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Abstract
Representation of populations of diverse ancestral histories is essential in genetic 
epidemiological research, failing which our understanding of the architectures of 
diseases will remain incomplete. Wide applications of inferences from studies with 
limited representation of population diversity can exacerbate health disparities. In 
this commentary, we identify the key reasons why inferences from studies without 
adequate representation of diverse populations can result in restricted applicabil-
ity of inferences and the statistical challenges that need to be overcome for draw-
ing more robust inferences. We also note that C.R. Rao, and his early mentor P.C. 
Mahalanobis, were pioneers to quantify population diversity and study population 
affinities.
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1  Evolutionary Perspectives and Human Disease
Genetic epidemiology aims to unravel the architectures of diseases, explicitly 

taking genetic factors into account. For a disease, the goals are to (a) identify the 
factors that cause or associate with the disease, (b) estimate the impacts of the fac-
tors – singly and collectively, taking interactions among the factors into account 
– on the susceptibility to the disease, and (c) use the knowledge to estimate the dis-
ease-risk at the levels of the individual, the family and the population. The history 
of our species has influenced the architectures of our diseases. The influence of our 
evolutionary past has to be taken into account to understand diseases that afflict us. 
Fundamentally, our evolutionary history is recorded in our genomes. This evolu-
tionary continuity justifies the use of model organisms, such as the mouse, in human 
disease research. However, it must also be emphasized that biological evolution is 
intimately linked to temporal changes in environment, that have resulted in many 
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differences in function of an organ or a pathway or a gene among organisms in spite 
of homology. This may be one reason why findings from animal models often do 
not translate to humans (Bart van der Worp et al., 2010) or successful clinical trials 
of drugs in animals often fail in humans (Mak et al., 2014). Further, many genomic 
changes have taken place that are human-specific; genes of the human immune sys-
tem have an abundance of such changes (Quintana-Murci, 2019).

In the study of human disease, the set of environmental factors to be consid-
ered as possible contributors to the precipitation of a disease is nebulous. This 
uncertainty becomes a bottleneck to dissecting the architecture of a disease. In 
this commentary, we do not discuss the problems that can arise from differences 
in environmental exposures of individuals or populations. On the other hand, the 
genome is well-defined and the set of genomic factors that can possibly modulate 
susceptibility to a disease are those that are variable across individuals. Genomic 
variants show high inter-population differences in frequency. This variation is 
caused by natural selection; individuals in some populations may be exposed to 
an environment in which possession of the variant by an individual enhances their 
chance of survival. In such populations the frequency of the variant will rapidly 
increase compared to populations that do not experience such environmental 
exposure. There is also a stochastic way by which such inter-population variation 
arises. This is called random genetic drift. The sizes of most human populations 
are finite and over short periods of time the sizes remain stable. In a population 
comprising a finite number of diploid individuals, haploid gametes are randomly 
sampled from the infinite male pool of gametes (sperms) and another infinite 
female pool of gametes (eggs) to create a new generation of diploid individuals. 
This process of sampling introduces stochasticity in the relative frequencies of 
different variants from one generation to another. Such stochasticity results in var-
iation in frequencies of gene variants over time between populations, even if the 
frequencies are equal in both populations to begin with. Similar sampling effects 
are also encountered when a new population group is formed from a preexisting 
group. If a small number of individuals carrying a restricted number of variants 
move away from one population to found another population, then the frequen-
cies of only those variants carried by the founding members will alter over time 
in the newly-founded population, while the other variants in the ancestral popula-
tion will be absent in the new population. These same phenomena also impact on 
associations between gene variants in stretches of the genome. In a newly-founded 
population, genomic positions (loci) that show high levels of associations among 
gene variants stretch over a large region of the genome. This association is called 
linkage disequilibrium (LD) and the stretch within which loci show high levels 
of LD is called a LD-block. The size of a LD block in a population diminishes 
over time because of physical exchange of genetic material between chromosomes 
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(genetic recombination) in each generation. Since contemporary human popu-
lations have evolved for variable lengths of time and have encountered variable 
pressures of selection, there are large differences both in frequencies of variants 
(The International Genome Sample Resource, https://​www.​inter​natio​nalge​nome.​
org/; archived dbSNP data are available from ftp://​ftp.​ncbi.​nih.​gov/​snp/​organ​
isms/​human_​9606/​genot​ype/) and in the sizes of LD blocks among contemporary 
populations (The International HapMap Consortium, 2007; archived data avail-
able from ftp://​ftp.​ncbi.​nlm.​nih.​gov/​hapmap/).

