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Abstract

The log-return of an asset is the change in the asset price, measured in natural
logarithmic scale, over a certain time period. We introduce a mathematical
model for long term asset return. This model is a generalization of the well
known random walk model and provides the mathematical basis for normal
approximation and i.i.d. bootstrap approximation of the long-term return
distribution and its quantiles. Our results yield estimators of long term value
at risk (VaR) and median shortfall (MS) which are well known measures of
market risk. Extensive simulations suggest that the proposed estimators
outperform a number of existing estimators of VaR and MS especially over
a time horizon of at least one year. Unconditional backtest by Kupiec (J.
Derivat. 3, 73–84 1995) based on the annual returns of the Nifty 50 index of
the national stock exchange in India, crude oil and gold prices suggests that
the proposed model yields reliable estimates of the one-year Value-at-Risk
and Median-Shortfall for these assets.

AMS (2000) subject classification. Primary 62G05; Secondary 91B28.
Keywords and phrases. Long term asset return model, normal and bootstrap
approximation of return distribution, value-at-risk, median-shortfall,
back-testing.

1 Introduction

Returns in a portfolio arise from movements in market prices of assets, viz.
stocks, commodities, market indices etc. Asset returns cannot be predicted
perfectly and the distribution of returns is unknown (See Ruppert (2004),
pages 78 and 79). Modeling return distribution is an important problem in fi-
nance. Tolikas and Gettinby (2009) studied the suitability of the Generalized
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Extreme Value (GEV), Generalized Pareto (GP) and Generalized Logistic
(GL) distributions for modeling the distribution of the extreme daily share
returns in Singapore Stock Exchange over the period 1973 to 2005. Kass-
berger and Kiesel (2006) investigated multivariate extension of the Normal
Inverse Gaussian (NIG) distribution for capturing the distributional features
of hedge fund returns. The extreme quantiles of the return distribution are
important in the context of market risk estimation and also have impor-
tant applications in portfolio optimization. See for instance (Ruppert, 2004;
Allen et al., 2013).

Value-at-Risk (VaR) and Median-Shortfall (MS) are two well known
measures of market risk which are required to determine regulatory capi-
tal requirements. See for instance, Cont (2001), Danielsson (2002), Rup-
pert (2004), So and Wong (2012), & Santomila et al. (2018) and references
therein. Under Solvency II standard model, VaR has been chosen as a widely
reported risk measure in financial markets (See Santomila et al. (2018)). Sol-
vency II is a revision of standards for evaluating the financial situation of
European insurers intended to improve risk measurement and control (see
Santomila et al. (2018)). For any 0 < p < 1 and m > 0, Goh et al. (2012)
interpreted the 100p percent VaR of a portfolio during (t, t+m] as the least
amount of capital or cash necessary to be added with the portfolio at time
t + m to ensure that the augmented return (portfolio return plus the cash
added) is positive with probability at least p. In this sense, VaR is a mea-
sure of capital adequacy of a portfolio over a period of length m and with a
certain confidence level p. The VaR of a portfolio turn out of be the extreme
quantiles of the return distribution. See So and Wong (2012) and Dutta and
Biswas (2017) and references therein. However, there are several demerits
of the VaR. It is not a coherent risk measure, as it is not sub additive. Also,
VaR does not provide any information about the size of potential loss when
it exceeds the VaR level. Considering such issues, median shortfall (MS) was
introduced. It is the median of the conditional loss distribution, given the
event that the loss exceeds the VaR (see So and Wong (2012)). Therefore
estimation of VaR and MS essentially reduce to the problem of estimation of
extreme quantiles of the return distribution (See Dutta and Biswas (2017)).

Let Pt be the price of a financial asset at time t. Let

Xt,m = log

(
Pt+m

Pt

)
.

Xt,m is referred to as the return (in log-scale) during a time period (t, t+m].
The number m > 0 is referred to as the time scale and it can be measured
in weeks, days, hours or minutes. Xt,m is widely used in finance to represent
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the revenue earned from investing in an asset over a time period of length
m. See for instance, Ruppert (2004), Cont (2001), & Goh et al. (2012) and
the references therein.

The distribution of Xt,m is in general unknown. There seems to be no
one probability model that provides best fit to all type of asset return data
( values of Xt,m) for different time scales (i.e. different choices of m). See
Cont (2001). The statistical properties of short term (i.e. small m) and
long term (i.e. large m) return data are different. For instance, Cont (2001)
reported that for a wide variety of assets the data on price fluctuations over
very small time scales seem to be highly leptokurtic and negatively skewed.
The kurtosis of the marginal distribution seems to be very high for m equal
to 5 to 30 minutes (see Cont (2001, page 226)). However, as the time scale
m → ∞ the empirical distribution of the asset returns resembled a normal
distribution. This phenomenon was referred to as Aggregational Gaussianity
by Cont (2001). But no proof of this observation seems to be available.

Most of the existing research papers seem to focus on modeling short
term returns (e.g. daily returns) or estimation of short term VaR or MS (for
instance daily VaR and MS). Long-term return refers to the return generated
after holding an asset for a substantial period of time. For example, in
India equity returns exceeding one year is considered as long-term. In the
90s JP Morgan developed a VaR estimation method which was effective in
measuring short term risk in the banking industry. Dowd et al. (2004) &
Fedor (2007) discuss various problems of JP Morgan’s method in the context
of measuring longer-term risks. These studies show that the long-term VaR
is more difficult to estimate than the short-term VaR. Our model enables
estimation of long term VaR and MS.

Dowd et al. (2004) have mentioned the demerits of the “square-root
rule” of computing the VaR over m days (say VaR(m)) by multiplying
the one day VaR with

√
m. The authors have argued that the formula

VaR(m)=
√
mVaR(1) leads to over estimation of the VaR over m days. Un-

der the assumption that the daily returns follow log-normal distribution with
parameters μ and σ, Dowd, Blake, and Cairns obtained the following formula
for the 100p percent VaR of the absolute returns over m days.

V aR(m) = P − exp
(
μm+ α1−pσ

√
m+ lnP

)
= P

(
1− exp

(
μm+ α1−pσ

√
m
))

, (1.1)

where P is the current price of the portfolio or asset and α1−p is the (1−p)th
quantile of N(0, 1) distribution, 0 < p < 1. Dowd et al. (2004) obtained the
formula Eq. 1.1 for the VaR(m) under the assumption that the one day re-
turns follow log-normal distribution. But the distribution of daily returns are
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in general not known. Obtaining formulae of VaR(m) for other probability
distributions such as the Student’s-t, GEV, GP and GL distributions, which
can fit daily return data, appear to be quite challenging. Our model for long
term return yields asymptotic approximations to m period VaR and MS for
large m, under very general conditions on short term 1-period returns.

We provide a probabilistic model which theoretically justifies the gaus-
sianity of Xt,m for large m. We shall refer to the asymptotic distribution
of Xt,m for large m as the long term return distribution. To obtain this
distribution, we partition the interval (t, t + m] into a m number of non-
overlapping subintervals {(t+ i− 1, t+ i]}i=1,2,··· , m, each of length 1. Since
the log- returns are additive, we have the following equation

Xt,m = log

(
Pt+m

Pt

)
=

m∑
i=1

Xt+i (1.2)

where Xt+i = log

(
Pt+i

Pt+(i−1)

)
, i = 1, · · · ,m.

Cont (2001) referred to the returns over small m time scales as fine. The
return over large m is referred to as coarse. Since Xt,m is a sum of m many
fine returns, a suitable Central Limit Theorem can be used to approximate
the asymptotic distribution of centered and scaled Xt,m for m → ∞ provided
the fine returns satisfy some common properties. Our asset return model
thus consists of appropriate assumptions on the fine returns {Xt+i}i=1, 2, ···
in line with the empirical properties of fine returns as observed by Cont
(2001).

Our Lemma 1 explains Cont’s Aggregational Gaussianity observation,
i.e. the distribution of long term returns can be approximated by the normal
distribution. The normal approximation naturally lead to approximation of
quantiles ofXt,m for largem. See for instance, the quantile estimator Eq. 2.2.
In Lemma 2 we show that the distribution of Xt,m can be approximated by
the classical i.i.d. bootstrap for large m as well.

