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Abstract

In a cross-sectional cluster setup, the binary responses from the individu-
als in a cluster become correlated as they share a common cluster effect,
whereas longitudinal responses from an individual those form a cluster be-
come correlated as the present and past responses are likely to maintain a
suitable dynamic relationship. In both cluster and longitudinal setups, the
marginal means may or may not be specified as the function of regression
effects/parameters only. In a cluster setup, this depends on the distribu-
tional assumption of the random cluster effects and in a longitudinal setup
this depends on the form such as linear or non-linear dynamic relationships
used to construct a conditional model. However, over the last four decades,
many studies arbitrarily pre-specified the marginal means as the function of
regression effects only under both cluster and longitudinal setups and ac-
commodated correlations also using arbitrarily selected ‘working’ correlation
structures. This paper makes a thorough in-depth review of these decades
long binary correlation models for consistent and efficient estimation of the
regression effects. Both progress and drawbacks of these works are presented
clearly showing how the inconsistency can arise if the pre-specified marginal
fixed model is used when in fact such a marginal fixed effects model does
not exist. This is because, some of the conditional random effects models
in a cluster setup produce mixed effect models for the marginal means, and
conditional non-linear dynamic models in a longitudinal setup produce his-
tory based marginal recursive/dynamic models. As the practitioners in both
cluster and longitudinal setups deal with large data sets, it is demonstrated
for their benefits how one can use the GQL (generalized quasi-likelihood)
estimation approach both in cluster and longitudinal setups. Furthermore,
there exist many studies using the Bayesisn approach where unlike the afore-
mentioned parametric correlation structure based inferences, the marginal
mixed effects models have been used for inferences for correlated binary data
without specifying their correlation structures, under both cluster and lon-
gitudinal setup. We also provide a brief review on this alternative approach.

AMS (2000) subject classification. Primary 62F10, 62H20; Secondary 62F12.
Keywords and phrases. Asymptotic properties such as consistency and nor-
mality, Correlated binary data, Cluster variance, Cross-sectional cluster setup,
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1 Introduction

In a cross-sectional cluster setup, the responses from the individuals in
a given cluster are correlated as these responses share a common random
cluster effect, whereas in a longitudinal setup the repeated responses col-
lected from an individual form a cluster and these clustered responses from
the same individual become correlated as they are likely to follow a dynamic
relationship. Thus the correlation structure under cross-sectional clusters
and longitudinal clusters are supposed to be different. In both setups, it
is of primary objective to examine the regression effects (of the associated
covariates) after accommodating the respective correlation structure.

To facilitate the discussion on the cluster regression models in a cross-
sectional setup, suppose that there are I independent clusters and for a
cluster i (i = 1, . . . , I), ni denotes its size. Let yij denotes a binary response
from the j-th (i = 1, . . . , ni) individual of the i-th cluster. Further, let
xij be a p-dimensional fixed covariate vector, and β = (β1, . . . , βu, . . . , βp)

′

be the regression effect of xij on yij , for all i = 1, . . . , I; j = 1, . . . , ni.
Notice that in this cluster setup, there is likely to be a cluster effect on the
responses belonging to the same cluster. Let γi denote the random cluster
effect of the i-th cluster which is shared by the responses belonging to this
cluster. Thus, on top of β, there is an influence of γi on the responses
({yij , j = 1, . . . , ni}) belonging to the i-th cluster. This additional influence,
along with the influence of xij , is reflected on the binary response yij through
a cluster-specific conditional mean model given by

E[Yij |γi] = Pr[Yij = 1|xij , γi]

= p∗ij(β, γi) = exp(x′
ijβ + γi)/[1 + exp(x′

ijβ + γi)], (1.1)

where it is customarily assumed that γi
iid∼(0, σ2

γ). Notice that Eq. 1.1 is a
marginal model for yij conditional on γi. Hence this model may be referred
to as the marginal-conditional (MC) binary logistic model. This model in
Eq. 1.1 is also known as the so-called random effects model where σ2

γ plays
multiple roles. More specifically, depending on the distributional assumption
of γi or p

