3 cases per 100,000 people per year and a preva-
lence of 37–246 cases per 100,000 people per year in North 
America, and an increasing incidence in developing coun-
tries [1, 2]. Recurrent episodes of diarrhea, mucopurulent 
blood in the stool, and abdominal pain are the main symp-
toms, impacting the quality of life of patients and the pro-
ductivity of society.

Endoscopy is still the main diagnostic method for UC, but 
imaging examinations cannot detect early lesion that make 
it difficult to diagnose in early stage. In addition, although 
some laboratories have identified some biomarkers for moni-
toring the inflammatory process, they are not suitable for 
establishing new diagnoses. Therefore, its an urgent for us 
to find biomarkers for diagnosis of UC to diagnose UC as 
soon as possible. At present, treatment of mild to moderate 
ulcerative colitis involves, primarily, 5-aminosalicylates, 
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while thiopurines or biological agents (anti-tumor necrosis 
factor alpha or anti-integrin therapy) are used for moder-
ate to severe disease. However, even with medical therapy, 
15% of patients require will surgery to treat UC or disease-
associated complications of dysplasia [3, 4]. Here raises the 
question of differential response to anti-TNF-α treatment. 
However, due to imprecision in predicting the response 
to anti-tumor necrosis factor alpha agents, patients must 
often receive long-term therapy to determine if the drug of 
choice is effective, which often delays the diagnosis and ini-
tiation of appropriate treatment. Therefore, it is important 
to effectively predict the responsiveness of UC patients to 
anti-TNF-α.

In this study, we focused on finding diagnostic biomarkers 
of UC, revealing its pathogenesis, and exploring potential 
mechanisms of anti-TNF-ɑ drug sensitivity in UC patients. 
With the rapid development of high-throughput technol-
ogy and single-cell technology [5], more technologies have 
been developed for research. The application of single-cell 
technology in UC has also been reported [6] and recently, 
an increasing number of researchers have used the devel-
oping high-throughput technology to diagnose diseases or 
predict drug response, thereby, providing opportunities for 
treatment. Therefore, a comprehensive comparison of genet-
ics, gene expression data, and microorganisms provides an 
excellent opportunity to study the molecular mechanisms 
of resistance to anti-tumor necrosis factor alpha drugs and 
predictive biomarkers. In this study, we sought to use these 
techniques to develop a robust diagnostic profile of UC and 
reveal relevant regulatory mechanisms, which may help to 
elucidate its pathogenic mechanisms, identify valuable diag-
nostic biomarkers for UC, and contribute to the search for 
biomarkers and potential targets for early diagnosis, preven-
tion, and treatment of related diseases.

Materials and methods

Data collection and pre‑processing

We obtained raw data for transcriptome analysis of 9 single-
cell samples from GSE116222 through the Gene Expres-
sion Omnibus (GEO) database (https:// www. ncbi. nlm. nih. 
gov/ geo/). Colon biopsies were collected from inflamma-
tory areas of the colon and adjacent non-inflammatory areas 
in healthy patients (healthy) and patients with UC inflam-
mation. Using the Seurat package (Version 4.0.0), Seurat 
manipulation objects were created for single-cell data from 
nine samples, and a total of 11,175 cells were obtained. To 
reduce the effect of “empty droplets” (i.e., a cell gel contain-
ing no cells or cell debris) or “overloaded droplets” (i.e., a 
cell gel bead containing more than 1 cell). Cells were defined 
as “eligible cells” if they met the following conditions: (1) 

the number of genes in the cell was greater than 500 and 
less than 5000; (2) the percentage of mitochondrial gene 
expression was less than 5%. After screening, 11,005 eli-
gible cells remained. The single-cell data were normalized 
using the default method of the NormalizeData function of 
the Seurat package. scaleData was used to reduce the sources 
of meaningless variation. The harmony package (Version 
1.0) was used to remove potential batch effects (1). In addi-
tion, we downloaded the mucosal gene expression profiles 
GSE75214 and GSE87473 from patients with ulcerative 
colitis for the identification of uc-related genes.

To explore potential targets of UC patients sensitive 
to anti-TNF-drugs, we obtained two gene expression pro-
files from GEO for the UC patient cohort, GSE92415 and 
GSE12251. 21 of 183 GSE92415 samples had no response 
information to anti-tumor necrosis factor α drugs and were 
excluded. The remaining 162 UC samples were used as the 
training set. An additional cohort GSE12251 was added 
as the validation set (n = 23). The raw Affymetrix data 
(GSE87473, GSE75214, GSE12251, GSE92415) in CEL 
format were read using Affy [7] and normalized using the 
robust microarray analysis (RMA) method [8].