The impacts of evolutionary forces, population ancestries and admixtures 
among human populations impact inferences of genetic epidemiological research 
undertaken in multiple populations. Assessment of genomic diversities, genomic 
affinities and haplotype structures of populations are important, especially in 
respect of generalizability of inferences. These issues are discussed below in 
some detail.

2  C.R. Rao: A Pioneer in Understanding Population Affinities Using 
Physical and Biological Markers

C.R. Rao, together with P.C. Mahalanobis, laid the foundations of studies on 
population diversity and affinities in India. India has a vast array of populations with 
diverse ancestries and lifestyles. These populations have remained largely, but not 
completely, unadmixed for many thousands of years. They also follow some sets of 
social beliefs and practices, and have distinct types of social organization that have 
evolved over time. (Thapar, 1978). Contemporary populations of India comprise 
about 400 tribal populations with simple social organization, about 4000 caste popu-
lations with hierarchical social organization and about 150 populations who do not 
belong to these two main rungs of Indian society (Singh, 1993). While viewing the 
inter-population socio-cultural and physical diversities, one eminent Indian anthro-
pologist (D.N. Majumdar) wondered whether population groups irrespective of the 
social rung to which they belong would be physically and biologically more similar 
if they lived in geographical proximity (perhaps because of environmental similarity 
and higher possibility of marital exchange across populations) than if the same popu-
lation was divided into two subgroups separated by a large geographical distance. P.C. 
Mahalanobis, a founder of statistical science and the Indian Statistical Institute, and 
C.R. Rao, a student of Mahalanobis and later a colleague in the Indian Statistical Insti-
tute, got interested in these questions and undertook two landmark studies in northern 
India (United Provinces) and eastern India (Bengal) during the 1940s and 1950s. In 
each of these carefully-designed studies (Mahalanobis et  al., 1949; Majumdar and 
Rao, 1958), a large number of individuals were sampled from about two dozen popu-
lations. A large set of body measurements were taken on each sampled individual. 
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These data were statistically analyzed to answer the anthropological questions. Dur-
ing the analyses, a number of novel statistical methods were devised by Mahalano-
bis and Rao. The studies did not produce unequivocal answers to the anthropological 
questions that they set out to answer. C.R. Rao recognized, towards the end of the 
Bengal anthropometric survey, that body dimensions were possibly highly influenced 
by environmental factors. He stated that attempts to understand biological affinities 
should rely on such attributes that are not influenced by environmental factors, such 
as blood groups. This was an incisive understanding. In the Bengal anthropometric 
survey, the ABO blood group type was determined on a limited number of individu-
als. C.R. Rao analyzed these data, but still the answers to the original anthropological 
questions remained equivocal. He stated that data on one blood group was insufficient; 
more biological markers were necessary. The Indian Statistical Institute in later years 
undertook many population surveys to estimate genetic diversity and affinities among 
population groups resident in different regions of India (Majumder and Mukherjee, 
1993). The inferences from the data generated in these surveys have not completely 
consistent across geographical regions in India in respect of genetic affinities among 
population groups at different levels of cultural hierarchy (caste, tribe, etc.).

C.R. Rao revisited these problems of understanding genetic diversity and affini-
ties during the late 1970s and early 1980s. He actually devised statistical method-
ologies for dissecting genetic diversity by a set of qualitative factors. He called the 
general theory as Analysis of Diversity (ANODIV). In particular, he considered the 
problem of apportioning of the total genetic diversity in a set of populations to within 
and between populations and devised a method that he termed as APDIV, apportion-
ment of diversity. He published a series of papers and an expository paper that was 
published in Sankhya (Rao, 1982, and references therein).