This paper is divided into five sections. In Section 1, we introduce a
model (viz. Equation 1.2 and Assumption 1) for the long term return dis-
tribution and state and prove Lemmas 1 and 2 which provide mathematical
basis for normal approximation and i.i.d. bootstrap approximation of the
long-term return distribution and its quantiles. In Section 2, we have dis-
cussed the problem of estimating the long term VaR and MS. Equations 2.2
and 2.5 are the proposed estimators of VaR and MS over a long time period.
Also we propose bootstrap based VaR and MS estimators given by Eqs. 2.12
and 2.13. We describe seven other VaR and MS estimators including the
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“square-root of time rule (SRTR)” based estimator. In Section 3, using
Monte Carlo simulations, we compare the mean squared errors (MSE) of the
nine VaR and MS estimators for different choices of n (sample size of long
term returns), m (duration of long term returns) and for three different time
series models for the fine returns data. The simulation results are reported
in Tables 1, 2, 3 and 4. The results suggest that the proposed estimators
Eqs. 2.2, 2.5, 2.12 and 2.13 outperform the other estimators of 95 percent
VaR and MS for almost all choices of n and m and the time series model
for fine returns. The SRTR based estimator performs well for fine returns
data generated by GARCH(1,1) process. In the SRTR method a probabil-
ity distribution is fitted to the fine return data to estimate the short term
VaR, which is then multiplied by

√
m to estimate the m period VaR (see

Spadafora et al. (2014)). If the marginal distribution of the fine returns is
different from the probability distribution fitted to the fine return data in
the SRTR method, the SRTR VaR estimator performs poorly. The perfor-
mance of the SRTR also deteriorates in the presence of dependence in the
fine returns data. The extreme value theory based VaR estimator proposed
by Drees (2003), Sfakianakis and Verginis based VaR estimator (Sfakianakis
and Verginis, 2008) and kernel based estimators of the VaR perform poorly
in comparison to the proposed central limit theorem based VaR estimator
Eq. 2.2 and bootstrap based VaR estimator Eq. 2.12, for m ≥ 250. The
MSE of the proposed estimators Eqs. 2.2, 2.5, 2.12 and 2.13 do not seem to
fluctuate widely under different time series models. In contrast, the perfor-
mance of the other estimators seem to be sensitive to the underlying model
for the fine return data.

In Section 4, we describe the unconditional backtest by Kupiec (1995).
We use the proposed estimators Eqs. 2.2, 2.5, 2.12 and 2.13 and a number
of other estimators, viz. the sample quantile, Sfakianakis and Verginis esti-
mator, extreme value theory based estimator and SRTR based estimator to
estimate the 95 percent annual VaR and MS of the Nifty 50 index based on
the real data reported by Dutta and Das (2018). We also use the six estima-
tors to estimate the 95 percent annual VaR and MS of the crude oil and gold
prices based on the historical data available in the Yahoo Finance website.
Our analysis suggests that while the VaR and MS of crude oil annual returns
are comparable to the same for the NIFTY 50 annual returns, the annual
VaR and MS of gold returns are much smaller than the same for NIFTY 50
index. This indicates gold exhibits the least market risk over a duration of
one year in comparison to the crude oil and NIFTY 50 index. In Appendix,
viz. Appendix we report the Tables 1–10 containing the simulation results,
real data and VaR and MS estimates based on real data.
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1.1. Long Term Return Distribution and Aggregational Gaussianity As
m → ∞, Eq. 1.2 represents a model for long term return of an asset for
which the return history has been recorded for a large number of times in
the past. This model is incomplete without specifying assumptions on the
fine returns {Xt+(i−1)}i=1,2,3,···. Before we state our assumptions, we note
the empirical observations reported by Cont (2001):

(i) (linear) auto-correlations of asset returns are often insignificant, except
for very small intra-day time scales (say 20 minutes);

(ii) different measures of volatility such as absolute and squared daily re-
turns, display a positive auto-correlation over several days. This is
known as volatility clustering ;

(iii) The marginal distribution of the fine returns exhibit Pareto-like tail or
properties similar to the Student’s-t distribution with four degrees of
freedom. The marginal distribution of the fine returns seemed to have
finite variance, but infinite fourth moment.

Exact specification of the marginal distribution of fine returns is not
possible and we make the following assumptions in line with the above. We
refer to the process {Xt+i−1}i=1,2,··· as the fine return process and make the
following assumptions regarding the fine return process.

Assumption 1. For any t > 0, {Xt+i−1}i=1,2,··· is a stationary strongly
mixing process, with exponential mixing rate, satisfying

a. 0 ≤ E
[
|Xt+i−1|2| log |Xt+i−1||1+δ

]
< ∞, for some δ > 0,

b. Corr(Xt+i−1, Xt+k−i+1) = 0 ∀i, k = 1, 2, · · ·
c. 0 < Corr(|Xt+i−1|, |Xt−i|) and Corr(X2

t−i+1, X
2
t−i)∀i = 1, 2, · · · .

Equation 1.2 and Assumption 1 represent our proposed model for m−period
return.

Under Assumption 1, E(Xt,m) = mE(Xt) and V ar(Xt,m) = mV ar(Xt).
The volatility of the m period returns increase with increase in m. From
Eq. 1.2 we get

Xt+k,m =
m∑
i=1

Xt+k+i−1. (1.3)

Then under Assumption 1, {Xt+k,m}k=0,1,2,.... are identically distributed with
common marginal distribution function Fm. Xt+k,m denotes the return dur-
ing (t+ k, t+ k +m].
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The above mentioned assumption viz. Assumption 1 are supported by
several real datasets. For instance, Dutta and Das (2018) published data on
daily log-returns of the Nifty 50 index in national stock exchange (NSE) in
India for the financial years (FY) from 1995-96 to 2017-18. The Augmented
Dickey Fuller (ADF) Test suggests that the NIFTY 50 data is stationary.
The marginal variance of these 5692 observations in the data is less than 3.
The auto-correlation of the daily log-returns of the Nifty 50 index seem to
be insignificant. But the absolute and the squared daily log returns exhibit
significant auto correlation.

The historical data on daily closing prices of crude oil (per barrel) and
gold (per troy ounce) in USD are obtained from Yahoo Finance website
(https://finance.yahoo.com/quote/CL%3DF/history?p=CL%3DF, https://
finance.yahoo.com/quote/GC%3DF/history?p=GC%3DF) from FY 2001-
02 to FY 2020-21. Based on the daily closing prices we obtain the log returns.
The daily log returns data of crude oil prices and gold prices exhibit similar
empirical properties as that of NIFTY 50 daily log returns. For instance,
the datasets are stationary and the auto correlation of the daily log returns
is insignificant but the squared daily log returns exhibit significant positive
auto correlation. Further, the set of observations of crude oil log returns
(5004 observations) and gold log returns (5009 observations) datasets seem
to have finite marginal variance (less than 2). These observations support
the Assumption 1 for the fine return process.

A sequence of i.i.d. random variables with finite third moment satisfies
the conditions a., b., but not c.. The condition c. under Assumption 1 is in
line with the phenomenon of volatility clustering observed by Cont (2001).
The following processes are non-trivial example of {Xt}t=1,2,··· satisfying
Assumption 1.

Example 1. Let {Pt}t=1,2,··· be a sequence of positive valued random
variables such that log(Pt) follows an autoregressive process defined as
follows

log(Pt) = θεt−1 +
√
1− θ2εt, 0 < θ < 1,

where {εt}t=1,2,··· is a sequence of i.i.d. N(0, 1) random variables, in-
dependent of {Pt}t=1,2,···. Further let {Yt}t=1,2,··· be a sequence of i.i.d.
random variables (independent of {Pt}t=1,2,··· and {εt}t=1,2,···) such that
P (Yt = 1) = 0.5 and P (Yt = −1) = 0.5 (for instance, one can look at
{Yt}t as the outcomes of a sequence of coin tosses). Define

Xt = YtPt.
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Then

Cov (Xt+i−1, Xt−i+k+1) = 0, ∀i, k = 1, 2, · · ·
Cov (|Xt+i−1|, |Xt−i|) = Cov (Pt−i+1, Pt−i) = e

(
eθ

√
1−θ2 − 1

)
,

Cov (|Xt|, |Xt−k|) = 0, k ≥ 2.

Example 2. Let {Pt}t=1,2,··· be a sequence of positive valued random
variables such that log(Pt) follows an autoregressive process defined as fol-
lows

log(Pt) = θ log(Pt−1) +
√
1− θ2εt, 0 < θ < 1,

where {εt}t=1,2,··· is a sequence of i.i.d. N(0, 1) random variables, indepen-
dent of {Pt}t=1,2,···. {Yt}t=1,2,··· be a sequence of i.i.d. random variables as
defined in Example 1. Define Xt = YtPt. Then {Xt+i−1}i=1,2,··· satisfies
Assumption 1. For instance, it is easy to verify that in the above Example 1

Cov (Xt, Xt−1) = 0, Cov (|Xt|, |Xt−1|) = Cov (Pt, Pt−1) = e
(
eθ − 1

)
.