Cell annotation and cell communication analysis

Cells were annotated according to the CellMarker database 
of marker genes (2). Cell annotation was performed using 
the SingleR package (Version 1.4.1) to assist in validating 
the annotation results. singleR is based on high-purity tran-
scriptome data of different cell types, and single-cell data 
were annotated to the corresponding cell types by corre-
lation analysis. Cell communication analysis is performed 
using the CellChat package (Version 1.0.0).

Analysis of variance

For single-cell data, based on unsupervised clustering, dif-
ferential analysis of ulcerative colitis tissue versus normal 
tissue was performed by the DEsingle package (Version 
1.10.0). DEsingle uses a zero-inflated negative binomial 
model to assess the defined differential genes.

Identification of ulcerative colitis‑associated hub 
genes using WGCNA

WGCNA is a systematic biological method for construct-
ing scale-free networks using gene expression data. Using 
WGCNA, we were able to cluster genes that show similar 
expression patterns and identify the modules that are the 
most relevant for the onset of UC.

We used the WGCNA package to cluster the samples, 
set the cut tree height to 90 to identify and eliminate out-
lier samples, selected a soft threshold of 16 to construct a 
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scale-free network, and set the minimum number of genes 
per module to 30, used the dynamic cut method to cut the 
tree into different modules, calculated the feature vector of 
each module in turn, and then clustered the modules, and 
the modules with similarity over 0.75 on the clustering tree 
would be merged. After further calculating the correlation 
between each gene and the module, we selected the gene 
of the module most relevant to the disease as the hub gene.

Identifying diagnostic genes and validating their 
validity

The hub gene was included in the Lasso regression model 
analysis, which was implemented in the training cohort 
using the “glmnet” package. The best penalty lambda param-
eter would be chosen through a tenfold cross-validation [9]. 
Based on the best detected lambda, we can obtain a list of 
diagnostically relevant genes with correlation coefficients 
from gene expression and patient clinical data. The ran-
dom forest combines several weak classifiers to make the 
model more accurate. To further identify the genes with 
the greatest impact on the disease, we used the random 
forest algorithm, set the number of decision trees to 500, 
ranked the diagnosis-related genes according to their con-
tribution to the model, and used the top 5 genes as model 
genes. (EPB41L3, HSD17B3, NDRG1, PDIA5, TRPV3). 
By analyzing receiver-operating characteristic (ROC) 
curves, gene sensitivity and specificity were determined. 
Based on the expression level of each gene weighted by 
its multivariate LASSO regression coefficient, we calcu-
lated the risk score for each patient [RiskScore = (−1.773 
* expression level of EPB41L3) + (−1.905 * expres-
sion level of HSD17B3) + (−1.818 * expression level of 
NDRG1) + (3.443 * expression level of PDIA5) + (−0.262 
* expression level of TRPV3) + 22.68]. ROC analysis iden-
tified a cutoff value of 2.062 for the risk score, as well as a 
classification of the training cohort by high or low risk. The 
riskscore is plotted and the heat map is drawn according 
to the risk score ranking. To assess whether the diagnostic 
model was more accurate for disease diagnosis than previous 
studies, we quantified the net reclassification improvement 
(NRI) [https:// doi. org/ 10. 1002/ sim. 4085] and integrated 
discrimination improvement (IDI) [https:// doi. org/ 10. 1002/ 
sim. 5647], and further performed decision curve analysis 
(DCA) [10] as well as comparing the C-index of the old and 
new models. NRI and IDI are two quantitative measures 
of whether a diagnostic model can be improved. It can be 
defined as the difference in event and non-event prediction 
probabilities between the old and new diagnostic models. 
an NRI/IDI > 0 indicates a positive improvement in disease 
diagnosis by the diagnostic model; an NRI/IDI < 0 indicates 
a negative improvement, or no improvement when NRI/

IDI = 0. DCA shows the net benefit of managing accord-
ing to the classification system at different adverse event 
probability thresholds. The larger the area below the deci-
sion curve, the more beneficial the classification system is 
for managing patients who follow it. C-Index has a similar 
meaning to ROC and ranges from 0 to 1. The closer it is to 
1, the greater the predictive value of the model.

Exploration of single‑sample immune cell 
characteristics

We performed CIBERSORT [11] and ssGSEA [12] analysis 
of gene expression profiles (GEPs) to compare immune cell 
characteristics of Non-response (NR) tissues with Response 
(R)) tissues. ssGSEA allows the application of immune cell 
population expression characteristics to individual samples 
and based on the expression profile The rank value of each 
gene was calculated. The normalized UC GEPs data are 
compared to the “GSVA” (R package) genome to quantify 
the relative immune cell infiltration levels of individual sam-
ples. To quantify the proportion of immune cells in UC sam-
ples, we used the CIBERSORT algorithm, a deconvolution 
algorithm based on RNA-seq data, to analyze the relative 
expression of 547 genes in individual tissue samples based 
on their GEPs and to predict the proportion of 22 immune 
cells in each tissue.