Even though understanding the genomic and environmental underpinnings of 
human diseases was not the explicit reason for conducting the surveys undertaken by 
Mahalanobis, Majumder and Rao, these population surveys sought to answer ques-
tions that are precisely those necessary for the design of genetic epidemiological 
studies on diseases and also for generalizing the inferences of a genetic epidemio-
logical study across many populations. Thus, conceptually these studies were fore-
runners of genetic epidemiological studies not just in India but also globally.

3  Representing Human Diversity in Genetic Epidemiological Research 
is Essential

The two major imperatives of genetic epidemiology are (i) to robustly exca-
vate the architecture of a complex disease, and (ii) to use the results of an excava-
tion to estimate risks of the disease in individuals belonging to various popula-
tions with a high degree of precision. A complex disease is influenced by variants 
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in multiple genes. The impacts of these gene variants are usually different in indi-
viduals drawn from the same population. The impact of the same variant may 
also differ among individuals drawn from different populations. The extent of 
difference in impact depends on the ancestral histories of the populations, differ-
ences in environmental conditions prevailing in the populations and differences in 
the nature and extent of exposures among individuals in these populations. Thus, 
both excavation of genomic and environmental underpinnings and estimation of 
applicable risks are difficult problems.

It is obvious that unless genetic epidemiological studies encompass a large 
set of populations representative of global diversity – both genomic and environ-
mental diversity – the inferences drawn from such studies can hardly be trans-
lated widely for public health management. Many large genetic studies that have 
aimed to excavate determinants of diseases have been carried out in the past. How 
have we done in representing human global diversity in these studies? Terribly! 
In 2009, Need and Goldstein (2009) estimated that about 96% of participants in 
genome-wide association studies (GWAS) were of European descent, even though 
the global population only comprises about 16% of individuals of this group. The 
most adverse impact of non-representation of diversity in a genetic epidemiologi-
cal study is that the estimated risks from the study may be thought to be applica-
ble across all populations, when in fact these are not. The need to include larger 
ensembles of diverse populations has been emphasized (e.g., Bustamante, Bur-
chard, de la Vega, 2011). As a result of some course corrections, the estimate 
of 96% reduced, seven years later, to about 80% (Popejoy and Fullerton, 2016). 
The current DNA sequence databases are somewhat less distorted. The gnomAD 
database (https://​macar​thurl​ab.​org/​2017/​02/​27/​the-​genome-​aggre​gation-​datab​ase-​
gnomad/) includes ∼60% European sequences. But sampling bias is still evident. 
For example, less than 10% sequences are from individuals of African ancestry.

Does inclusion of diversity improve the ability to fully excavate the deter-
minants of a disease? The answer is yes; for both Mendelian and complex dis-
orders, as discussed later. A complex disease is often defined by the level of an 
associated biomarker. For example, an individual is diagnosed to be suffering 
from rheumatoid arthritis if the person’s level of C-Reactive Protein (CRP) is 
above a certain threshold. However, some gene variants found in populations 
of African ancestry lower the CRP level (Kocarnik et al., 2018). An individual 
from such a population carrying one of these genetic variants will be declared 
to be normal when in fact the individual is actually suffering from rheuma-
toid arthritis. Medication required for ameliorating the disease condition will 
not be provided to this person. Also, importantly, inferences of the architec-
ture of a complex disease inferred from case–control studies can be severely 
compromised if many ‘cases’ are systematically misdiagnosed as ‘controls’ in 
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some populations; misdiagnosis resulting from the phenomenon just described. 
Thus, unless populations with high levels of African ancestry are included in 
efforts to excavate determinants of rheumatoid arthritis, the efforts may remain 
incomplete or may even result in incorrect inferences.