Example 3. Let {Xt}t=1,2,··· follow a stationary GARCH(1,1) process
defined as follows

Xt = σtZt,

σ2
t = C + αX2

t−1 + βσ2
t−1,

where C,α, β > 0 and α + β < 1. {Zt}t=1,2,··· is a sequence of martin-
gale differences with mean=0 and variance= 1. Posedel (2005) has studied
properties of the GARCH(1, 1) model in detail. Under the assumptions that
α + β < 1 and β2 + 2αβ + 3α2 < 1, {Xt} is a stationary uncorrelated pro-
cess with V ar(Xt) =

C
1−α−β , finite fourth moment and {X2

t } is an ARMA
process with positive auto-correlation. Hence Assumption 1 are satisfied.

Using Central Limit Theorem (CLT) for Strongly Mixing Sequences of
Random Variables by Herrndorf (1985) we have the following result

Lemma 1. Let {Xt+i−1}i=1,2,··· be a α-mixing stationary process satisfy-
ing Assumption 1. Then

Xt,m −mE(Xt)√
mV ar(Xt)

→D N(0, 1) as m → ∞,

where m is the number of fine (short-term) returns recorded within the time
scale m.
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Remark 1. 1. Lemma 1 explains Cont’s Aggregational Gaussianity ob-
servation, i.e. the distribution of long term return can be approximated by
the normal distribution.

2. Let Qm,p denote the 100pth percentile of the marginal distribution
of Xt,m. Lemma 1 motivates the following estimator estimator of Qm,p for
large m

Q̂m,p = mE(Xt) +
√
mV ar(Xt)Φ

−1(p), 0 < p < 1. (1.4)

E(Xt), V ar(Xt) are approximated by the mean and the variance of the m
fine returns.

The following lemma ensures that, one can also use the i.i.d. boot-
strap method by Efron (1979) to approximate the sampling distribution of
Xt,m−mE(Xt)√

mV ar(Xt)
for large m.

Lemma 2. Let {Xt+i−1}i=1,2, ··· be a sequence of stationary random vari-
ables satisfying Assumption 1 and that E

(
|Xt|3

)
< ∞. Then as m → ∞,

X∗
t,m −Xt,m√

mSm
→D N(0, 1), almost surely,

where X∗
t,m =

∑m
i=1X

∗
t+i−1. X

∗
t , X∗

t+1, · · · , X∗
t+m−1 are i.i.d. draws from

the empirical distribution of Xt, Xt+1, · · · , Xt+m−1. And Sm is the sample
standard deviation of Xt, Xt+1, · · · , Xt+m−1.

Proof.Using the arguments in the proof of Theorem 2.2 of Lahiri(Lahiri,
2003), page 21) we see that it is enough to show that under Assumption 1
and the assumption that E

(
|Xt|3

)
< ∞, as m → ∞

S2
m → V ar(Xt),

1

m3/2

m∑
i=1

|Xi|3 → 0, almost surely. (1.5)

A stationary strongly mixing process is a stationary ergodic process (see
Rieders (1993)). Hence, Under Assumption 1, {Xt}t∈Z is a stationary Er-
godic process with finite marginal variance, and the Birkhoff ergodic theorem
ensures that as m → ∞

1

m

m∑
i=1

Xt+i−1 → E(Xt),
1

m

m∑
i=1

X2
t+i−1 → E(X2

t ), almost surely

Consequently Eq. 1.5 is proved, and this completes the proof.

Lemma 2 implies that Φ−1(p) in Eq. 1.4 can be approximated by the pth

quantile of of the distribution of
X∗

t,m−Xt,m√
mSm

to obtain Qm,p.
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2 Estimation of VaR and MS

A risk measure ρ is a functional of a random variable representing return
of a portfolio over a certain holding period. In this paper Xt,m is the ran-
dom variable representing m period return. A law invariant risk measure is
functional of the distribution function of the marginal return distribution.
The Value at Risk (VaR), and the Median Shortfall (MS) are two well known
law-invariant risk measures (see Dutta and Biswas (2017)). Goh et al. (2012)
defined the VaR as follows.

Definition 1. For 0 < p < 1, the 100p percent VaR during (t, t + m]
denoted by V aRm,p is a number satisfying

V aRm,p = inf{x ≥ 0 : P (Xt,m + x ≥ 0) ≥ p}.

Remark 2. Since P (Xt,m + x ≥ 0) = P (Xt,m ≥ −x), it is easy to verify
that

V aRm,p = −Qm,1−p, (2.1)

where is the Qm,p is the p−th quantile of the marginal distribution of Xt,m,
i.e. Qm,p = inf{y : Fm(y) ≥ p}.

Under the Assumption 1 and that m → ∞, using Eq. 1.4 we can approx-
imate V aRm,p by the following estimator

̂V aRm,p = −Q̂m,1−p = −mE(Xt)−
√
mV ar(Xt)Φ

−1(1− p). (2.2)

E(Xt) and V ar(Xt) are in general unknown. But under Assumption 1, these
parameters can be estimated consistently from the observed fine returns.
For instance, we estimate E(Xt) and V ar(Xt) by the mean and variance of
the observed fine returns. One of the reviewers suggested to take into ac-
count an empirically observed property that the conditional second moment
of asset returns is time-varying while estimating the VaR. The conditional
variance of Xt+i, given Xt, Xt+1, · · · , Xt+i−1, can be modeled by a sta-
tionary GARCH model satisfying Assamption 1. For instance, in Example 3
the GARCH(1,1) satisfies the Assumption 1 and takes into account the time
variation of the conditional variance of fine returns. Under the GARCH(1,1)
model in Example 3, V ar(Xt) =

C
1−α−β and C, α, β can be estimated by

maximum likelihood method based on the fine returns. However, if we re-
place V ar(Xt) in Eq. 2.2 by this formula the resulting VaR estimate is not
robust i.e. mean squared error (MSE) of the resulting estimator varies widely
for different time series models for the fine return process. For example if
we fit a GARCH(1,1) model to the time series in Example 1 and estimate
V ar(Xt) in Eq. 2.2 by C

1−α−β , the resulting VaR estimate performs very
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poorly (large mean squared error) in comparison to the proposed VaR esti-
mator obtained by replacing E(Xt) and V ar(Xt) in Eq. 2.2 by the sample
mean and variance of the fine returns. Therefore, we do not recommend
estimating V ar(Xt) in Eq. 2.2 by fitting a specific model to the fine return
time series, as the resulting VaR estimate is a function of the model param-
eters and is highly sensitive to the choice of the model for fine returns. In
contrast, the VaR estimator obtained by estimating E(Xt) and V ar(Xt) in
Eq. 2.2 by the sample mean and variance of the fine returns is a nonpara-
metric estimator of VaR and does not depend on the model generating the
fine return process.

Remark 3. Since Xt,m = log
(
Pt+m

Pt

)
and Qm,p is the 100pth percentile

of the distribution of Xt,m, the 100pth percentile of the distribution of

m−period absolute return
(
Pt+m

Pt
− 1

)
is equal to exp{Qm,p} − 1. Con-

sequently under Assumption 1 and for large m, we can approximate 100p-
percent m-period VaR in absolute scale by the following estimator

− (exp{Qm,1−p} − 1) = 1− exp {mE(Xt) +
√
mV ar(Xt)Φ

−1(1− p)},
(2.3)

which is in fact equal to the formula Eq. 1.1 obtained by Dowd et al. (2004)
for P = 1, μ = E(Xt) and σ =

√
V ar(Xt). Dowd, Blake, and Cairns

(Dowd et al., 2004) obtained Eq. 1.1 under the assumption that the daily or
1− period returns follow log-normal distribution with parameters μ and σ.
In contrast, Eq. 2.3 is obtained under Assumption 1 without requiring the
knowledge of the exact distribution of the fine returns.

One of the demerits of VaR is that it does not provide any information
about the size of the potential loss during a time scalem when the loss within
that period falls below the VaR level. The conditional loss distribution,
given −Xt,m > V aRm,p, is in general unknown. Also it is not a cohorent
risk measure (see So and Wong (2012)). To overcome these issues, So and
Wong (2012) introduced another risk measure named median shortfall (MS).