Functional analysis

We performed Gene Ontology (GO) analysis, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis and Gene 
Set Enrichment Analysis (GSEA) analysis of differential 
genes using the clusterProfiler package. We considered path-
ways with p values less than 0.05 as statistically significant 
and included them in the study. The h.all.v7.5.1. symbols 
were used as the characteristic gene sets for GSEA analysis.

Results

Cellular atlas of ulcerative colitis and cellular 
pathway network

After data quality control, low quality cells were filtered 
out and the number of cells was reduced from 11,175 to 
11,005 (Fig. 1a). We used the Seurat package to perform 
descending and unsupervised clustering analysis of cells, 
and finally identified 16 cell clusters. The cell popula-
tions were annotated according to known marker genes as 
well as the SingleR package [13], and a total of seven cell 
types were identified, including B cells, T cells, colono-
cytes, enteroendocrine cells, goblet cells, mast cells/innate 
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lymphoid cells (ILCs) and undifferentiated cells (Fig. 1b). 
The marker genes of B cells were CD79A, CD19, MS4A1 
(Fig. S1c); T cells were highly expressed in TRAC, CD2, 
CCL5, CD7, CD3D, CD3E (Fig. 1c); Colonocytes were 
highly expressed in AQP8, CEACAM7 and GUCA2A 
(Fig. S1d); enteroendocrine cells were highly expressed 
in TUBA1A, PTMS, PCSK1N, SCGN and CRYBA2 
(Fig. S1e). Goblet cells highly expressed ANO7, MLPH, 
B3GNT6, SPINK4, ITLN1 and MUC2 (Fig. S1f); innate 
lymphoid cells highly expressed CD83, CD74, HLA-
DPB1, HLA-DQB1 and HLA-DRA (Fig. S1g); mast cells 
highly expressed TPSB2, KIT, SLC18A2 and TPSAB1 
(Fig. S1h); undifferentiated cells highly expressed CDCA7, 
CFTR, CLDN15, ADH1C and RARRES2 (Fig. 1d, Fig. 
S1i). We found that in ulcerative colitis tissues, they con-
tained a large number of B cells, mast cells and T cells, 
which may be associated with lymphocytic infiltration of 
inflammatory tissues (Fig. 1e, f, Fig. S1j). In addition, the 
proportion of colonic cells in inflammatory tissues was 
much less than that of paraneoplastic tissues as well as 
normal tissues, which may be related to the destruction of 
inflammatory cell infiltration.

To elucidate the interactions between different cell 
types and to identify target cells that play an important role 
in inflammation progression, we used the CellChat pack-
age (Version 1.0.0) for cell communication analysis [14]. 
The results showed that mast cells, colon cells, and cupped 
cells interact more extensively with other cell types, in 
the tissue. The above analysis indicates that infiltration of 
inflammatory cells is an important pathological feature of 
ulcerative colitis and has an important association with 
colonocytes as well as cupped cells, implying the possibil-
ity that inflammatory cells have an important link in the 
progression of inflammation as well as prognosis.

Identification of diagnostic model gene of ulcerative 
colitis

We performed weighted correlation network analysis 
(WGCNA) on deg of GSE75214 and single cells using 
the R package WGCNA [15]. WGCNA was used to 

construct gene co-expression networks to classify all 
genes into biogenic modules based on average linkage 
hierarchical clustering and further identify genes asso-
ciated with UC diseases (Fig. 2a, b) To ensure that the 
network was scale-free, we chose a soft threshold of 16 
and verified the validity of this soft threshold (Fig. 2d, e). 
The marker genes were divided into 7 modules, among 
which the turquoise module being the most associated 
with the occurrence of disease (Fig. 2c), so we selected 
the genes of turquoise module as hub genes. Further Lasso 
regression analysis was performed on these hub genes to 
obtain 12 disease-associated genes (Fig. 2f, g). We used 
the randomForest package to build a prediction model for 
the training set containing the 12 genes and found that 
the prediction accuracy of the training set (GSE75214) 
in random forest was 96.67%. Meanwhile, the prediction 
accuracy of the internal validation set was 86.21%. The 
model approached stability when the random forest tree 
reached 75 (Fig. 2h). We ranked the genes according to 
their contributions to the model and selected the top 5 
genes that contributed the most to the model as model 
genes (Fig. 2i).