Another similar example is in respect of beta-globin, a component of 
human hemoglobin. A variant (rs334) in the gene that encodes the beta-glo-
bin is known to determine whether an individual will have sickle-cell disease, 
a Mendelian disease, which is highly prevalent in some regions of the world, 
notably Africa. This variant is also known to lower HbA1c, a biomarker used 
to determine whether an individual is suffering from type-2 diabetes (Lacy 
et al., 2017). The variant also occurs at a fairly high frequency among Hispan-
ics/Latinos (Moon et al., 2019). If this fact is not taken into account, many His-
panics/Latinos will be declared as non-diabetic, when in fact they are diabetic. 
A study to excavate the determinants and estimate risk of type-2 diabetes will 
seriously suffer if Hispanics/Latinos are not included. Further, individuals car-
rying the rs334 variant will appear to have their blood glucose under control 
and hence will not be provided medication, even though in reality they may 
require medication.

As discussed earlier, various evolutionary forces, notably natural selection 
and random genetic drift, have resulted in large inter-population variations in 
frequencies of alleles at various loci. In GWA studies, association between a 
disease and a predisposing allele cannot be uncovered unless the study is con-
ducted in a population in which the allele has a reasonably high frequency. 
Since this cannot be known a priori, inclusion of a diversity of populations is 
essential. A compelling example is that a nonsense variant that causes prema-
ture termination of the PCSK9 gene was found to be associated with a dramatic 
reduction (28–40%) in the concentration of low-density lipoprotein (LDL) 
cholesterol (Cohen et  al., 2006). Elevated level of LDL cholesterol enhances 
the risk to coronary heart disease. The nonsense variant in PCSK9 is rare in 
populations of European ancestry, but is quite common in populations of Afri-
can ancestry, perhaps due to genetic drift (Horton et  al., 2007). Association 
between the PCSK9 variant and LDL cholesterol level was uncovered by study-
ing individuals with African ancestry; it would have been hardly possible to 
detect this association in other populations. Even though the discovery was 
made among individuals of a specific population, the benefits of the discov-
ery has been applicable to all. The finding that this naturally occurring variant 
adversely impacts on the level of PCSK9 protein, which in turn reduces LDL-
cholesterol level, prompted the initiation of a search for ways to inhibit the syn-
thesis of PCSK9 protein. The search has led to the identification of PCSK9 
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inhibitor drugs (Gouni-Berthold et  al., 2016; Roth et  al., 2016) that are now 
widely used to lower LDL cholesterol level to reduce the risk of heart disease.

Although the emphasis on analysis of DNA from diverse populations for 
disease gene mapping is correct, there is an interest twist to this. African popu-
lations being older than populations of other geographical regions show low 
levels of linkage disequilibrium (LD). Commercial DNA microarrays that are 
popularly used in GWA studies interrogate few SNPs from regions of strong 
LD. Resultantly, because of low LD in African populations, use of these com-
mercial microarrays reduces the statistical power to detect genome-wide asso-
ciations with common diseases in Africa. However, the low levels of LD in 
Africa it has been emphasized (Teo et al., 2010) will make it easier to localize 
the causal variants responsible for GWA signals of association, which is one of 
the major roadblocks for GWA studies of European populations.

4  Challenges

4.1  Identifying Focal Points

The inclusion of a diverse set of populations in a genetic epidemiological 
study introduces many challenges in study design, data collection and statistical 
analysis. We shall indicate some of these challenges in the context of a genome-
wide association study with a complex disease. For ease of exposition, let us con-
sider the key steps in a GWAS that are relevant to this discussion. First, based 
on sample size calculations, an adequate number of individuals – patients (cases) 
and normal individuals (controls) – are sampled, usually in equal numbers, from 
a population under study to provide the desired level of statistical power. Second, 
on each individual recruited into the study, data on a large number of clinical and 
exposure variables are collected, and a blood sample taken. Third, DNA of each 
individual is analyzed using a DNA microarray that generates genotypes of the 
individual at a large number of loci (of the order of several hundred thousand) at 
fixed points on the genome. Fourth, genotype imputation – that seeks to gener-
ate genotype information on the sampled individuals at a set of loci not directly 
genotyped using the microarray – is carried out to increase statistical power of 
the study. Fifth, the statistical significance of the difference in genotype propor-
tions – both directly observed and imputed – between the set of cases and controls 
is assessed by a contingency chi-squared test at individual loci and/or for haplo-
types (explained in some detail later) are done, after adjusting for differences in 
environmental exposures and other concomitant variables. Finally, inferences on 
genomic association are drawn after correcting the test results for multiple testing.
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4.2  Designing Content of DNA Microarrays