Let Θp denote the distribution function of the conditional loss distribu-
tion, given that the loss −Xt,m exceeds the VaR level, is defined as

Θp(x) =

{
P{−Xt,m ≤ x|| −Xt,m>V aRm,p}, if x > −V aRm,p

0, otherwise.
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The median of this distribution Θp is called the median shortfall (MS). It is
straightforward to verify that

Θp(x) =

{
1− Fm(−x)

1−p , if x ≤ −V aRp

0, otherwise.
(2.4)

where Fm is the marginal distribution function Xt,m. Fm is unknown. But
Lemma 1 implies that that as m → ∞ Fm can be approximated by normal
distribution under Assumption 1.

Definition 2. The 100p percent MS, denoted by MSm,p, is defined as
follows

MSm,p = inf{x : Θp(x) ≥ 0.5}.
By the above definition, the MS is the median loss when the loss ex-

ceeds the VaR (see So and Wong (2012)). Therefore, MS gives the median
depreciation of the asset value during a time scale m, under the worst-case
scenario quantified by the m− period VaR.

The following Lemma is a direct consequence of the definition of MS and
Eq. 2.4.

Lemma 3. Let Fm be a continuous distribution function. Then

MSm,p = V aRm,0.5+0.5p.

Therefore for any 0 < p < 1, an estimator M̂Sm,p of the 100p percent
MS is defined as follows

M̂Sm,p = ̂V aRm,0.5+0.5p = −Q̂m,1−0.5(1+p) = −mE(Xt)

−
√
mV ar(Xt)Φ

−1(1− 0.5(1 + p)). (2.5)

2.1. Other Non-Parametric VaR and MS Estimators Let X1,m, X2,m, ...,
Xn,m be identical copies of Xt,m with distribution function Fm. Let X(1),m,
X(2),m, ..., X(n),m denote the corresponding order statistics. The m−period
100p percent V aR is equal to −Qm,1−p (see Eq. 2.1), where 0 < p < 1.
Equation 2.1 and Lemma 3 imply that the 100p percent MS is equal to
−Qm,1−0.5(1+p). Therefore the problems of estimating the m−period 100p
percent V aR and MS are essentially the problems of estimating −Qm,1−p

and −Qm,1−0.5(1+p) based on X1,m, X2,m, ..., Xn,m.
Dutta and Biswas (2017) have reviewed the performance of a number

of non-parametric quantile estimators which can be used to estimate Qm,p.
Following are some of the estimators which performed well in their simulation
study.
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Sample Quantile and Kernel Quantile Estimator The pth sample
quantile X(�np�+1),m is a natural estimator of Qm,p. Asymptotic properties
of the sample quantile are well known under i.i.d. assumption (see Sherfling
(1980)). Asymptotic properties of the sample quantile has also been studied
extensively under various dependence assumptions. See, for instance, Sun
(2006), Wu (2005), & Wang et al. (2011) and references therein. Under
strong mixing dependence (with polynomial mixing rate) assumption, Wang
et al. (2011) obtained Bahadur representation of sample quantile, which
provides insight into the rate of strong convergence of the sample quan-
tile. Dutta and Biswas (2017) have reviewed these properties of the sample
quantile in detail. We denote the sample quantile estimator by SQp .

A kernel estimator of Qm,p is defined as follows

Q̂m,p = inf
{
x : F̂m(x) ≥ p

}

where F̂m is a kernel distribution function estimator (see Dutta and Biswas
(2017)) which is defined as follows

F̂m(y) =
1

n

n∑
i=1

K

(
y −Xi,m

hn

)
,

where K is the distribution function known as the kernel and {hn} is a
positive sequence referred to as the bandwidth. In the kernel-based method,
the main challenge lies with the selection of bandwidth hn. Polanski and
Baker (2000), Chen and Tang (2005), & Alemany et al. (2013) provide some
choices of hn. Using the “kerdiest” package in R software one can find the
kernel distribution function estimate with bandwidth formula proposed by
Polanski and Baker (2000) as default which is given by,

hn =

(
ρ(K)

−nμ2
2(K)ψ̂2(g2)

)1/3

,

where ρ(K) = 2
∫∞
−∞ uw(u)G(u) , μ2(K) =

∫∞
−∞ u2w(u)du and ψr(g) =

1
n2gr+1

∑n
i=1

∑n
j=1 L

r
(
ui−ug

g

)
, r ≥ 2 an even integer and g2=

(
2L(2)(0)

−nμ2
2(L)ψ4

)1/5
.

L is a kernel function not necessarily equal to kernel function w and G(u) =∫ u
−∞w(t)dt.

We denote the Polansky and Baker quantile estimator by PBp.
Chen and Tang (2005) suggested the following choice for the optimal

value of hn,

hn =

{
2f3 (Qp) bk

σ4
k

(
f (1) (Qp)

)2
}1/3

n−1/3,
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where bk =
∫
uw(u)G(u)du and σ2

k =
∫
u2w(u)du, where w is a probability

density function with zero mean and finite variance, known as the kernel.
G(·) is the distribution function of the distribution with density w. hn
involves unknown constants Qp, f and its derivative f (1) at Qp. Chen and
Tang (2005) suggested to approximate Qp in hn by the corresponding sample
quantile. The authors suggested to approximate f and f (1) by the density
and the first derivative of the generalized Pareto distribution. We denote
the Chen and Tang’s quantile estimator by CTp.

Harrell-Davis Estimator Harrell and Davis (1982) introduced a quantile
estimator (we call HDp) which is a weighted linear combination of order
statistics and defined as follows:

HDp =
n∑

i=1

w(i)X(i),m, (2.6)

w(i) = Ii/n (p (n+ 1) , (1− p) (n+ 1))

−I(i−1)/n (p (n+ 1) , (1− p) (n+ 1)) , i = 1, 2, .., n (2.7)

where Ix(a, b) denotes the incomplete beta function. It is available in R soft-
ware (see hdquantile function in Hmisc package in R software for statistical
computing). −HD1−p is equal to 100p percent V aR and 100p percent MS
is 100(0.5p+ 0.5) percent VaR.

Sfakianakis and Verginis estimator Sfakianakis and Verginis (2008)
introduced three L−statistic type estimators, SV 1p, SV 2p and SV 3p (see
Sfakianakis and Verginis (2008) for a detailed discussion). Among these
estimators SV 3p seems to be the appropriate estimator for Qm,p, especially
for 1− p close to zero. It is defined as follows:

SV 3p =
n∑

i=1

B (i, n, p)X(i),m +
(
2X(1),m −X(2),m

)
B(0, n, p) (2.8)

where B(i, n, p) is the probability mass function of the Binomial distribution
with parameters n and p. −SV 31−p is equal to 100p percent V aR and 100p
percent MS is 100(0.5p+ 0.5) percent VaR.

2.2. VaR and MS Estimation Based on Extreme Value Theory (EVT)
In this approach the idea is to use the high returns, above some threshold, in
the observed data to estimate Qm,p for p close to 1 and hence the VaR and
the MS (see Dutta and Biswas (2017), Drees (2003) and references therein).
From Definition 1, we find that V aRm,p is equal to the pth quantile of the
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marginal distribution of Yt,m = −Xt,m. Since the extreme value theory
based estimator is suitable for estimating quantiles to the right tail of a
distribution, we find 100p percent VaR by estimating the pth quantile of
Yt,m.

Pickands-Balkema-de Haan theorem (see Balkema and de Haan (1974))
claims that the conditional distribution of exceedance, given that a random
variable exceeds a threshold value can be well approximated by Generalized
Pareto distribution (GPD) provided the distribution function of the random
variable is in the domain of attraction of the Generalized Extreme Value
(GEV). Based on this theorem a GPD distribution is fitted to the k largest
observations in the sample to approximate the tail of the conditional distri-
bution of Yt,m−u given Yt,m > u where u is the threshold value. Usually the
threshold value is chosen to be the (n− k)th order statistics, where n is the
number of observed values of Yt,m in the data. Let, Fm be the distribution
function of Yt,m. The choice of k is not straight-forward. For small k (i.e.
for large threshold), the GPD approximation of the tail is more accurate,
assuming Fm is in the domain of attraction of GEV. But for small k, lesser
observations in the sample are available for fitting the GPD. In contrast for
large k, more data are available for fitting the GPD distribution, but the the
GPD approximation to the tail is biased.