∗
ij(γi), (1) the unconditional mean, that is, E[Yij ] = Pr[Yij = 1|xij ],
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may or may not be a function of σ2
γ ; (2) similarly var[Yij ] may or may not

exhibit overdispersion (McCullagh and Nelder, 1989); but (3) because γi is
the common clustered effect shared by all responses {yij and yik, for k �=
j; j, k = 1, . . . , ni, } yij and yik are correlated, and this within cluster corre-
lation must be a function of σ2

γ . For the third reason (3), σ2
γ may preferably

be referred to as the cluster correlation parameter.
As far as the applications of the model (1.1) is concerned, there are many

practical situations, where one needs to analyze cluster specific binary data
following (1.1). For example, in a chronic obstructive pulmonary disease
(COPD) study (Liang et al., 1992; Ekholm et al., 1995; Sutradhar and
Mukerjee, 2005), yij denotes the impaired pulmonary function (IPF) status
(yes or no), and xij is the vector of covariates such as gender, race, age,
and smoking status, for the j-th sibling of the i-th COPD patient. In this
problem it is likely that the IPF status for ni siblings may be influenced
by an unobservable random effect (γi) due to the i-th COPD patient. This
common random effect makes the binary responses of any two siblings of the
same patient correlated. It is of scientific interest to find the effects of the
covariates on the binary responses (i.e., β in the mean function, E[Yij ] =
Pr[Yij = 1|xij ]), after taking the within cluster correlations into account.
Thus, it is desired to derive the formula for P [Yij = 1|xij ] = E[Yij |xij ] from
Eq. 1.1 under a suitable distribution for γi, or using a nonparametric density.
In this paper, we will confine our discussion to a parametric setup.

With regard to constructing a marginal (fixed or mixed) model for E[Yij ] =
Pr[Yij = 1|xij ] we remark that because γi in Eq. 1.1 may be treated as an
additive random covariate in the linear predictor x′

ij +γi, it would be highly
reasonable to assume that γi follows a normal (N) distribution, specifically

γi
iid∼N(0, σ2

γ) (Breslow and Clayton, 1993; Lee and Nelder, 1996; Sutrad-
har, 2004). This normality assumption produces a marginal mixed effects
(MME) model. For convenience of further discussion in the next section and
so on, we name this model as cluster model A (CM-A). Some studies such
as Wang and Louis (2003) assume a so-called “bridge” distribution for γi,
which provides a marginal fixed effects (MFE) model. We name this model
as CM-B-1. Some other studies such as Prentice (1986) (see also Haseman
and Kuper, 1979) assumed a beta-binary distribution which also produces a
MFE model. We name this as CM-B-2.

There exists another group of studies (Zeger et al. (1988, Section 3.1),
Neuhaus et al. (1991, Eqn. (4)), and Chen et al. (2011, Sections 2.1, 3.1))
where without any justification how the cluster effect may contribute to the
modeling for mean, variance and correlations, they assumed a subject specific
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(SS) arbitrary marginal fixed effects (AMFE) model for this mean function,
and further assume that a user’s choice ‘working’ correlation structure can
be used for the estimation of the marginal fixed effects parameter. Thus,
in this approach both means and correlations have ‘working’ models, which
is a naive approach, and is bound to produce invalid such as inconsistent
regression and correlation estimates in many practical situations where true
means and correlations may be generated based on normal random cluster
effects, γi. We name this naive/working model as CM-C. A brief review is
given in Section 2 on the advantages and drawbacks of all these for cluster
models (CM-A, CM-B-1, CM-B-2, CM-C) and their respective inferences.

We now consider the clustered binary data in a longitudinal setup, where
a cluster is formed with repeated responses from the same individual. For
convenience, we consider I independent individuals, whereas in the cross-
sectional cluster setup, the same I was used to represent total number
of independent clusters. However to form the i-th (i = 1, . . . , I) clus-
ter for individual i, with repeated responses, we assume that these re-
sponses are recorded over a small period of time T, such as T = 4 or 5
weeks/months/years. Hence we denote the binary response recorded at time
t (t = 1, . . . , T ) from the i-th individual by yit, whereas in cross-sectional
cluster setup yij , j = 1, . . . , ni, was used to represent the binary response
from the j-th member of the i-th clusters. Next we denote by xit, a time
dependent covariate vector corresponding to yit. Here it is natural to expect
that these repeated responses {yit, t = 1, . . . , T, } will be correlated most
possibly through a dynamic relationship similar to time series data.

