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Abstract
Glucagon is a crucial hormone involved in the maintenance of glucose homeostasis. Large efforts to define the role of gluca-
gon receptor (GCGR) have been continuously made in recent years, but it is still incomplete about its function and mecha-
nism. We performed this study to verify its potential impacts on papillary thyroid carcinoma (PTC) progression. Correlation 
between GCGR expression and PTC was elaborated using The Cancer Genome Atlas (TCGA) database. The Kaplan–Meier 
method was used to analyze the connection between GCGR expression and prognosis of PTC patients. GCGR expression 
was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis; simultaneously, cell 
viability was elucidated using cell proliferation and colony formation assays following siRNAs strategy. Transwell analyses 
were conducted to measure the invasion and migration of PTC cells. Flow cytometry analysis was conducted to examine 
apoptotic ability. The cAMP ELISA kit was employed to measure the cAMP level in PTC cells. Our data determined that 
the expression level of GCGR was increased in PTC tissues and cells in contrast to normal tissues and Nthy-ori 3-1, respec-
tively. Up-regulated GCGR expression was linked with the lower survival rate in patients with PTC. Functional analysis 
in vitro suggested that GCGR knockdown attenuated PTC cell proliferation, colony formation, invasion, and migration whilst 
intensified apoptosis. Down-regulated GCGR was able to increase cAMP level. Furthermore, reduction of GCGR could 
result in the inactivation of epithelial–mesenchymal transition (EMT) and P38/ERK pathways. In conclusion, the findings 
of this study disclosed that GCGR promoted PTC cell behaviors by mediating the EMT and P38/ERK pathways, serving as 
a potential diagnostic and prognostic biomarker as well as therapeutic target for PTC.
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Introduction

Thyroid carcinoma (TC), posing continuous occurrence 
and high mortality, is the most common endocrine-system-
related malignancy [1]. It is classified into four pathological 
types: papillary thyroid carcinoma (PTC), follicular thyroid 
carcinoma (FTC), medullary thyroid carcinoma (MTC), 
and differentiated thyroid carcinoma (DTC) [2, 3]. Among 
these pathological types, PTC is responsible for more than 
85% of all malignant TC with slow tumor growth and better 
prognosis [3]. Despite advances in clinical therapies in PTC 
offer a desirable 5-year survival rate [4], high recurrence 
rates and morbidity are still reminding us of the importance 
of exploring the molecular mechanisms of PTC and related 
treatments [5].

It is well established that the occurrence of TC is relevant 
to hormones, heredity, and other environmental parameters, 
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and thus, the investigation of underlying hormones and their 
receptors gain more attentions currently [6]. Glucagon is a 
hormone secreted by pancreatic islet α-cells and consists of a 
29 amino acid linear polypeptide. Its physiological functions 
are exerted via the activation of glucagon receptor (GCGR) 
[7]. As we all known, GCGR is a G-protein-coupled recep-
tor (GPCR) regulating blood glucose levels and mainly 
expressed in pancreas, liver, and kidneys [8]. By coupling 
to guanine nucleotide-binding proteins (G proteins), many 
biological functions are modulated by GPCRs [9]. Recent 
studies further validated the correlation between aberrant 
expression of GPCRs and cancer progression. Down-regu-
lation of leucine-rich repeat-containing G-protein coupled 
receptor 6 (Lgr6) held the capability to suppress the cell pro-
liferation and invasion in human colorectal cancer [10]. The 
study of Ye et al. disclosed that GPRC6A was involved in the 
pathogenesis of prostate cancer [11]. Increased occurrence 
of skin cancer was induced by the polymorphisms of mel-
anocortin-1 receptor [12]. Up-regulated GPR30 was associ-
ated with tumor recurrence and promoted breast cancer cell 
adhesion, migration, and invasion [13, 14]. Glucagon-like 
peptide-1 receptor (GLP-1R) was highly expressed in endo-
metrial cancer and evidently related with better prognosis 
[15]. However, a limited amount of studies has been con-
ducted to explore the role of GCGR in PTC when compared 
with the other GPCRs in this context.

In our study, we disclosed that GCGR expression was 
highly regulated in PTC and connected with poor prognosis 
of PTC patients. In addition, the findings of in vitro func-
tional analysis indicated that GCGR deficiency inhibited 
proliferation, colony formation, invasion, and migration 
while stimulated apoptosis. The cAMP level of PTC cells 
was negatively related with GCGR expression. These obser-
vations were proved to be associated with the EMT and P38/
ERK pathways. Therefore, deciphering the role of GCGR in 
PTC might shed new insight on our understanding of poten-
tial mechanism driving PTC progression and improve PTC 
treatment.