Drees (2003) extended the extreme value theory for estimation of extreme
quantiles of the marginal distribution of a stationary time series from i.i.d.
assumption to β−mixing type dependence, which cover a broad class of time
series models. The author assumed that the common distribution function
Fm satisfies the property that as λ ↓ 0

F−1
m (1− λt)

F−1
m (1− λ)

→ 1

tξ
, ∀t > 0

for some ξ > 0 and F−1
m is the quantile function of Fm. Under further

assumptions that as n → ∞, p → 1 and kn → ∞ in such a way that
n(1− p) = O(1) and kn

n = o(1), one can argue that

Qm,p ≡ Qm,1−kn/n

(
kn

n(1− p)

)ξ

,

see equation (4) in Drees (2003). A suitable estimator of the tail index ξ is
the Hill estimator

ξ̂ =
1

kn

kn∑
i=1

log
Y(n−i+1),m

Y(n−kn),m
,
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where Y(i),m, i = 1, · · · , n are n ordered observations (from smallest to
largest in magnitude) of Yt,m . The above approximation naturally leads to
the following estimator

EV Tp = Y(n−kn),m

(
kn

n(1− p)

)ξ̂

, (2.9)

(see Drees (2003)). Therefore, in EVT the 100p percent m−period VaR and
MS estimators are EV Tp and EV T0.5(1+p) respectively.

2.3. VaR and MS Estimation Based on Square Root of Time Rule
(SRTR) Dowd et al. (2004) have stated the “square-root of time rule” based
VaR estimator which is given by

V aR(m) =
√
mV aR(1),

where V aR(1) is the VaR over 1 day and V aR(m) is the VaR over m days.
V aR(1) is estimated based on some reliable assumptions and is multiplied
with square root of m to get the m day VaR.

Spadafora et al. (2014) have proposed a VaR scaling formula at confi-
dence level 1− α for a horizon of m days which is given by,

V aR(m,α) =
√
m

F−1(α)

F−1(0.01)
V aR(1, 0.01), (2.10)

where F−1(α) is the αth quantile of the distribution of short term (1 day)
returns and V aR(0.01, 1) is the estimated daily VaR at confidence level 99
percent.

The authors considered three distributions viz. Normal (N), Student’s
t (ST) and Variance-Gamma (VG) distributions for fitting the short term
(1 day) returns distribution and found that ST and VG distributions yield
better fit results. Cont (2001) observed that the marginal distributions of
the fine returns exhibit properties similar to the Student’s−t distribution.
We fit Student’s t distribution to the fine return data and estimate the
100p percent daily VaR by taking the pth quantile of the fitted Student’s t
distribution. From Eq. 2.10 we get the following formula the 100p percent
VaR for m days.

̂V aR(m, p) =
√
mF−1

ST (p), (2.11)

where F−1
ST (p) is the pth quantile of the Student’s t distribution fitted to the

fine return data.
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2.4. VaR and MS Estimation by Bootstrap Approach We can replace

Φ−1(1−p) in Eq. 2.2 by the (1−p)th quantile of the distribution of
X∗

t,m−Xt,m√
mSm

by using Lemma 2. We denote this new proposed estimator by ̂V aRboot,p.

̂V aRboot,p = −mE(Xt)−
√
mV ar(Xt)×D1−p, (2.12)

where D1−p is the (1− p)th quantile of the distribution of
X∗

t,m−Xt,m√
mSm

.

The 100p percent MS can be estimated by,

M̂Sboot,p = −mE(Xt)−
√
mV ar(Xt)×D1−0.5(1+p)

= −mE(Xt)−
√
mV ar(Xt)×D0.5(1−p) (2.13)

3 Simulation Study

The exact mean squared error (MSE) of the above mentioned VaR and
MS estimators are difficult to obtain in general. However we can approximate
and compare the MSE of these estimators in a Monte-Carlo (MC) simulation
study for some specific data generating models satisfying Assumption 1.
Given a data generating model, we generate B samples each of size n. Based
on the B values of the statistic, say T1, T2, · · · , TB, the MC estimate of the
MSE is equal to 1

B

∑B
i=1 (Ti − θ)2, where θ is the parameter of interest. We

have used B = 10, 000.
In general the stochastic process generating the observed data is not

known. However in a MC simulation study we can compute the MC es-
timate assuming some test distribution or data generating process. In this
simulation study we consider the following three time series models described
in Examples 1-3, for the 1 period returns {Xt} .

(I) Xt = YtPt, where {Pt}t=1,2,... be a sequence of positive valued ran-
dom variables such that log(Pt) follows an autoregressive process defined as
follows

log(Pt) = θεt−1 +
√
1− θ2εt,

where {εt}t=1,2... is a sequence of i.i.d. N(0, 1) random variables, indepen-
dent of {Pt}t=1,2,... and {Yt}t=1,2,... be a sequence of i.i.d. random variables
(independent of {Pt}t=1,2,... and {εt}t=1,2...) such that P (Yt = 1)= 0.5 and
P (Yt = −1) = 0.5.

(II) Xt = YtPt, where {Pt}t=1,2,... be a sequence of positive valued ran-
dom variables such that log(Pt) follows an autoregressive process defined as
follows

log(Pt) = θ log(Pt−1) +
√
1− θ2εt,

where εt and Yt are defined in the same way as in the first model.
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(III) GARCH(1,1) model given by Xt = σtZt where σ2
t = 0.0001 +

0.4X2
t−1 + 0.5σ2

t−1 and {Zt}t=1,2,..... are i.i.d. standard normal random
variables.

For each one of the above mentioned time series models I to III, we
generate n×m values of Xt viz. {Xt+i}i=1,··· ,m, t = 1, · · · , n. Consequently,
Xt,m =

∑m
i=1Xt+i, t = 1, · · · , n are the n values of them period returnXt,m.

The unknown parameters E(Xt) and V ar(Xt) in our VaR and MS estimators
Eq. 2.2, 2.5, 2.12 and 2.13 are estimated by the mean and variance of the
n × m values {Xt+i}i=1,··· ,m, t=1,··· ,n. We compute the other VaR and MS
estimators based on the Xt,m t = 1, · · · , n, which represents a sample of size
n of long term returns of duration m. The process is repeated B = 10, 000
times for each choice of n and m. The bootstrap process for Eqs. 2.12 and
2.13 is carried out D = 10000 times.

Let MSE1, MSE2 and MSE3 denote the MC estimate of the MSE
of the sample quantile (SQp), our estimator (̂V aRm,p) and our bootstrap

based estimator ̂V aRboot,p which is given by Eq. 2.12. MSE4 denotes the
MC estimate of the MSE of Harell-Davis estimator (HDp). Let MSE5 and
MSE6 denote of the estimated MSE of the S-V estimator (SV 3p) and the
EVT estimator (EV Tp) respectively. MSE7 and MSE8 are the estimated
MSE of the Kernel quantile estimators using bandwidths by Polansky and
Baker (PBp) and Chen and Tang (CTp). MSE9 denotes the MC estimate of
the MSE of the SRTR estimator (Eq. 2.11 and . In Tables 1 and 2 we report
the ratios MSE2

MSE1 to MSE9
MSE1 for the eight 95 percent VaR estimators (other than

the sample quantile) for different time series models, for different values of
n and for m = 250 and 500 respectively. In Tables 3 and 4 we report the
same ratios for 95 percent MS estimators, which are essentially 97.5 percent
VaR estimators.

We observe that for n = 20 and for p = 0.95, kn = 2 and in that case the
EVT estimator EV Tp may not be defined for those samples where Y(n),m
and Y(n−kn),m have opposite signs. Therefore for n = 20, the MC estimate
of the MSE of the EVT estimator is not defined and is returned as NaN
(not a number) by the R−programming environment. Following are the
main observations based on the ratio of MSEs reported in Tables 1–4 (See
Section 5, Appendix).

1. Performance of our proposed estimators: a. The central limit theorem
(CLT) based VaR and MS estimators Eqs. 2.2 and 2.5 exhibit the least
MSE among all the 95 percent VaR and MS estimators for model (I)
and (II) and for all choices of n and m. For the other time series model,
viz. model (III), the proposed estimators Eqs. 2.2 and 2.5 outperform
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almost all the other estimators, viz. sample quantile, HDp, SV 3p, PBp

and CTp except the SRTR estimator Eq. 2.11. For data generated by
GARCH (1,1) model, the bootstrap based VaR estimators Eq. 2.12
outperforms the other VaR estimators (except SRTR) for sample size
less than 50 and m = 250.

b. Overall, the MSE of our proposed CLT based estimators Eqs. 2.2
and 2.5 and the bootstrap based estimators Eqs. 2.12 and 2.13 do
not seem to fluctuate widely under different time series models. For
instance, MSE2

MSE1 < 0.8 and MSE3
MSE1 < 0.8 for all choices of n, m and

for all the time series models which can be seen in Tables 1–4. In
contrast, the MSE of the other estimators seem to be much higher
for certain time series models and certain choices of n and m. For
example, the ratio MSE9

MSE1 > 1, for models (I), (II) and n ≥ 50. For
the GARCH(1,1) model MSE8

MSE1 ,
MSE5
MSE1 > 1 for all choices of n and m.