Similar to the cross-sectional clusters setup. it is of primary interest in
this longitudinal setup, to find out the effect of xit on the binary response yit.
This is equivalent to compute the effect of xit on E[Yit|xit] = Pr[Yit = 1|xit].
Note however that unlike in the cross-sectional setup, in some situations it
may be of interest to find the effects of the past history on the current
response yit. This is equivalent to compute the effect of the covariate history

Hi,t(·) ≡ [xi1, . . . ,xi,t−1,xi,t]

on yit, i.e., to compute E[Yit|Hit] = Pr[Yit = 1|Hit]. Suppose that the effect
of xit on yit is measured by β which is similar but different than in the cross-
sectional case where it represents the effect of xij on yij , j being the j-th
individual in the cluster. On top of this difference, a major difference be-
tween the models in both setups (cross-sectional and longitudinal clusters)
arises because of the different nature of the binary responses under their
respective clusters. More specifically, in the longitudinal setup, the correla-
tion between yit and yi,t−1, for t = 2, . . . , T arises because these responses
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are likely to be directly related through a dynamic dependence relationship,
whereas in cross-sectional setup, yij and yik for j �= k; j, k = 1, . . . , ni, are
correlated as they share a common random cluster effect γi. For this reason,
a big volume of existing studies (Laird and Ware, 1982; Stiratelli et al., 1984;
Neuhaus, 2002; Parzen and et al. 2011) where longitudinal binary responses
are analyzed using random/mixed effects model, fail to accommodate lon-
gitudinal correlations adequately. In particular these random effects based
models have limited or no values to address the dynamic dependence among
repeated responses.

As far as the marginal models for time specific binary means are con-
cerned, there exists many situations where a marginal fixed effects (MFE)
model involving only regression parameters (β) can be used for the marginal
means. This is similar to the cross-sectional setup but correlation models
are quite different under both cross-sectional and longitudinal setups. For
MFE based longitudinal models, one may refer to specific dynamic models
suggested, for example, by Bahadur (1961) (see also Cox, 1972) multivari-
ate binary density (MBD) based model, Kanter (1975) for an observation
driven dynamic (ODD) model, and Zeger et al. (1985) for a linear dynamic
conditional probability (LDCP) model (see Sutradhar (2011, Section 7.2)
for details). All these models yield the marginal mean function, i.e., the
formula for the unconditional means (E[Yit|xit] = Pr[Yit = 1|xit]) for all
t = 1, . . . , T, in terms of β parameter only. For our discussion involving a
MFE model, we consider, for example the AR(1) (auto-regressive order 1)
type linear dynamic model from Zeger et al. (1985), given by

Pr[Yi1 = 1|xi1] = p̃i1(β)

Pr[Yit = 1|yi,t−1,xit,xi,t−1] = p̃it(β) + ρ(yi,t−1 − p̃i,t−1), t = 2, . . . , T, (1.2)

with p̃it(β) = exp(x′itβ)/[1 + exp(x′
itβ)], yielding the marginal means and

variances as the function of β only, that is they are free of the dynamic
dependence parameter ρ. We refer to this MFE model as longitudinal model
1 (LM(1)), and express it as

LM(1): A marginal fixed effects (MFE) model

E[Yit] = Pr[Yit = 1] = p̃it(β) = exp(x′
itβ)/[1 + exp(x′

itβ)] (1.3)

var[Yit] = p̃it(β)(1− p̃it(β)).