Materials and methods

Gene expression analysis in tumor tissues

The gene expression profile derived from TCGA database 
was composed of 58 normal specimens and 510 human 
tumor cases, which was used to show the GCGR expres-
sion level in PTC tissues. We enrolled 415 patients with 
complete clinical data to analyze the correlation between 
GCGR expression and clinical characteristics by Chi square 
test. The overall survival (OS) curves were plotted using 
Kaplan–Meier method with log-rank test. Cox regression 

analysis was applied to explore whether GCGR is an inde-
pendent predictor of prognosis for PTC.

Cell culture

The human normal thyroid gland cell line Nthy-ori 3-1 and 
human PTC cell lines including SW579, TT, FTC-133 were 
purchased from Cell Biology of the Chinese Academy of 
Sciences (Shanghai, China). Cells were cultured in Roswell 
Park Memorial Institute (RPMI) 1640 medium with fetal 
bovine serum (10% FBS; Gibco, Grand Island, NY, USA), 
penicillin (100 U/mL; Gibco), and streptomycin (0.1 mg/
mL; Gibco). The cell culture condition was held at 37 °C 
and 5%  CO2.

Cell transfection

To decrease the expression level of GCGR, siRNA tech-
nology was conducted with two siRNAs, si-GCGR#1 and 
si-GCGR#2, accompanying with siRNA control (si-con). 
The targets of siRNAs for GCGR are exhibited as follows: 
si-GCGR#1, 5′-GCA CCA CAC AGA CTA CAA GTT-3′; si-
GCGR#2, 5′-CGC GAA TCT GTT TGC GTC CTT-3′; si-con, 
and 5′-CGA ACU CAC UGG UCU GAC C-3′. The transfection 
was performed by the means of Lipofectamine2000 in the 
further experiments.

qRT‑PCR

The qRT-PCR was run according to the following steps. At 
first, TRIzol solution (Invitrogen, Carlsbad, CA, USA) was 
utilized to separate the whole RNA from transfected cells. 
Second, TranScript First-Strand cDNA Synthesis Super-
Mix (Transgen Biotech, Beijing, China) was employed to 
transcribe cDNA, and finally, qRT-PCR was determined 
by  TransScript® II Green One-Step qRT-PCR SuperMix 
(Transgen Biotech) on the 7900HT real-time PCR system. 
To analyze the relative expression level, GAPDH was con-
sidered as the internal control relying on  2−∆∆Ct method. 
Specific primers are shown subsequently: GCGR: F, 5′-CGC 
TGA CCC TCA TCC CTC CTG-3′, R: 5′-TAG AGG ACA GCC 
ACC AGC AG-3′; Tubulin: F: 5′-CTC AAG AGG CTG ACG 
CAG AA-3′, R: 5′-AGG AGA TGC TGG TGT GGT TG-3′. Each 
sample was examined in three times.

Western blot analysis

After 48 h transfection, cells were placed into 6-well plate, 
homogenized with RIPA lyses containing protease inhibi-
tor, and then assessed the protein concentrations using BCA 
method. Following denatured proteins at 95 °C for 5 min, 
the equal amount protein was separated with SDS-PAGE 
and transferred onto polyvinylidene difluoride membrane 
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(PVDF; Millipore Corp., Bedford, MA, USA) membrane. 
Then, the PVDF membranes were incubated with 5% skim 
milk for 1 h at 25 °C. Then, the membranes were incubated 
with primary antibodies and secondary antibody in succes-
sion. Protein signals were probed with enhanced chemilu-
minescence, revealed on films, and scanned by QUANTITY 
ONE software.

Cell counting kit 8 assay

SW579 and FTC-133 cells were inoculated in 96-well plate 
at a density of 1000 cells per well in a humidified atmos-
phere containing 5%  CO2 at 37 °C. After 0 h, 24 h, 48 h, 
and 72 h, 10 μL CCK8 regents was added into per well, then 
maintained cells for additional 1.5 h, and examined the opti-
cal density (OD) values under the microplate reader with a 
wavelength of 450 nm.

Colony formation assay

A total of cells (400 cells/dish) were seeded in 60 mm dish 
at a carbon dioxide incubator that set at 37 °C with 5% for 1 
or 2 weeks. The colonies were fixed using paraformaldehyde 
(4%) and dyed by crystal violet (0.1%), respectively.