See Tables 1–4. The proposed CLT based estimators Eqs. 2.2 and 2.5
and the bootstrap based estimators Eqs. 2.12 and 2.13 seem to perform
reliably in estimating 95 percent VaR and MS for all choices of n and
m, irrespective of the time series model generating the fine return data.

2. Performance of the SRTR estimator : The SRTR rule based 95 percent
VaR and MS estimators seem to exhibit the least MSE for fine return
data generated by model (III) . However for model (III), F−1

ST (p) in
Eq. 2.11 is replaced by the pth quantile of N(0, σ2) distribution with
σ2 equal to the sample variance, as this distribution serves as a better
fit to the data generated by the GARCH(1,1) model (III).

However, the performance of SRTR estimator seems to be sensitive to
the choice of the model for the fine returns. For instance, under model
(I) and (II) the MSE of the SRTR rule based 95 percent VaR and MS
estimators are much higher in comparison to the same under model III
for the fine return data. In fact, in Tables 1 and 2, MSE9

MSE1 > 1 under
models (I) and (II) for all choices of n and the ratio MSE9

MSE1 increases
as n is increased. This indicates that the SRTR rule estimator is
outperformed by the sample quantile based 95 percent VaR and MS
estimator for models (I) and (II).

3. Performance of the Sfakianakis and Verginis estimator : MSE5
MSE1 > 1 for

almost all choices of n, m and time series models. See fifth column
in Tables 1–4. This indicates that Sfakianakis and Verginis estimator
(SV 3p) is outperformed by the sample quantile for estimation of 95
percent VaR and MS for m = 250 and 500.
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4. Performance of extreme value theory based estimator : MSE2
MSE1 < MSE6

MSE1
and MSE3

MSE1 < MSE6
MSE1 for all choices of n, m and for all time series

models in Tables 1–4. The estimator EV Tp in Eq. 2.9 is uniformly
outperformed by our proposed estimators Eqs. 2.2 and 2.5 of VaR and
MS respectively, for all the models. EV Tp is also outperformed by
our proposed bootstrap based VaR and MS estimators Eqs. 2.12 and
2.13. For model (I), MSE6

MSE1 > 1 for n ≥ 50. This indicates that for this
model the sample quantile based VaR and MS estimators outperform
the EVT estimator.

5. Performance of Harell Davis estimator : MSE2
MSE1 < MSE4

MSE1 and MSE3
MSE1 <

MSE4
MSE1 for all choices of n, m and for all time series models in Ta-
bles 1–4. This indicates that the estimator HDp in Eq. 2.6 is also
uniformly outperformed by our proposed estimators Eqs. 2.2, 2.5, 2.12
and 2.13 of VaR and MS respectively, for all the models. For n ≥ 50
in GARCH(1,1) model, MSE4

MSE1 > 1 in Tables 3 and 4 which indicates
that for this model sample quantile based MS estimator outperform
the Harell Davis estimator.

6. Performance of Kernel Quantile Estimators: The Kernel Quantile Es-
timator PBp seems to have the least MSE for Model (III) in Table 4
for n ≥ 50. But apart from that PBp is outperformed by our proposed
estimators as can be seen in Tables 1–4 where MSE2

MSE1 < MSE7
MSE1 and

MSE3
MSE1 < MSE7

MSE1 .

CTp is uniformly outperformed by our proposed estimators for all
choices of n, m and for all time series models in Tables 1–4 since
MSE2
MSE1 <

MSE8
MSE1 and MSE3

MSE1 <
MSE8
MSE1 . Further,

MSE8
MSE1 > 1 for GARCH(1,1)

model for all n and m. This indicates that the CTp performs poorly
compared to sample quantile based VaR and MS estimator for the
GARCH(1,1) model and hence it is not suitable for estimating long
term VaR and MS for data generated by GARCH(1,1).

Remark 4. 1. The above observations suggests that the proposed esti-
mators ̂V aRm,p and ̂V aRboot,p perform well for all the time series models and
m ≥ 250. The EVT based estimator, Harell Davis estimator, Sfakianakis and
Verginis estimator and the Kernel quantile estimator CTp perform poorly in

comparison to the proposed estimators ̂V aRm,p and ̂V aRboot,p for n ≥ 20,
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m ≥ 250. Therefore, these estimators are not recommended for estimating
long term VaR (m ≥ 250).

2. There are two reasons for the proposed estimators of long term VaR
and MS being reliable. The m− period VaR and MS are equal to negative of
the extreme left quantiles of the m−period return distribution (See Eqs. 2.2
and 2.5). For large m, our Lemma 1 and the empirical observations in Cont
(2001) suggest that the m−period return distribution is well approximated
by the normal distribution. Therefore the proposed m− period VaR and MS
estimators, especially Eqs. 2.2 and 2.5, which are based on approximating
the quantiles ofm−period return distribution by the corresponding quantiles
of the normal distribution seem to work well for estimation of m− period
VaR and MS, for large m (m ≥ 250). The extreme value theory (EVT)
based quantile estimator Eq. 2.9 is based on the assumption that as λ ↓ 0

F−1
m (1− λt)

F−1
m (1− λ)

→ 1

tξ
, ∀t > 0

for some ξ > 0 and F−1
m is the quantile function of m− period return distri-

bution (See page 10). Since for large m the m− period return distribution
resembles normal distribution, therefore the above mentioned assumption on
F−1
m does not seem to be appropriate for large m. Therefore the proposed

estimators Eqs. 2.2 and 2.5, based on normal approximation of the long term
return distribution, seem to be more appropriate than the EVT estimator
Eq.2.9 for estimation of long term VaR and MS.

Moreover for large m, the number n of observed values of the m− period
return Xt, m is small. For example, for m = 250 (i.e. one-year time period)
there are n = 26 observations on Xt, m, i.e. annual return of Nifty 50
index. See Table 5. All the other m− period VaR and MS estimators, viz.
the sample quantile and the kernel based estimator in page 9, the Harrell-
Davis estimator Eq. 2.6 , Sfakianakis and Verginis estimator Eq. 2.8 and
the EVT estimator Eq. 2.9 are based on the n observed values of Xt, m.
Larger the m, the lesser number of observations n on Xt, m are available
for computation of these other estimators. Hence these estimators are more
suitable for estimation of short term VaR and MS, i.e. for small m and
large n. In contrast, our proposed estimators Eq. 2.2 and 2.5 depend on
estimation of E(Xt) and V ar(Xt) for which n × m observations on the 1
period return Xt are available. In our proposed methodology observations
of short term returns are used to estimate the parameters of long term VaR
and MS formulae Eqs. 2.2 and 2.5.
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4 Risk Estimation and Backtesting Based on Real Data

4.1. Backtesting VaR Estimates Santomila et al. (2018) describe the
unconditional backtest of a 100p percent VaR estimation model as a pro-
cedure of comparing the observed number of times the losses exceed the
estimated VaR in a given period with number of times the actual VaR is ex-
pected to be exceeded during the same time period. If the observed number
of exceedances is much higher than the expected number of exceedances of
the actual 100p percent VaR, the VaR estimate is considered to be inade-
quate for regulatory purposes (See Santomil et al. 2018).

Let us recall that Xt+k,m denotes the returns during (t+k, t+k+m] for
k = 0, 1, 2, ..., where Xt+k,m is defined in Eq. 1.3. For any natural number
n ≥ 2, let

Zn =
n−1∑
k=0

I (−Xt+k,m > V aRm,p) .

Zn is the number of times the m− period loss exceeds the 100p percent VaR
level in n successive time intervals (t+ k, t+ k +m] for k = 0, 1, 2, ..., n− 1.
Under Assumption 1 {Xt+k,m}k=0,1,2,... are identically distributed. Since
V aRm,p = −Qm,1−p, the expected number of exceedances is equal to

E (Zn) = n(1− p).

V aRm,p is unknown. Replacing V aRm,p by an estimator ̂V aRm,p in Zn we
get the the observed number of exceedances (we call it Ẑn). Therefore

Ẑn =
n−1∑
k=0

I
(
−Xt+k,m > ̂V aRm,p

)
.