There are, however, many other situations where the MFE models are
not appropriate for the marginal means of the longitudinal binary data. This
mostly happens when yit depends on the history Hit, rather than on xit. In
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this case, marginal means will be the function of both β and dynamic depen-
dence parameter ρ. In cross-sectional cluster setup, a MME (marginal mixed
effects model (CM(1)), means involving β and σ2

γ) was used to represent the
marginal means, but in the present longitudinal setup it is more appropriate
to refer the model as the MD (marginal dynamic) or MR (marginal recur-
sive) model. More specifically this MD/MR model for marginal means is
derived from a non-linear conditional dynamic logit model Sutradhar and
Farrell (2007) given by

Pr[Yi1 = 1|xi1] = p̃i1(β) = exp(x′
i1β)/[1 + exp(x′

i1β)]

Pr[Yit = 1|yi,t−1,xit] =
exp(x′

itβ + ρyi,t−1)

1 + exp(x′
itβ + ρyi,t−1)

, t = 2, . . . , T, (1.4)

(see also Loredo-Osti and Sutradhar, 2012; Fokianos and Kedem, 2003 in
a time series setup) yielding the marginal dynamic/recursive (MD/MR)
model:

LM(2) : marginal dynamic/recursive (MD/MR) model

μi1(β) = E[Yi1|xi1] = Pr[Yi1 = 1|xi1] = p̃i1(β)

μit(β, ρ) = E[Yit|Hit] = p̃it(β) + μi,t−1(·)(˜̃pit(β, ρ)− p̃it(β)),

t = 2, . . . , T, (1.5)

[Sutradhar and Farrell (2007), Sutradhar (2011, Section 7.7.2)] where ˜̃pit(β,
ρ) = exp(x′

itβ + ρ)/[1 + exp(x′
itβ + ρ)].

For the sake of completeness, we also include another MFE model (on
top of LM(1)) where, similar to CM-C in cross-section cluster setup, an
arbitrary MFE (AMFE) model is used for the marginal means in terms of
β, and longitudinal correlations are not modeled but substituted by certain
‘working’ correlations (Liang and Zeger, 1986) for the inference about β. We
name this AMFE based model as LM(3). we briefly review these models
LM(1), LM(2), and LM(3) in Section 3, along with available approaches for
their parameters estimation. The advantages and drawbacks of these models
and estimation approaches are also discussed.

Furthermore, because the CM-A as opposed to CM-B-1, CM-B-2 and
CM-C in the cross-sectional cluster setup shows under the normality assump-
tion of the random cluster effect (γi) that the marginal means contain both
β and σ2

γ parameters, we consider this general model further in Section 4
and demonstrate how to construct a computationally simpler GQL (gener-
alized quasi-likelihood) approach than maximum likelihood (ML) approach
for the estimation of β, for known σ2

γ . When σ2
γ is unknown we provide a
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consistent MM (method of moments) approach for its estimation. Asymp-
totic properties such as consistency of these GQL and MM estimators are
also given in the same section. As far as the estimation of β and ρ under the
general longitudinal model LM(2) is concerned, one may refer to Sutradhar
and Farrell (2007) for their GQL and MM based estimation. In Section 5,
we provide a brief review on the use of the GLMM (generalized linear mixed
model) in a Bayesian frame work for inferences for correlated binary data in
both cluster and longitudinal setups. Apart from computational complexity,
it is outlined that because the random effects based models, in general, do
not produce the time lag dependent correlations, choosing necessary proper
prior distributions under longitudinal setup may be problematic. To tackle
this problem to some extent, there appears a few studies using dynamic mod-
els for longitudinal binary data in a Bayesian frame work. This approach is
discussed in brief as well. The paper concludes in Section 6.

2 Existing Marginal Models and Estimation for Cross-Sectional
Clustered Binary Data

2.1. CM-A: Population Average (PA) Based Marginal Mixed Effects
(MME) Models Refer to the marginal conditional model (1.1) which is writ-
ten by adding the random cluster effect γi to the linear predictor x′

ijβ used
in the binary logistic probability function. This model is also as random
effects model for binary data. Under the assumption that γi has a suitable
probability distribution with probability density gD(γi|0, σ2

γ), one may then
write the likelihood function as

L(β, σ2
γ) = ΠI

i=1Pr((yi1, . . . , yij , . . . , yini)|β, σ2
γ)