Validation of model genes

To confirm the independent diagnostic impact of individual 
genes, the accuracy of genes on diagnosis was demonstrated 
by ROC in both the internal training set and the external 
validation set. The AUCs in both the training set were 
greater than 0.90 (Fig. 3a) and the AUCs in the external 
validation set were greater than 0.66 (Fig. 3b), suggesting 
that these model genes have significant significance for the 
diagnosis of the disease and are highly likely to be closely 
associated with the lesions of ulcerative colitis, as well as 
being potential diagnostic factors. The risk plot based on 
the external validation set demonstrates the prevalence 
from low to high risk and the expression of model genes 
(Fig. 3c).

We compared the stability of the old and new (CCR7, 
CXCL10, CXCL9, IDO1, MMP9, VCAM1) (https:// doi. 
org/ 10. 3389/ fphys. 2019. 00662) diagnostic models in an 
external validation set, and the C-index was used to meas-
ure the diagnostic accuracy of the old and new models. 
The results showed that the new model was more capable 
of diagnosing the disease than the old model (Fig. 3d). 
The Decision curve analysis indicates that the new model 
provides greater model’s net clinical benefit in disease 
diagnosis compared to the old model. (Fig. 3e) The new 
model significantly improved the diagnostic accuracy com-
pared to the old model, NRI (Categorical: 0.1995, 95% 
CI 0.037–0.3619, p = 0.0161; Continuous: 0.7116, 95% 
CI 0.2842–1.139, p = 0.0011) and IDI (0.1717, 95% CI 
0.012–0.3313, p = 0.035) (Fig. 3f).

Fig. 1  a Quality control results for single-cell data. The number of 
genes, the number of gene reads and the proportion of mitochondrial 
genes were represented in order from top to bottom. The left panel 
was pre-processing and the right panel was post-processing. b Tsne 
diagram of cell annotation results based on marker genes and SingleR 
results. c T cell marker genes expression. d Heatmap of the top 10 
signature genes for different cell types. e Expression abundance of 
different cell types in different samples. f Proportions of different cell 
types in healthy, non-inflamed and inflamed tissues. g Interaction net-
work of different cell types, with line thickness indicating the inten-
sity of action and dot size indicating the degree of interaction

◂
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Fig. 2  a, b Trait heatmap and 
sample dendrogram. The colors 
represent clinical traits. Red 
represents UC patients, white 
represents normal. c The cor-
relation and p value of each 
module with the disease. The 
turquoise module has the high-
est correlation with the disease, 
and the p value is meaningful. 
Red indicates positive correla-
tion with the disease, and green 
indicates negative correlation 
with the disease. d Left panel: 
scale-free topology fitting index 
of soft threshold power. Right 
panel: average connectivity 
of soft threshold power. e The 
selected soft threshold meets 
the non-scale requirement, and 
the non-scale R2 = 0.92. f Ten-
time cross-validation for tuning 
parameter selection in the 
LASSO model. g LASSO coef-
ficient profiles of the hub gene. 
A vertical line is drawn at the 
value chosen by 12-fold cross-
validation. h The black line 
represents the mean error rate. i 
Rank the genes that contribute 
the most to the model, among 
which the first five genes are 
EPB41L3, HSD17B3, NDRG1, 
PDIA5, TRPV3
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Functional characteristics of inflammatory tissue

We, respectively, performed correlation analysis for the 
five genes in the datasets GSE72514 and GSE87473, 
and took the intersection of genes with correlation coef-
ficients greater than 0.5 as positively correlated genes. 
Then, we conducted GO analysis for the positively corre-
lated genes. Our study showed that EPB41L3 was closely 
associated with lipid-related metabolic pathways such 
as fatty acid metabolic process, lipid catabolic process, 
regulation of lipid metabolic process, steroid metabolic 
process, lipid localization, lipid transport, and lipid trans-
porter protein activity (Fig. S2a). PDIA5 was associated 
with neutrophil degranulation, activation of neutrophils 
involved in immune response, mitosis, regulation of cell 
cycle phase transition, and ATPase activity (Fig. S2b). 
HSD17B3 was closely associated with fatty acid meta-
bolic processes, lipid catabolic processes, ribonucleo-
tide metabolic processes and monosaccharide metabolic 
processes, oxidoreductase activity and lipid transporter 
protein activity (Fig. 4a). NDRG1 was associated with 
fatty acid metabolic processes, steroid metabolic pro-
cesses, carboxylic acid transport and organic acid trans-
port (Fig. 4b). TRPV3 was associated with glycerolipid 
metabolic processes (Fig. S2c). In summary, our model 
genes had important connections in lipid metabolism, 
especially fatty acid metabolism and lipid metabolism, 
and immune response.