However E(Ẑn) is unknown (as ̂V aRm,p may not be equal to the negative of
(1− p)th quantile of Xt,m).

We consider ̂V aRm,p is an adequate estimator of V aRm,p if P (−Xt,m >

̂V aRm,p

)
≤ 1−p and inadequate if P

(
−Xt,m > ̂V aRm,p

)
> 1−p. Therefore

we test

H0 : P
(
−Xt,m>̂V aRm,p

)
=1−p againstH1 : P

(
−Xt,m>̂V aRm,p

)
>1−p.

Under H0, E
(
Ẑn

)
= n(1 − p) = E (Zn) (the expected number of ex-

ceedances). We reject H0 at 100α percent level of significance if Ẑn >
n(1 − p) + zn, α, where zn,α is the 100(1 − α) percentile of the distribution

of Ẑn − n(1− p) under H0.
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The traditional unconditional backtest by Kupiec (1995) assume Ẑn to
follow binomial(n, 1 − p) distribution under H0. See for instance Kupiec
(1995) & Santomila et al. (2018). We use unconditional backtest by Kupiec
(1995) to test H0 against H1 based on the observed m−period return data.

4.2. Annual VaR and MS Estimation of the Nifty 50 Index, Crude Oil
And Gold The S& P CNX Nifty 50 is a well diversified 50 stock market index
accounting for twenty two sectors of the Indian economy. It is used for a vari-
ety of purposes such as benchmarking fund portfolios (see www.nseindia.com
for details). Also there are a number of Nifty 50 index funds which are pas-
sively maintained mutual funds mirroring the portfolio composition of the
Nifty 50 index. An obvious interest for the investors is to measure the risk
due to fluctuation of the value the Nifty 50 index over a certain period.

Crude oil and gold prices have important impacts on the financial mar-
kets and the economy of a country. Oil and gold are two of the world’s most
important commodities. They have received much attention recently due to
the fluctuations in their prices and the increase in their economic applica-
tions. Crude oil is one of the most commonly traded commodity, and its
price exhibits high volatility in the commodity market (See Regnier (2007)).
The price fluctuations of gold lead to parallel movements in the prices of
other precious metals (See Sari et al. (2010)). Gold is also an investment
asset and commonly known as a “safe haven” from the increasing risks in
financial markets. The estimation of market risk of crude oil and gold are
important for the various stakeholders and participants such as producers,
exporters etc. (See https://www.mcxindia.com/products/energy/crude-oil
and https://www.mcxindia.com/products/bullion/gold)

In India, a financial year (we call it FY) refers to the period from 1st
April of a year to 31st March of the next year. There are approximately
250 trading days in a financial year (the exact number of days on which the
stock markets in India remain closed may vary from one year to another).
Dutta and Das (2018) published data on daily log-returns of the Nifty 50
index in national stock exchange (NSE) in India for the financial years (FY)
from 1995-96 to 2017-18 in the form of twenty three “csv” files in Mendeley
https://data.mendeley.com/datasets/tm2kzgf3gd/.1 These log returns are
reported as percentages, i.e. daily log return multiplied by 100.

1Historical data on the Nifty indices were available for free from the NSE website till 2018.
At present the historical data is available on payment basis. However, the data upto 31st
March 2018 on various Nifty indices are avaiable with the author in the “csv” format.

S279

https://www.mcxindia.com/products/energy/crude-oil
https://www.mcxindia.com/products/bullion/gold
https://data.mendeley.com/datasets/tm2kzgf3gd/


S. Dutta and T. K. Powdel

The historical data on Gold and Crude Oil daily closing prices (in US dol-
lars per barrel and per troy ounce respectively) from the FY 2001-02 to FY
2020-21 are available in Yahoo finance (https://finance.yahoo.com/quote/
CL%3DF/history?p=CL%3DF, https://finance.yahoo.com/quote/GC%3DF/
history?p=GC%3DF). The daily log returns are calculated by taking the
logarithm of the ratio of closing prices on two consecutive days. The annual
log return is the sum of the daily log returns within a financial year. In
Tables 6 and 7, we report the annual log returns (in percentage) of crude oil
and gold prices respectively for the 20 financial years, from FY 2001− 02 to
FY 2020− 21.

4.2.1. Data Analysis.

1. NIFTY 50 index: In Table 5, we report the annual log returns for
the 26 financial years, from FY 1995 − 96 to FY 2020 − 21 for Nifty 50
index. Each of the annual log-return is the sum of the daily log returns
recorded between the 1st and the last day of the FY. Dutta and Das(Dutta
and Das, 2018) have reported data upto the FY 2017−18. The annual Nifty
return data for the financial year FY 2018−19 to FY 2020−21 are obtained
from the Yahoo Finance website https://in.finance.yahoo.com. The data in
Table 5 is positively skewed and the moment coefficient of kurtosis is close
to 3 (i.e. not heavy tailed).

We use the daily log return data set by Dutta and Das(Dutta and Das,
2018) and the Eqs. 2.2, 2.5, 2.12 and 2.13 to estimate the 95 percent value at
risk (VaR) and the median shortfall (MS) of the Nifty 50 index over a period
of one FY (i.e. 250 trading days starting from the 1st trading day in April).
Here, m= 250 days. E(Xt) and V ar(Xt) in Eq. 2.2 are approximated by
the mean and variances of the daily returns, i.e. negative of the numbers
reported by Dutta and Das (2018). There are more than five thousand daily
log return numbers for the twenty three years. The average daily log return
of the Nifty 50 during 1995-96 to 2017-18 is equal to 0.039, with standard
deviation 1.511.

The 95 percent VaR and MS estimates using Eqs. 2.2 and 2.5 for the
Nifty 50 annual loss, i.e. m = 250 are equal to 29.460 and 36.992 percent
respectively. These numbers imply that there is a five percent chance (one
in twenty years) of the Nifty 50 value in log-scale depreciating by more than
29.46 percent in one financial year. In case the annual loss of the Nifty 50
value exceeds 29.46 percent, median annual loss (in log scale) beyond the
VaR level is estimated to be 36.992 percent.
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We also estimate the 95 percent annual VaR and MS of the NIFTY
50 index using the proposed bootstrap based estimator (̂V aRboot,p), sample
quantile estimator (SQp), Sfakianakis and Verginis estimator (SV 3p), ex-
treme value theory based estimator (EV Tp) and SRTR estimator. These
estimates are based on the 26 annual log returns of the Nifty 50 index and
are reported in Table 8. Using the Kupiec test described in Section 4.1
we test whether our proposed estimators ̂V aRm,p in Eq. 2.2 and M̂Sm,p in

Eq. 2.5, (̂V aRboot,p) in Eq. 2.12 and (M̂Sboot,p) in Eq. 2.13 and the other four
estimators viz. SQp, SV 3p, EV Tp and SRTR are adequate risk measures.

The p-value is equal to the probability that at least Ẑn out of 26 annual
losses of the Nifty 50 index exceed the estimated 95 percent VaR or the MS,
assuming H0 is true.

In Table 8 we report the annual 95 percent VaR and MS estimates of the
NIFTY 50 by each one of the above mentioned estimators. Also reported
are the number of exceedances Ẑn of the VaR and MS estimates by each
method and corresponding p-values based on the unconditional backtest by
Kupiec (1995).

All the p-values exceed the 5 percent level of significance, indicating that
all the estimates of the one year 95 percent VaR and MS of the Nifty 50
index are adequate (See Table 8). However, the SRTR based one year MS
estimate and SV 3p based one year MS estimate exceed the magnitude of all
the 26 annual losses of Nifty 50 index from FY 1995− 96 to FY 2020− 21 in
Table 8. Clearly the SRTR method and SV 3p over estimates the annual MS
of the Nifty 50 index. This is in line with the observation given by Dowd
et al. (2004). The proposed estimators Eqs. 2.2, 2.5, 2.12 and 2.13 and the
other two estimators viz.SQp and EV Tp seem to yield similar estimates of
the one year 95 percent VaR and MS of the Nifty 50 index.

2. Crude oil and gold prices: The 95 percent annual VaR and MS
estimates for the crude oil and gold prices are reported in Tables 9 and 10
respectively.