= ΠI
i=1

∫
γi

Πni
j=1Pr(yij |γi)gD(γi)dγi = ΠI

i=1

∫
γi

Πni
j=1[p

∗
ij(β, γi)]

yij [1− p∗ij(β, γi)]
1−yijgD(γi)dγi

= ΠI
i=1

∫
exp{

∑ni
j=1 yij(x

′
ijβ + γi)}

Πni
j=1{1 + exp(x′

ijβ + γi)}
gD(γi)dγi, (2.1)

which, and some of its modification such as penalized quasi-likelihood, hi-
erarchical likelihood, were exploited by many researchers over the last four
decades under varieties form of gD(·), mainly for the estimation of β and σ2

γ .
Among varieties form for gD(·), normality assumption based gN (γi) is widely
used. See for example, Stiratelli et al. (1984, Eqn. (3.1)), Breslow and Clay-
ton (1993), Lee and Nelder (1996), Sutradhar and Mukerjee (2005). Some
authors have used a specialized “bridge” (b) distribution with density, say

265



B. C. Sutradhar

gb(·) (Wang and Louis (2003, Eqns. (4.1)-(4.2)), Parzen and et al. (2011)),
which, unlike the normal distribution (gN (·)), yields a marginal fixed effects
model for the marginal means. But this “bridge” distribution appears to
be restrictive and too technical for practical use. When gD(·) ≡ gN (·), one
obtains a MME (marginal mixed effects) based mean model given by

E[Yij ] = Pr[Yij = 1|xij ] j = 1, . . . , ni

=

∫
γi

p∗ij(β, γi)gN (γi)dγi =

∫ [
exp(x′

ijβ + γi)

[1 + exp(x′
ijβ + γi)]

]
dGN (γi, σ

2
γ)

= μij(β, σ
2
γ), (say), for all j = 1, . . . , ni (2.2)

�=
exp(x′

ijβ)

[1 + exp(x′
ijβ)]

= pij(β). (2.3)

Notice that the gN (·) based likelihood estimates for β and σ2
γ (Sutradhar

and Mukerjee, 2005), obtained by maximizing the likelihood function (2.1),
can be used in the marginal mean μij(β, σ

2
γ) to interpret the effects of xij on

the binary mean response E[Yij ] = Pr[Yij = 1|xij ]. However, some studies
attempt to estimate β in pij(β) and interpret the effects of xij on the mean
response. But clearly it would be an incorrect or inconsistent estimate under
normal random cluster effects, as β in Eq. 2.2 can not be estimated without
estimating σ2

γ at least consistently. This is also evident from Zeger et al.
(1988) that under normality, the population average (PA) based β, that is,
βPA in μij(β

PA, σ2
γ) in Eq. 2.3 has an approximate relationship with the

subject specific (SS) β, i.e., βSS in pij(β
SS), as

βPA ≈ βSS/[

√
1 +

(
16

15

)2 3

π2
σ2
γ ]. (2.4)

Thus, the desired βPA can not be estimated without estimating σ2
γ under

the present cluster setup.
However, there remains two relatively complex issues in this β = βPA

estimation. First, μij(β, σ
2
γ) is an implicit function, hence it is not easy to

interpret the role of β on this mean function in the presence of an estimate of
σ2
γ . Second, the likelihood estimation for β and σ2

γ is complex. As a remedy,
following a binomial approximation (BA) to the normal distribution of γi
(Sutradhar (2011, Chapter 5, Eqn. (4.24))), one may compute this mean
function μij(·) as follows and interpret it as the function of β for given
σ2
γ . Use γ∗i = γi/σγ in Eq. 2.2 and express p∗ij(β, γi) as p∗ij(xj ;β, σγγ

∗
i ).
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Further consider vi as a binomial variable with parameters V and 1/2, i.e.,
vi ∼ binomial(V, 1/2). Next using

γ∗i =
vi − V (1/2)√
V (1/2)(1/2)

≡ h(vi) (2.5)

we may express the MME based mean function in Eq. 2.2 as

μBA
ij (β, σ2

γ) =
V∑

vi=0

p∗ij(xij ;β, σγh(vi))