Transwell analysis

Cell invasion and migration assays were performed utiliz-
ing transwell chamber. For invasion detection, the inserts 
of 24-well plates were pre-coated with 100 μL Matrigel-
diluted 1:6 with serum-free medium. The 24 h-transfected 
cells (1 × 105) were suspended into cell suspension and 
added to the upper chamber, while the lower chamber was 
filled with 500 μL serum-free medium. After incubation 
24 h, remaining cells were wiped out with the help of cotton 
swabs; meanwhile, invasive cells were fixed and stained by 
paraformaldehyde (4%) for 30 min and crystal violet (0.1%) 
for 20 min. Differently, the inoculated density of migration 
detection was 5000 cells per well and there was no Matrigel 
coated on the inserts.

Flow cytometry analysis

Briefly, cells were inoculated into 6-well plates and treated 
with si-con or si-GCGR#2. After transfection for 48 h, cells 
were washed with PBS and resuspended by binding buffer. 
Then, cells were stained with 5 μL Annexin V FITC for 
10 min in the dark and incubated with 5 μL PI reagent for 
5 min. Finally, cell apoptosis was assessed by a flow cytom-
etry (BD Biosciences, Franklin Lakes, NJ, USA) and ana-
lyzed using FlowJo software (BD Biosciences).

Detection of cAMP level

To measure the intracellular cAMP level, cells were first 
preincubated in serum-free medium for 30 min. Then, cells 
were lysed and the intracellular cAMP level was evaluated 
using cAMP ELISA kit (Cell Signaling Technology, Dan-
vers, MA, USA) according to the manufacturer’s protocols.

Statistically analysis

Student’s t test and one-way analysis of variance with 
Dunnett’s (compare all groups versus control group) or 
Tukey’s (compare all pairs of groups) post hoc tests were 
implemented to describe the differences between groups. 
SPSS 22.0 software and GraphPad Prism 5.0 software were 
employed to analyze results and all data were exhibited as 
the mean ± standard deviation (SD). Statistical significance 
was depicted as P < 0.05.

Results

GCGR was highly expressed in PTC tissues 
and correlated with prognostic outcome 
and pathological characteristics

Clinical profiles obtained from TCGA database demon-
strated that GCGR expression was significantly high-reg-
ulated in PTC tissues compared with the normal tissues 
throughout qRT-PCR analysis (Fig. 1a, P < 0.01). Then, 
on the basis of median value of GCGR expression, the 
data were classified into high expression group (> median 
value) and low expression group (< median value). As can 
be seen in Fig. 1b, the OS rate was remarkably higher in 
low expression group (n = 207) than that in high expression 
group (n = 208) (P = 0.027), indicating that GCGR might 
stimulate PTC progression. GCGR expression presented a 
positive correlation with the tumor (P = 0.002) and death 
(P = 0.020) in Table 1. Moreover, the Cox regression analy-
sis demonstrated that GCGR might act as an independent 
predictor for PTC diagnosis (Table 2, P < 0.05).

GCGR was up‑regulated in PTC cell lines 
and depleted using siRNA strategy

Considering the expression level of GCGR in PTC tissues, 
the GCGR expression was examined in PTC cell lines and 
found that GCGR mRNA expression level was significantly 
increased in PTC cell lines (SW579, TT, FTC-133) com-
pared to Nthy-ori 3-1 cell line (Fig. 2a, P < 0.01). In con-
sistent with the GCGR mRNA expression level in PTC cell 
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lines, the protein expression level of GCGR in PTC was 
higher than that in Nthy-ori 3-1 cell line by western blot 
analyses (Fig. 2b, c, P < 0.01).

To down-regulate GCGR expression, si-GCGR#1 and si-
GCGR#2 were used to treat SW579 cells. According to the 
qRT-PCR analysis, we observed that GCGR was suppressed 

successfully when compared with si-con group (Fig. 2d, 
P < 0.01). In consistent with that, western blot test indicated 
a similar tendency at the aspect of GCGR protein expres-
sion level (Fig. 2e, f, P < 0.01). More importantly, Fig. 2d, e 
shows that the interference of si-GCGR#2 provided higher 
silence efficiency than si-GCGR#1. Therefore, the next 
knockdown experiments were completed by si-GCGR#2.

Knockdown of GCGR had an inhibitory effect on prolif-
eration, colony formation, invasion, and migration, whilst 
had a promoting impact on apoptosis and cAMP level.