From Tables 9 and 10 we observe that the p-values of the unconditional
backtest of the proposed VaR estimators viz. ̂V aRm,p and ̂V aRboot,p (See
Eqs. 2.2 and 2.12) exceed the 5 percent level of significance. The same
observation is also true for the other estimators viz. SQp, SV 3p, EV Tp

and SRTR.2 Therefore, the proposed estimators and the estimators SQp,

2For the gold returns data the pth quantile of N(0, σ2) was taken where σ2 is the sample
variance as this distribution serves as a better fit.
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SV 3p, EV Tp and SRTR provide adequate estimates of annual VaR and MS
for crude oil and gold returns. The SV 3p (in Tables 9 and 10) and SRTR
(in Table 10) based VaR estimates seem to be exaggerated as there are no
observed exceedances of the resulting risk estimates in the historical data of
annual returns of crude oil and gold.

Comparing the VaR and MS estimates of the NIFTY 50, crude oil and
gold annual returns we observe that gold exhibits the least market risk over
a duration of one year and the crude oil exhibits similar annual market risk
as the NIFTY 50 index.
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Appendix

Table 1: Mean Squared Error(MSE) ratio estimated for 95 percent VaR
estimators (for m=250)

Model n MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

MSE7
MSE1

MSE8
MSE1

MSE9
MSE1

Model (I) 20 0.275 0.288 0.679 1.010 NaN 0.497 0.628 1.616
50 0.458 0.509 0.726 0.745 1.113 0.546 0.860 4.075
100 0.234 0.506 0.839 1.057 1.246 0.821 0.849 6.841

Model (II) 20 0.250 0.244 0.917 1.899 NaN 1.004 0.867 1.342
50 0.453 0.404 0.724 0.778 0.739 0.546 0.858 4.039
100 0.303 0.409 1.041 1.471 0.506 1.114 0.981 5.973

GARCH(1,1) 20 0.455 0.326 1.732 4.415 NaN 1.564 122.122 0.247
50 0.388 0.403 0.988 2.179 0.908 0.660 100.959 0.234
100 0.644 0.351 1.001 1.539 0.611 0.929 147.346 0.444

Table 2: Mean Squared Error(MSE) ratio estimated for 95 percent VaR
estimators (for m=500)

Model n MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

MSE7
MSE1

MSE8
MSE1

MSE9
MSE1

Model (I) 20 0.247 0.288 0.900 1.849 NaN 1.033 0.878 1.441
50 0.458 0.484 0.719 0.713 0.891 0.540 0.898 4.301
100 0.699 0.429 1.415 2.048 0.617 1.760 1.247 2.899

Model (II) 20 0.249 0.248 0.929 1.925 0.524 1.061 0.913 1.385
50 0.294 0.434 0.782 1.071 0.831 0.674 0.895 4.185
100 0.293 0.528 0.673 0.650 0.546 0.539 0.777 6.518

GARCH(1,1) 20 0.334 0.346 0.794 1.295 NaN 0.552 26.394 0.234
50 0.392 0.794 0.918 1.851 0.680 0.631 56.002 0.228
100 0.652 0.598 1.265 1.975 0.868 1.366 89.044 0.450
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Table 3: Mean Squared Error(MSE) ratio estimated for 95 percent MS esti-
mators (for m=250)

Model n MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

MSE7
MSE1

MSE8
MSE1

MSE9
MSE1

Model (I) 20 0.264 0.286 1.008 1.396 0.922 0.651 0.871 0.851
50 0.327 0.361 0.771 1.200 0.969 0.496 0.757 1.573
100 0.472 0.517 0.720 0.760 0.973 0.553 0.872 2.732

Model (II) 20 0.190 0.210 0.937 1.654 0.839 0.795 0.890 0.598
50 0.204 0.241 0.952 1.888 0.920 0.684 0.812 1.308
100 0.248 0.303 0.843 1.307 1.067 0.662 0.876 2.409

GARCH(1,1) 20 0.149 0.151 0.801 2.029 NaN 0.912 52.904 0.080
50 0.299 0.302 2.521 6.567 0.738 1.099 99.925 0.183
100 0.357 0.374 1.024 2.292 1.032 0.648 72.507 0.286

Table 4: Mean Squared Error(MSE) ratio estimated for 95 percent MS esti-
mators (for m=500)

Model n MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

MSE7
MSE1

MSE8
MSE1

MSE9
MSE1

Model (I) 20 0.209 0.190 0.945 1.638 0.884 0.871 0.921 0.609
50 0.168 0.193 0.891 1.653 1.039 0.709 0.841 1.257
100 0.197 0.236 0.833 1.277 0.620 0.689 0.902 2.473

Model (II) 20 0.213 0.197 0.860 1.888 0.627 1.124 0.947 0.305
50 0.195 0.221 1.236 2.639 0.905 1.186 0.977 0.721
100 0.181 0.213 1.098 2.015 0.806 1.041 0.941 1.166

GARCH(1,1) 20 0.18616 0.18611 0.763 2.117 0.676 1.102 39.375 0.107
50 0.636 0.650 1.048 2.002 0.965 0.504 20.445 0.574
100 0.715 0.726 0.793 1.139 0.854 0.621 16.034 0.662
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Table 5: Nifty 50 Annual log returns in percentage for 26 financial years
(FY)
FY Annual Log Return

1995-96 −2.016
1996-97 −2.694
1997-98 14.089
1998-99 −6.461
1999-2000 36.266
2000-01 −29.015
2001-02 −0.759
2002-03 −15.218
2003-04 57.545
2004-05 11.204
2005-06 49.809
2006-07 9.557
2007-08 30.756
2008-09 −45.027
2009-10 53.952
2010-11 9.768
2011-12 −9.546
2012-13 6.635
2013-14 16.150
2014-15 23.382
2015-16 −10.430
2016-17 17.347
2017-18 9.055
2018-19 5.423
2019-20 −14.895
2020-21 25.492
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Table 6: Crude Oil price annual log returns in percentage for 20 financial
years (FY)
FY Annual Log Return

2001-02 −0.280
2002-03 6.063
2003-04 7.987
2004-05 17.300
2005-06 9.473
2006-07 −0.835
2007-08 20.505
2008-09 −33.881
2009-10 23.083
2010-11 10.239
2011-12 −0.523
2012-13 −2.512
2013-14 1.939
2014-15 −31.984
2015-16 −10.392
2016-17 11.857
2017-18 11.051
2018-19 −3.334
2019-20 −47.618
2020-21 74.043
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Table 7: Gold price annual log returns in percentage for 20 financial years
(FY)
FY Annual Log Return

2001-02 6.941
2002-03 4.534
2003-04 10.452
2004-05 0.142
2005-06 13.262
2006-07 5.673
2007-08 14.047
2008-09 0.302
2009-10 8.159
2010-11 11.141
2011-12 6.450
2012-13 −1.982
2013-14 −9.434
2014-15 −3.534
2015-16 1.836
2016-17 0.458
2017-18 2.542
2018-19 −0.989
2019-20 8.799
2020-21 3.436

Table 8: VaR and MS estimates using the NIFTY 50 data given in Table 5
Estimator 95 percent VaR estimate 95 percent MS estimate

Value Ẑn p-value Value Ẑn p-value

Proposed estimator 29.460 1 0.736 36.992 1 0.482

(̂V aRm,p)
Proposed estimator 29.642 1 0.736 37.447 1 0.482

(̂V aRboot,p)
SQp 29.015 1 0.736 45.027 0 1
SV 3p 41.262 1 0.736 50.754 0 1
EV Tp 22.090 2 0.376 35.062 1 0.482
SRTR 37.209 1 0.736 50.318 0 1
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Table 9: VaR and MS estimates using the Crude Oil data given in Table 6
Estimator 95 percent VaR estimate 95 percent MS estimate

Value Ẑn p-value Value Ẑn p-value

Proposed estimator 26.740 3 0.075 32.458 2 0.088

(̂V aRm,p)
Proposed estimator 26.193 3 0.075 32.221 2 0.088

(̂V aRboot,p)
SQp 33.881 1 0.641 47.618 0 1
SV 3p 48.409 0 1 54.630 0 1
EV Tp 37.454 1 0.641 42.895 1 0.397
SRTR 29.402 3 0.075 36.461 1 0.397

Table 10: VaR and MS estimates using the Gold data given in Table 7
Estimator 95 percent VaR estimate 95 percent MS estimate

Value Ẑn p-value Value Ẑn p-value

Proposed estimator 8.626 1 0.641 11.065 0 1

(̂V aRm,p)
Proposed estimator 8.722 1 0.641 11.193 0 1

(̂V aRboot,p)
SQp 3.534 1 0.641 9.434 0 1
SV 3p 9.855 0 1 12.448 0 1
EV Tp 4.159 1 0.641 6.980 1 0.397
SRTR 12.731 0 1 15.170 0 1
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