The nature of genome-wide genotype data on a DNA sample hinges criti-
cally on the content of the DNA microarray used. Normally, these microarrays 
are designed on the basis of data that have been collected in various population 
genetic studies. Initially, because of the high cost involved in the conduct of a 
GWA study, most studies were carried out on relatively homogeneous popula-
tions, such as those of Finland, Iceland, etc. In general, the focus was on Euro-
pean populations. The HapMap project (The International HapMap Consortium, 
2007) generated information on haplotype structures of populations. Because loci 
(single nucleotide polymorphic loci; SNP loci or simply SNPs) within a haplo-
type block are associated, a few SNPs, called tagSNPs, from a haplotype block 
usually suffice to capture (“tag”) the information on genomic variation within 
the block. These tagSNPs are usually placed on a DNA microarray by design, 
so that genotype data are generated on these tagSNPs. As the HapMap data have 
shown, the haplotype structures of ancestrally close populations are similar, tag-
SNPs from one population can be ported to an ancestrally close population. In 
other words, in populations recently derived from a common ancestral population, 
the tagSNPs of one population will remain informative in another population, in 
the sense of retaining their polymorphic status and also capturing information on 
haplotype blocks. Genotype information captured by tagSNPs can then be used 
to impute genotypes at the other loci within the haplotype block with reasonable 
accuracy in these populations (discussed later). However, problems arise when 
a DNA microarray enriched with tagSNPs of a population is used on an ances-
trally distant population. First, many loci on the microarray often turn out to be 
monomorphic, thereby resulting in wastage of resources. Second, because of dif-
ferences in haplotype block structure, many of the SNPs may not be as informa-
tive for imputing genotype information of unobserved SNPs, i.e., SNPs not placed 
on the microarray. These issues prompted genome scientists to consider working 
with the industry to develop microarrays that have greater applicability in multi-
ethnic GWA studies. A collaborative effort has resulted in the development of the 
Multi-Ethnic Global Array (MEGA). This collaboration was among the genom-
ics company Illumina, the Consortium on Asthma among African-ancestry Popu-
lations in the Americas (CAAPA), and PAGE II (Population Architecture using 
Genomics and Epidemiology) consortium (http://​www.​pages​tudy.​org). MEGA 
comprises a “backbone” set of loci derived from results of a few large multi-
ethnic studies and a custom-content set; for details see Bien et  al. (2016). The 
backbone set comprises SNPs included in previously designed arrays by Illumina 
(e.g., Infinium Human Core Bead Chip; African Diaspora Consortium Power 
Chip) and SNPs derived from DNA sequencing data from > 36,000 individu-
als in diverse ethnic groups, especially loss of function and splice variants. The 
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custom-content set comprises SNPs taken from published and unpublished stud-
ies, regulatory SNPs, etc. Subsequently, an improved microarray, the Expanded 
Multi-Ethnic Genotyping Array (MEGAEX), was developed to provide extensive 
genotyping coverage of European, East Asian, and South Asian populations. In 
sum, technologies for data generation are improving, and are expected to con-
tinue to improve, as data are collected using these technologies in larger numbers 
of multi-ethnic studies in diverse regions of the world. However, rapid statisti-
cal analysis of the data generated by GWA studies using the newer microarrays 
in different populations and feedback to the industry are required in order that 
the SNPs placed on the microarrays are polymorphic and imputation-informative 
in a larger set of ancestrally-diverse populations. By simultaneously using data 
from whole-genome or whole-exome sequencing studies, these statistical analyses 
can be done more profitably. One such example is a methodological improvement 
for selecting SNPs for microarray design applicable to multi-ethnic GWA studies 
developed by Wojcik et al. (2018).