To ulteriorly assess the potential contribution of GCGR 
to PTC cell behaviors, CCK8, colony formation, transwell 
assays, and flow cytometry assay were conducted in SW579 
and FTC-133 cells. Based on the CCK8 assay, cell prolif-
eration of SW579 cells transfected with si-GCGR#2 was 
blocked in contrast to the si-con group, especially at 72 h 
(Fig. 3a, P < 0.01). Consistently, colony formation assay 
also verified that GCGR knockdown induced the attenua-
tion of clone number in SW579 cells (Fig. 3c, P < 0.01). 
Transwell assay demonstrated that GCGR reduction had a 
negative impact on the invasion and migration of SW579 
cells (Fig. 3e, P < 0.01). Meanwhile, the similarly suppres-
sive effect of GCGR deficiency on proliferative, clonogenic, 
invasive, and migratory capabilities was also exhibited in 
FTC-133 cells (Fig. 3b, d, f, P < 0.01).

In addition, flow cytometry analyses were performed in 
SW579 and FTC-133 cells and uncovered that knockdown 
of GCGR with the application of si-GCGR#2 markedly ele-
vated the rate of apoptosis of SW579 (Fig. 4a, b, P < 0.01) 
and FTC-133 cells (Fig. 4c, d, P < 0.01).

Previous evidence has indicated that cAMP level is nega-
tively correlated with proliferative ability of cancer cells [16, 
17]. To examine the functionality of GCGR expressed in 
PTC cells, we measured the intracellular cAMP level in PTC 
cells transfected before and after GCGR knockdown. Results 
showed that cAMP level was higher in si-GCGR#2 group 
than in blank control group (Fig. 4e, P < 0.01), indicating 

Fig. 1  Data from TCGA data 
set exhibit that GCGR was 
increased in PTC tissues and 
correlated with poor prognosis. 
a Relative expression level of 
GCGR in PTC tissues, P < 0.01. 
b Overall survival curve of 
PTC patients, high expression 
of GCGR (n = 208), and low 
expression of GCGR (n = 207), 
P = 0.027

Table 1  Association between GCGR expression and clinicopatho-
logical parameters in 415 cases of PTC patients in accordance with 
TCGA database

T, tumor; N, lymph nodes; M, metastasis
*P < 0.05

Characteristics Expression of GCGR P value

Low High

Age 0.313
 < 60 162 154
 ≥ 60 45 54

Gender 0.682
 Female 152 149
 Male 55 59

Stage 0.086
 I + II 143 127
 III + IV 64 81

T 0.002*
 T1 + T2 141 110
 T3 + T4 66 98

N 0.350
 N0 111 102
 N1 96 106

M 0.471
 M0 202 205
 M1 5 3

Death 0.020*
 No 205 198
 Yes 2 10
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that cAMP level was negatively correlated to GCGR expres-
sion in PTC cells.

Taken together, these findings suggested that knockdown 
of GCGR had an inhibitory effect on proliferation, colony 
formation, invasion, and migration, whilst had a promoting 
impact on apoptosis.

Reduction of GCGR impaired the activation of EMT 
and P38/ERK pathways

To explore the potential mechanism of how GCGR affects 
the cell behaviors of PTC cells, we detected the EMT and 

P38/ERK pathway-related gene expression using western 
blotting. It has been reported that EMT is an important pro-
cess related with tumor invasion and migration [18]. Exten-
sive studies have suggested that GCGR could contribute 
to tumorigenesis by regulating the activation of P38/ERK 
pathway [19, 20]. Therefore, western blotting method was 
performed to elevate the management of EMT and P38/ERK 
pathways after GCGR depletion in SW579 cells. Results of 
western blotting revealed that GCGR knockdown signifi-
cantly improved the expression of E-cadherin and down-
regulated the expression of N-cadherin, Vimentin, and Snail 
in SW579 cells (Fig. 5a, b, P < 0.01). In addition, results 

Table 2  Cox regression analysis 
of patients with PTC

T, tumor; N, lymph nodes; M, metastasis
*P < 0.05

Variables Univariate analysis Multivariate analysis

P value HR 95% CI P value HR 95% CI

GCGR expression (low/high) 0.045* 4.737 1.036–21.652 0.083 3.902 0.838–18.168
Stage (I + II/III + IV) 0.002* 11.083 2.424–50.671 0.386 2.329 0.345–15.732
T (T1 + T2/T3 + T4) 0.034* 4.132 1.117–15.287 0.881 0.886 0.180–4.363
M (M0/M1) 0.026* 5.692 1.230–26.341 0.114 3.647 0.733–18.158
N (N0/N1) 0.698 1.255 0.398–3.963
Age (< 60/≥ 60) 0.001* 36.532 4.713–283.161 0.008* 20.484 2.202–190.532
Gender (female/male) 0.171 2.236 0.706–7.083