GO analysis of upregulated genes in inflammatory 
tissues suggested that immune response, inflammatory 
response, neutrophil degranulation and activation, and 
vascular development were significantly upregulated, 
and molecules such as cytokines and G protein-cou-
pled receptors were also activated (Fig. 4c). KEGG 
results suggested that Toll-like receptor signaling path-
ways, leukocyte transendothelial migration, cytokine-
cytokine receptor interaction, NOD-like receptor sign-
aling pathway, and chemokine signaling pathway were 
also obviously upregulated (Fig. 4d). GSEA analysis 
suggested that epithelial–mesenchymal transition, 
TNFA signaling by NFKB, inf lammatory response, 
MTORC1 signaling pathway, G2M checkpoint, IL6 
JAK STAT3 signaling pathway, IL2 STAT5 signaling 
pathway, KRAS signaling pathway, and hypoxia were 
also in upregulated state (Fig. 4e, f). In contrast, oxida-
tive phosphorylation, allogeneic metabolism, fatty acid 
metabolism, and adipogenesis were in a downregulated 
state.

In conclusion, there was a significant similarity for the 
function of model genes and the metabolic profile of ulcera-
tive colitis, which also explained the rationality and biologi-
cal mechanism of model genes for the diagnosis of ulcerative 
colitis.

Functional characteristics of drug‑sensitive tissue

Expression analysis of model genes revealed that it had 
higher expression in R group samples compared with NR 
group samples (Fig. 5a). In order to further explore the rela-
tionship and mechanism of model genes with drug sensitiv-
ity, we performed functional analysis based on the results 
of differential analysis between NR group samples and R 
group samples. The results of GO analysis indicated that 
lymphocyte differentiation, T cell activation, T cell differ-
entiation, cell adhesion, and cell chemotaxis pathways were 
downregulated in drug-sensitive samples (Fig. 5g). KEGG 
results showed that drug metabolism—cytochrome P450 
and nitrogen metabolism were upregulated in drug-sensitive 
samples, while T cell receptor signaling pathway, Toll-like 
receptor signaling pathway, NOD-like receptor signaling 
pathway, Jak-STAT signaling pathway, leukocyte transen-
dothelial migration, ECM-receptor interaction, FcεRI sign-
aling pathway, Fc γ R-mediated phagocytosis, chemokine 
signaling pathway, cytokine–cytokine receptor interaction, 
and B cell receptor signaling pathway were downregulated 
(Fig. 5i). The GSEA results suggest that adipogenesis, fatty 
acid metabolism, and oxidative phosphorylation are acti-
vated in drug-sensitive samples. In contrast, the inflamma-
tory response, epithelial–mesenchymal transition, IL6 JAK 
STAT3 signaling, G2M checkpoint and MTORC1 signaling 
pathways were inhibited. GSEA results suggested that adipo-
genesis, fatty acid metabolism, and oxidative phosphoryla-
tion were in an activated state in drug-sensitive samples. On 
the contrary, inflammatory response, epithelial–mesenchy-
mal transition, IL6 JAK STAT3 signaling, G2M checkpoint 
and MTORC1 signaling pathways were inhibited (Fig. 5h).

Our study demonstrated that samples with high-risk 
score were more sensitive to drugs and had greater effi-
cacy than low-risk samples (Fig.  5b–f). Overall, our 
model genes might activate lipid metabolism and inhibit 
T cells, inflammatory response and tumor-related path-
ways to stimulate the body’s sensitivity to drugs (it pos-
sibly related to promoting drug uptake and inhibiting drug 
consumption, which increased drug residence time in the 
body). Thus, our model was not only beneficial in assisting 
diagnosis, but also had implications for predicting drug 
efficacy.

High abundance of TIICs found with ssGSEA 
or CIBERSORT

Based on the GSE92415 and GSE12251 datasets, the 
ssGSEA algorithm was used to evaluate 18 immune sig-
natures between NR group samples and R group samples. 
The results showed that the NR group samples had higher 
levels of activated dendritic cells, central memory CD4 
T cells, Gamma delta T cells, immature dendritic cells, 
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macrophage, mast cells, and myeloid-derived suppres-
sor cell (MDSC) (p value < 0.05). There was no signifi-
cant difference between CD56bright natural killer cell, 
CD56dim natural killer cell, Central memory CD8 T cell 
(Fig. 6a, b). Therefore, the intensity of immune cell infil-
tration was higher in the drug-resistant group than in the 
drug-sensitive group.