Increasingly, there is a shift from using DNA microarrays to DNA sequenc-
ing in order to identify disease-associated variants. DNA sequencing will allevi-
ate many of the problems mentioned in this section. However, sequencing still 
remains expensive in most global regions and currently access to sequencing plat-
forms is constraining.

4.3  Challenges in Imputation

Genotype imputation relies on the observation that because of shared ances-
try of individuals within a population, or even between populations, there are 
stretches of DNA that are shared among individuals. This sharing results in the 
formation of haplotype blocks, stretches of loci at which individuals share geno-
types. The association of genotypes at loci within a haplotype block allows for 
inferring of genotypes at an unobserved locus based on information of genotypes 
at directly observed loci. A good description of the principles and methods of gen-
otype imputation is available in Li et al. (2009). Depending on the ancestral his-
tories of populations, the lengths of haplotype blocks can be quite variable across 
populations, as we have alluded to earlier. Haplotyping can be done using heuris-
tic methods (Clark, 1990) or by the maximum-likelihood method using the EM 
algorithm (Excoffier and Slatkin, 1995). Imputation methods (Shi et  al., 2019), 
with some methodological differences, have been encoded in packages of which 
the popular ones are Beagle4.1(https://​facul​ty.​washi​ngton.​edu/​brown​ing/​beagle/​
beagle.​html), IMPUTE2 (http://​mathg​en.​stats.​ox.​ac.​uk/​impute/​impute_​v2.​html), 
MACH (http://​csg.​sph.​umich.​edu/​abeca​sis/​mach/), Minimac3 (http://​genome.​sph.​
umich.​edu/​wiki/), and SHAPEIT2 (https://​mathg​en.​stats.​ox.​ac.​uk/​genet​ics_​softw​
are/​shape​it/). The overall performance of these packages are similar; IMPUTE2 is 
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more time-consuming than the others but its imputation-accuracy is also slightly 
higher. Successful and accurate genotype imputation, critically hinges on the 
choice of a reference population with well-characterized haplotypes. The haplo-
type data from the reference population are used to impute genotypes of individu-
als of the GWAS study. Well-characterized and dense haplotype data are avail-
able only for a limited number of global populations; 1000 Genomes phase 3 
data (Sudmant et al., 2015) and Haplotype Reference Consortium (HRC) (McCa-
rthy et al., 2016) data, are currently widely used. If the cases and controls of the 
GWAS study are drawn from a study population which is different from one of the 
reference populations, then the reference population that is used for imputation is 
the one that is genetically the closest to the study population. However, in a multi-
ethnic study, if different reference populations are used to impute genotypes, then 
different sets of genotypes can be imputed possibly with differing levels of accu-
racy. This can pose a great problem in combined association analysis. Innovative 
statistical methods have been conceptualized and implemented, including the use 
of mixtures of reference panels (Huang et al., 2009; Schurz et al., 2019); however, 
further statistical improvements are necessary.

4.4  Challenges in Meta‑analysis

The case–control association methodology in GWA studies is fairly standard. 
Having obtained reliable association results, various laboratory experiments are 
performed to identify a set of causal SNPs. However, the allelic effects of even 
these causal SNPs may vary across populations, primarily, but not exclusively, 
for two reasons: (a) interactions with environment and differing levels of envi-
ronmental exposures among populations, and (b) variation in allele frequencies 
among populations. Meta-analysis is often performed to estimate the ‘true’ allelic 
effects, by pooling results of multiple populations. Two basic models are popular 
in meta-analysis; fixed effects and random effects. The fixed effects model, that 
essentially assumes that all the studies have been performed in the same popula-
tion because allelic effects are considered to be equal in all populations, is clearly 
untenable in a multi-ethnic context. The random effects model is also of limited 
applicability because it is expected that study populations derived from the same 
ancestral population will show less heterogeneity than those that are derived from 
distinct ancestral populations. In a multi-ethnic study, it is more likely that subsets 
of study populations will be derived from different ancestral populations. To over-
come the limitations arising from assumptions that underlie the random effects 
model, Doi et al. (2015) had proposed an inverse variance quasi-likelihood-based 
alternative to the random effects model. To our knowledge, this model has not 
been applied to meta-analysis of multi-ethnic GWA studies. The expected nature 
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of heterogeneity among populations vis-à-vis their ancestral derivation, as men-
tioned earlier, has been addressed by Morris (2011). He has developed a meta-
analysis methodology that takes into account the observation that populations 
derived from the same ancestral population, and hence closely clustered, are 
expected to show similar allelic effects, while those that are derived from differ-
ent ancestral populations will belong to distinct clusters. His method relies on a 
Bayesian partition model (Knorr-Held and Rasser, 2000; Denison and Holmes, 
2001) and takes into account differences in local LD structures among popula-
tions. The allelic effects of a variant are assumed to be the same in populations 
belonging to a cluster, but the effects may be variable across clusters of popula-
tions. In some sense, this model is a hybrid of fixed- and random-effects models. 
A software package MANTRA incorporating this method has been developed. 
Although there have been some applications of this method (Li and Keating, 
2014), the number of applications has been limited. With more empirical experi-
ence, the usefulness of this method will become more apparent. Formulation of 
alternative statistical methods is also required.