Fig. 2  The expression level of GCGR in PTC cell lines and silence 
efficiency by siRNA method. a GCGR was highly expressed in three 
PTC cell lines compared with Nthy-ori 3-1 cell line, **P < 0.01. b 
Different protein expression levels of GCGR in three PTC cell lines 
and normal thyroid gland cell line Nthy-ori 3-1. c The quantifica-

tion of gray value, **P < 0.01. c After si-GCGR#1 and si-GCGR#2 
transfection, the expression of GCGR was markedly decreased in 
comparison to si-con group, **P < 0.01. d Western blotting analysis 
of silence efficiency. e The fold change of protein bands, **P < 0.01. 
Each experiment was performed in three times independently
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in Fig. 5c identified that the expression levels of P38 and 
ERK were unchanged in SW579 cells transfected with si-
GCGR#2. However, the si-GCGR#2-transfected SW579 
cells suggested that the phosphorylation of P38 and ERK 
was decreased compared with the si-con-treated SW579 
cells (Fig. 5c). The quantitative results were the same as the 
protein bands (Fig. 5d, P < 0.01). Overall, our data illustrated 
that reduction of GCGR affected the activation of EMT and 
P38/ERK pathways, which correlated with the change of 
proliferation, colony formation, invasion, migration, and 
apoptosis revealed in PTC cells.

Discussion

PTC is the most frequent subtype of TC with complicated 
environmental and molecular factors [6]. To date, increased 
evidence of clinical analyses of PTC has made a greatly 
progress in diagnosis and prognosis in PTC [21]. Although 
some targets have been examined in PTC progression pre-
liminarily, the perfect treatment of PTC is still unknown. 
Therefore, we accessed to TCGA data set to collect and 
analyze the profile of PTC clinical samples, and found that 

GCGR was highly regulated in PTC tissues. The overall sur-
vival rates showed that up-regulation of GCGR was posi-
tively correlated with the worse prognosis of PTC patients. 
To further identify the correlation between GCGR and PTC, 
we then utilized the qRT-PCR analysis and western blotting 
to assess the relative expression level of GCGR in PTC cell 
lines; the result was consistent with those of the data in clini-
cal specimens when compared with Nthy-ori 3-1 cells. Thus, 
we speculated that GCGR might be a potential biomarker for 
PTC development.

Much of the current literature on GCGR pays particular 
attention to its function in the regulation of blood glucose. 
For example, Okamoto et al. uncovered the inhibition of 
GCGR which can lead to a normalized blood glucose in 
severe insulin-resistant mice [22]. Abnormal expression of 
angiopoietin-like 4 (Angptl4) was related with α-cell prolif-
eration in endocrine pancreas via inhibiting GCGR activa-
tion [23]. Importantly, the mutations of GCGR were closely 
linked with the occurrence of glucagon cell adenomatosis 
by means of glucagon cell hyperplasia [24]. A new therapy 
of type 2 diabetes was proposed by Graham et al., which 
is based on the regulatory effects of dual GCGR [25]. The 
antibody for glucagon receptor can hinder type 1 diabetes 

Fig. 3  Knockdown of GCGR inhibited the proliferation, colony 
formation, invasion, and migration. Cell proliferative ability was 
examined after GCGR knockdown in a SW579 and b FTC-133, 
**P < 0.01. Colony formation assay was performed and clone num-
ber was calculated using c SW579 and d FTC-133, respectively, 

**P < 0.01. Transwell assays showed the difference of invasive and 
migratory capabilities in e SW579 and f FTC-133, and then, corre-
sponding cell number was counted, **P < 0.01. All the experiments 
were conducted in triplicates
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through disordering the diabetogenic pathway [26]. Nota-
bly, Luo et al. highlighted that thyroid cancer risk can be 
increased by the occurrence of type 2 diabetes [27]. More-
over, thyroid dysfunction and abnormal thyroid stimulat-
ing hormone concentration, the reasons linked with higher 

prevalence of thyroid cancer, have been observed in patients 
with type 2 diabetes [28, 29]. In addition to the blood glu-
cose-related diseases, a few and growing body emphasize 
on the effects of GCGR in additional malignancies. Energy 
metabolism, participating in diverse biological processes, is 