The proportion of 22 immune cell types was calculated 
by CIBERSORT. We performed the immune assessment 
with the GSE92415 and GSE12251. We compared the 
proportions of immune cells in the NR group samples 
and R group samples. NR group samples had higher 
proportions of Macrophages M1, Neutrophils, T cells 
CD4 memory activate. Neutrophils perpetuate intestinal 
inflammation and recruit other immune cells, releasing 
multiple inflammatory mediators making the process 
worse. The macrophages present in the inflamed tissue 
in a high concentration are known as M1-like classi-
cally activated macrophages. Gene expression profile of 
M1-like macrophages exhibit high levels of pro-inflam-
matory cytokines like tumour necrosis factor-a (TNF-a), 
monocyte chemoattractant protein-1 (MCP-1), Interleu-
kin-6 (IL-6) and inducible nitric oxide synthase (iNOS) 
[16].  Present in intestinal tissue, Microbiota-reactive 
CD4+ T cells were mainly of a memory phenotype. And 
These cells could stimulated intestinal stromal and epi-
thelial cells via tumor necrosis factor [17]. Therefore, T 
cells CD4 memory are activated in NR group to promotes 
inflammatory responses including the expression of 
inflammatory cytokines. Macrophages M2, T cells CD4 
memory resting were higher in R group samples (Fig. 6c, 
d). Macrophages present in relatively high concentration 
in normal are known as alternatively activated M2-like 
macrophages characteristically expressing high levels of 
IL-10, YM1, macrophage and granulocyte inducer-form 
1(MgI1), arginase-I to name the important ones and are 
actively involved in tissue remodelling and repair [16]. To 
summarize, the intensity of immune cell infiltration was 
higher in NR group samples. Thus, the immune microen-
vironment was important for drug sensitivity. This sug-
gested that model genes might affect the drug sensitivity 
by impacting immune cells.

Discussion

The clinical diagnosis of ulcerative colitis hitherto relies on 
clinical symptoms, endoscopic examination, and relevant 
etiological examinations [18]. According to previous studies, 
perinuclear anti-neutrophil cytoplasmic antibody (PANCA) 
combined with anti-yeast antibody (ASCA) could be helpful 
to diagnose ulcerative colitis. However, because of its low 
sensitivity, it is still not promoted for clinical application 
[19]. In addition, C-reactive protein (CRP), fecal calprotec-
tin, and fecal ferritin also have certain significance for the 
diagnosis of ulcerative colitis, but they are susceptible [20]. 
Hence, it is necessary to find the diagnostic markers with 
high specificity, high sensitivity, convenience and economy. 
In this study, we constructed a clinical diagnostic model 
consisting of 5 biomarkers. Besides being used for clini-
cal diagnosis, we also extended it to the prediction of anti-
TNF-ɑ drug efficacy.

Single-cell sequencing is a technique, capturing mRNA 
transcripts in the specific cells and converting them into 
libraries for sequencing, which allows researchers more pre-
cisely to identify suspicious cells [21]. We used ulcerative 
colitis single-cell data to identify cells with an important 
role in pathogenesis. We found that infiltration of inflamma-
tory cells is an essential pathological feature of ulcerative 
colitis. Mast cells, colonocytes and cupped cells interacted 
more extensively with other cell types, which suggested that 
mast cells played an important role in inflammatory tissues 
and the tissue cells of UC samples might have an abnormal 
functional state.

Previous studies have suggested the involvement of lipid 
metabolism in the pathogenesis of inflammatory bowel dis-
ease [22]. In a metabolomics study of inflammatory bowel 
disease, which includes serum samples from 40 patients 
with inflammatory bowel disease as well as 20 patients 
without inflammatory bowel disease, it is suggested that 
the levels of lipid metabolism-related metabolites, tricar-
boxylic acid cycle intermediates, and amino acids are sig-
nificantly decreased in patients with inflammatory bowel 
disease [23]. The same biologic feature was found in our 
study: In UC samples, there was an obvious metabolic dis-
turbance. For instance, oxidative phosphorylation, fatty acid 
metabolism and adipogenesis were inhibited. This is similar 
to the findings of previous studies [24]. Notably, we also 
found that tumor-related pathways such as epithelial–mes-
enchymal transition, TNFA signaling by NFKB, inflamma-
tory response, G2M checkpoint, IL6 JAK STAT3 signaling 
pathway, IL2 STAT5 signaling pathway, KRAS signaling 
pathway and hypoxia were upregulated in ulcerative colitis 
tissues. In a way, this suggested that ulcerative colitis had 
malignant potential, which highlighted the importance of 