4.5  Risk Estimation

Fisher (1918) had introduced the concept of estimating the probability that 
an individual will possess a polygenic trait. The concept has been resurrected 
some years ago (e.g., Wray et al.. 2007) and a method has been suggested and 
refined for calculating the risk of a complex disease for an individual. A score, 
called the Polygenic Risk Score (PRS), is calculated (Choi et al., 2020). Briefly, 
a the PRS is constructed using information derived from a GWAS. A GWAS 
provides estimates of effect sizes of risk alleles at significantly associated loci. 
Using the effect sizes or a function of these effect sizes as weights, a person’s 
PRS is calculated as the weighted sum of the risk allele counts (0, 1 or 2) at 
the significant loci detected in GWAS. Various regression-based methods have 
been described to estimate effect sizes. Further, since loci within a haplotype 
block are associated, SNPs are “clumped” (or, “pruned”) so that the retained 
SNPs are not significantly associated. Then, “thresholding” is done to remove 
variants with a p-value larger than a chosen level of significance (p > pT). The 
PRS has been widely applied (see Torkamani et  al., 2018; Lewis and Vas-
sos, 2020). However, it has been emphasized that unrestricted use of the PRS 
may exacerbate health disparities (Martin et  al., 2019). This is because the 
effect sizes of risk variants are estimated from GWA studies that have primar-
ily been conducted on populations of European ancestry. Effect sizes of these 
variants be very different in non-European populations, that can lead to hugely 
different risk estimates. Since PRSs are increasing being used for clinical 
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decision-making (Martin et  al., 2019), their use without exercising adequate 
caution may actually be harmful. The key problems that plague the use of PRSs 
in multi-ethnic settings are exactly the same as those discussed in earlier sec-
tions. Similar solutions have also been suggested. For example, Grinde et  al. 
(2019) have suggested that allele-weighting may use results of trans-ancestry 
meta-analysis to improve prediction accuracy. Marquez-Luna et al. (2017) has 
suggested a method (MultiPRS) that combines estimates of effect sizes based on 
large European training data with estimates based on a small data set from the 
non-European target population. The authors have shown that better predictive 
value is obtained in the target population by this combined approach. In spite of 
these methodological advances, problems persist; a detailed discussion is avail-
able in Kaplan and Fullerton (2022).

5  Conclusion
Undoubtedly, the study of diverse populations is of great value in decipher-

ing the architectures of diseases. The understanding of the etiologies of complex 
diseases will remain incomplete unless more inclusive studies on populations of 
diverse ancestries living with a diversity of environmental exposures are under-
taken. However, because of differences in evolutionary histories of extant popula-
tions, the profiles of the genomes of individuals drawn from diverse populations 
impact on the efficiency of current methodologies for understanding diseases. The 
only way to resolve these problems and to improve the robustness of conclusions 
and predictions from multi-ethnic studies is to design the studies carefully and use 
efficient and innovative statistical methods of data analysis.
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