Fig. 4  Apoptotic capability and cAMP level of PTC cells were pro-
moted after GCGR knockdown. a, b Apoptotic potential was meas-
ured by flow cytometry analysis in SW579 cells. The percentage of 
apoptosis cells was quantified, **P < 0.01. c, d Apoptosis of FTC-133 

cells was determined by flow cytometry, **P < 0.01. e Intracellular 
cAMP level in PTC cells before and after treated with si-GCGR#2, 
**P < 0.01. Each experiment was repeated in three times
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mediated by GCGR signaling through hepatic farnesoid X 
receptor and fibroblast growth factor 21 [30]. Using the mice 
model with myocardial infraction, the outcomes of mice are 
controlled by cardiomyocyte GCGR signaling and cardiac 
function can be improved by targeting the GCGR [31, 32]. 
It is the essential step for the murine hepatocyte survival 
[33]. Considering the above-mentioned data, we performed 
experiments in vitro to verify our hypothesis. The findings 
revealed that GCGR knockdown played an inhibitory role 
on the proliferation, colony formation, invasion, and migra-
tion, and facilitated to apoptosis in SW579 and FTC-133 
cells in comparison with the si-con group. In addition, it has 
been previously reported that high-regulated cAMP level can 
impair the proliferation in cancers [34]. Thus, we measured 
the cAMP level of PTC cells before and after GCGR defi-
ciency to determine the functionality of GCGR expression. 
The findings revealed that knockdown of GCGR increased 
the cAMP level in PTC cells.

Given the impacts of GCGR knockdown on the cell 
invasion and migration in PTC cells, we measured the 
EMT-related genes expression by western blot analysis. As 
described in previous reports, cell invasion and migration 
are pivotal aspects of tumorigenesis and EMT is required 

for cell invasion and migration of tumor cells as an impor-
tant transformation process driving the invasive phenotype 
of tumors [35, 36]. Studies suggested that many important 
oncogenes and cancer suppressors implicated in cancer pro-
gression could mediate the EMT process [37]. The activation 
of EMT process has been verified correlated with various 
signaling pathways, including P38/ERK pathway [38]. Up 
to date, there are three MAPKs including P38, extracellular 
signal-regulated kinases (ERKs) and c-jun NH2-terminal 
kinases (JNK) [39]. There is a large volume of published 
studies describing the role of P38/ERK pathway in mul-
tiple tumors, such as non-small cell lung cancer, cervical 
cancer, breast cancer, prostate cancer, hepatocellular carci-
noma, and so on [40–43]. Moreover, the progression of PTC 
has been demonstrated that has a significantly connection 
with the activation of MAPK pathway, especially P38/ERK 
pathway [44–46]. In our study, we analyzed the effect of 
GCGR knockdown on the expression level of EMT-related 
genes and phosphorylation of P38/ERK. After knockdown 
the expression of GCGR, E-cadherin was increased, and 
N-cadherin, Vimentin, and Snail were decreased. The phos-
phorylation of P38/ERK was declined compared to the si-
con group. These observations hinted that GCGR possibly 

Fig. 5  Knockdown of GCGR 
had a significant effect on 
EMT and P38/ERK pathways 
in SW579 cells. a E-cadherin 
expression was promoted, while 
N-cadherin, Vimentin, and Snail 
were inhibited in si-GCGR#2 
group relative to si-con group. 
b The quantification of a, 
**P < 0.01. c The phospho-
rylation of P38 and ERK was 
attenuated in si-GCGR#2 
group when compared with 
si-con group, **P < 0.01. d The 
fold change of protein bands, 
**P < 0.01
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regulated cell malignant aggressiveness through the EMT 
and P38/ERK pathways.

In conclusion, the results of our investigation elaborated 
that GCGR was highly regulated in PTC tissues and cells. 
The high regulation of GCGR was remarkably associated 
with poor outcome of PTC patients, indicating a shorter 
survival period. Furthermore, functional analysis in vitro 
suggested that reduction of GCGR impaired cell prolifera-
tion, colony formation, invasion, and migration via mediat-
ing the EMT and P38/ERK pathways in PTC. Meanwhile, 
down-regulated GCGR expression elevated the cAMP level 
in PTC cells. Collectively, GCGR might become a favorable 
therapeutic target for PTC development.
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