Fig. 3  a AUC area of the five genes in the training set. b AUC area 
of the three genes in the external validation set. c Risk heat map, red 
indicates healthy patients, blue indicates UC patients, the left side of 
the dashed line is the low-risk group and the right side is the high-
risk group. d Red is the C-index of the new model and green is the 
C-index of the old model. e Orange is the new model curve and red 
is the old model curve. f The upper and lower limits are 95 percent 
confidence intervals, and the middle point is the new model NRI/IDI 
improvement value

◂
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Fig. 4  a The left panel showed 
the results of GO analysis of 
HSD17B3 positively related 
genes; the right panel showed 
the significant interactions of 
HSD17B3 positively related 
genes. b The left panel showed 
the results of GO analysis of 
NDRG1 positively related 
genes; the right panel showed 
the significant interactions 
of NDRG1 positively related 
genes. c The left panel showed 
the results of GO analysis for 
upregulated genes in UC sam-
ples; the right panel showed the 
results of GO analysis for down-
regulated genes in UC samples. 
Upregulated and downregulated 
genes were obtained from 
differential analysis. d The left 
panel showed the results of 
KEGG analysis of upregulated 
genes in UC samples, and the 
right panel showed the results 
of KEGG analysis of down-
regulated genes in UC samples. 
e Results of GSEA analysis of 
UC samples. f GSEA results of 
inflammatory response, Tnfα 
signaling via NFκB, oxidative 
phosphorylation and xenobiotic 
metabolism
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Fig. 5  a Model genes expression in NR group samples and R group 
samples. Histograms depicted the expression of b EPB41L3, c 
HSD17B3, d NDRG1, e PDIA5, and f TRPV3 in NR group samples 
and R group samples. g Results of GO analysis in NR group samples 
and R group samples. h Results of GSEA analysis in NR group sam-

ples and R group samples. i Results of KEGG analysis in NR group 
samples and R group samples. The first column indicated the num-
ber of background genes, the second column indicated the number 
of enriched genes, and the third column indicated the p value of the 
pathways
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early diagnosis and early treatment for the clinical manage-
ment of ulcerative colitis.

The analysis of positively related genes of model 
genes revealed that five models were closely related to 
lipid metabolism, mitosis and regulation of cell cycle. 
EPB41L3 was closely related to fatty acid metabolism, 
lipid metabolism, and steroid metabolism metabolic 
pathways. In addition, it has been shown that EPB41L3 
can also inhibit cell growth by inducing apoptosis and 
cell cycle arrest. Positive correlation between PDIA5 
and immune infiltrating cells, immune related pathways, 
inflammatory activities, and other immune checkpoint 
members in gliomas [25]. And our study demonstrates 
that PDIA5 was associated with neutrophil degranulation, 

activation of neutrophils involved in immune response, 
mitosis, regulation of cell cycle phase transition, and 
ATPase activity in UC. Therefore, we speculate that 
PDIA5 may promote immune cell-related inflamma-
tory responses by activating neutrophils. PDIA5 was 
associated with neutrophil activation, mitotic processes. 
HSD17B3 was associated with fatty acid metabolism, 
lipid metabolism, and ribonucleotide metabolism. 
NDRG1 is a cytoplasmic protein involved in hormone 
response, stress response, differentiation and cell growth 
in p53-mediated apoptosis and activation of caspases. 
Some studies propose that NDRG1 may play a key role 
in the development of inf lammatory bowel disease 
and may serve as specific therapeutic targets for the 
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Fig. 6  a, b Box plot based on ssGSEA shows the composition of 18 
immune cells between R tissues and NR tissues in the GSE92415 and 
GSE12251 cohorts. The blue box plot indicates R individual, and the 
red violin box indicates non-response patients, the upper and lower 
ends of the box indicate the interquartile range of values, the line in 
the box indicates the median value, and the asterisk indicates the sta-
tistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). c, d Violin plot 

based on CIBERSORT shows the composition of 22 immune cells 
between R tissues and NR tissues in the 2 cohorts. The blue box plot 
indicates R individual, and the red violin box indicates non-response 
patients, the upper and lower ends of the box indicate the interquar-
tile range of values, and the asterisk indicates the statistical p value 
(*p < 0.05; **p < 0.01; ***p < 0.001)
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treatment of inflammatory bowel disease. In our study, 
NDRG1 was found to be associated with fatty acid meta-
bolic processes, steroid metabolic processes, carboxylic 
acid transport and organic acid transport. TRPV3 was 
linked to glycerolipid metabolic processes. TRPV3 has 
been shown to be associated with disease activity in the 
study by Joel J. Toledo Mauriño et al. TRPV3 has been 
proposed as a relevant mechanism of gastrointestinal 
inflammation. Since T cell activation by mitogen or TCR 
stimulationis dependent on TRPVs and T cell activation 
promotes inflammatory response, Changes in TRPV3 
expression is a mechanism to reinforce pro-inflammatory 
immune responses downstream of T cell activation [26]. 
Taken together, our model genes have important implica-
tions in energy metabolism, immune response and cell 
growth and proliferation. This also explained the rationale 
and biological mechanism of model genes for the diagno-
sis of ulcerative colitis at the genetic level.

The level of body energy expenditure is signifi-
cantly correlated with the disease activity in patients 
with inflammatory colitis. Patients with moderate to 
severe ulcerative colitis are hypermetabolized, and 
induction therapy can significantly alter the body’s 
energy metabolism. We explored the immune and met-
abolic characteristics of the R group samples and the 
NR group samples. Our results suggested that the sam-
ples in the R group were at high metabolic levels, such 
as adipogenesis, fatty acid metabolism, and oxidative 
phosphorylation. While, the immune-related pathways, 
tumor-related pathways (such as epithelial–mesenchy-
mal transition, IL6 JAK STAT3 signaling, and G2M 
checkpoint) and inflammation-related pathways were 
downregulated. Immunological analysis of the R group 
samples and NR group samples revealed that the degree 
of immune cell infiltration was generally higher in the 
NR group samples. In conclusion, ulcerative colitis with 
high metabolism and low malignancy showed a higher 
degree of benefit from monoclonal antibody drug ther-
apy against TNF-α.

In our study, we had developed a diagnostic model 
with greater specificity and sensitivity, which performed 
better than the biomarkers proposed in previous studies. 
Our model was also suggestive for clinical drug usage and 
prediction of drug efficacy. However, its clinical practica-
bility needed to be further substantiated by more clinical 
researches. Our study fully explained the principle and 
mechanism of action of the diagnostic model through 
the metabolism, immunity and cell growth and prolif-
eration of the model genes from multiple perspectives, 
which provided significant theoretical support for clinical 
application.

Conclusion

In this study, five biomarkers were screened using single-cell 
data and transcriptomic data for the construction of clini-
cal diagnostic and drug sensitivity prediction models. The 
model has better specificity, sensitivity and stability, and 
is useful for drug sensitivity prediction, which will have 
higher value for clinical research and application (Fig. S3 
Created with BioRender.com). EPB41L3 encodes protein 
4.1B, which is a membrane skeletal protein that belongs to 
the protein 4.1 family. Protein 4.1B/DAL-1 is localized to 
sites of cell-cell contact and functions as an adapter pro-
tein, linking the plasma membrane to the cytoskeleton or 
associated cytoplasmic signaling effectors and facilitating 
their activities in various pathways. Protein 4.1B/DAL-1 is 
involved in various cytoskeleton-associated processes, such 
as cell motility and adhesion [27]. The results of GO analysis 
indicated that lymphocyte differentiation, T cell activation, 
T cell differentiation, cell adhesion, and cell chemotaxis 
pathways were down-regulated in drug-sensitive samples 
(Fig. 5g). So EPB41L3 might reduce protein 4.1B expres-
sion to downregulate T cell activation, T cell differentiation, 
cell adhesion, and cell chemotaxis pathways to suppress T 
cell function in inflammation. PDIA5 was associated with 
neutrophil degranulation, activation of neutrophils involved 
in immune response, mitosis, regulation of cell cycle phase 
transition, and ATPase activity (Fig. S2b). Therefore, pos-
sibly PDIA5 downregulates neutrophil degranulation,and 
activation of neutrophils involved in immune response to 
reduce the inflammatory response. Moreover, our study 
demonstrates that EPB41L3, TRPV3, NDRG1, HSD17B3 
might upregulate lipid metabolism, especially fatty acid 
metabolism and lipid metabolism, which is favorable for 
the reduction of inflammation. Macrophage polarization is 
believed to play an important role in inflammation and host 
defense mechanisms through a dynamic process [28]. Lipid 
metabolism has a key role in regulating macrophage func-
tions. Signals that drive macrophage activation (e.g., to an 
inflammatory state that regulates host defense) impinge on 
metabolic-sensing pathways to coordinate shifts in lipid 
metabolism. Lipids are a source of energy for macrophages, 
and provide precursors for bioactive lipids and components 
of cellular membranes. Lipids also regulate signal trans-
duction and gene regulation during macrophage activation 
[29]. Assessed by functional enrichment analysis, we found 
that HSD17B3, NDRG1, PDIA5, and TRPV3 have impor-
tant links with lipid metabolism and fatty acid metabolism. 
From this, we infer that among macrophage polarization, 
lipid metabolism and our model genes, there is a complex 
regulatory network that needs to be further explored.
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