(
V
vi

)
(1/2)vi(1/2)V−vi , (2.6)

where V is assumed to be relatively large such as V = 10. Note that this
formula in Eq. 2.6 for the computation of the BA-based individual spe-
cific mean function is explicit, whereas the mean function was implicitly
defined in Eq. 2.2. Thus one may use the likelihood estimates of β and
σ2
γ obtained by exploiting the gN (γi)-based likelihood function (2.1) (Su-

tradhar and Mukerjee, 2005) into this mean formula in Eq. 2.6, and easily
examine/interpret the effects of individual covariate xij on the binary mean
function Pr[Yij = 1|xij ] = E[Yij |xij ]. We remark however that as the likeli-
hood estimation is relatively complex, in Section 4 we demonstrate how one
can develop a GQL approach (which produces consistent and highly efficient
estimate, the ML estimate being optimal) for the estimation of the main
regression parameters, and a MM approach for consistent estimation of σ2

γ .
These GQL and MM approach exploit moments of the clustered binary data
up to order 2 containing all squared and pairwise (from 2 individuals in the
cluster) products of the binary responses. The following section provides
a brief discussion on some other (than ML and GQL) existing estimated
approaches along with their limitations.

2.1.1. Some Highly Competing Estimation Approaches in the Cross-
Sectional Cluster Setup and their Drawbacks.

A BLUP (Best Linear Unbiased Prediction) Approach Under nor-
mality, i.e., when gD(γi) ≡ gN (γi) in Eq. 2.1, many authors such as Stiratelli
et al. (1984, Eqn. (3.1)), Schall (1991), Karim and Zeger (1992), Bres-
low and Clayton (1993), McGilchrist (1994), Kuk (1995), Lin and Breslow
(1996), and Lee and Nelder (1996) have used a BLUP analogue estimation
approach, where cluster/familial random effects are treated to be the fixed
effects [Henderson (1963)] and the regression and variance components of
the mixed model (2.1) are estimated based on the so-called estimates of the
random effects. Because γi has to be estimated using the data from the i-th
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cluster only, in general, this BLUP procedure may yield biased estimate for
γi specially when ith cluster size is small, which may subsequently produce
biased regression and variance estimates, variance estimates being more ad-
versely affected than regression estimates. In order to remove biases in the
estimates, Kuk (1995) and Lin and Breslow (1996), among others, provided
certain asymptotic bias corrections both for the regression and the variance
component estimates. But, as Breslow and Lin (1995, p. 90) have shown
that the bias corrections appear to improve the asymptotic performance of
the uncorrected quantities only when the true variance component is small,
more specifically, less than or equal to 0.25. But in practice, variance compo-
nent can be much larger. We further remark that the above BLUP analogue
approaches are essentially using a likelihood technique for the present non-
linear binary regression analysis. For example, Breslow and Clayton (1993)
specifically use a PQL (penalized quasi-likelihood) approach, similarly Lee
and Nelder (1996) use a HL (hierarchical likelihood) approach. These two
approaches are similar, because in the first step, both PQL and HL ap-
proaches estimate the regression parameters and the random effects. The
difference between the two approaches is that the PQL approach estimates
them by maximizing a penalized quasi-likelihood function, whereas the HL
approach maximizes a hierarchical likelihood function. In the second step, in
estimating the variance of the random effects, the PQL approach maximizes
a profile quasi-likelihood function, whereas the HL approach maximizes an
adjusted profile hierarchical likelihood function. Thus both approaches en-
counter biases in the estimates in a similar way.

Another major drawback of the above mentioned BLUP oriented likeli-
hood approaches is that no attempt is made to compute the marginal means
from the respective likelihood function, whereas this computation of the
marginal means is essential to interpret the effects of the covariates xij on
the marginal means Pr[Yij = 1|xij ] = E[Yij |xij ] = μij(xij ;β, σ

2
γ).

2.2. CM-B-1: Subject Specific (SS) Marginal Fixed Effects (MFE) Model
Based on “bridge” Random Cluster Effects In some situations depending on
the assumption about the distribution of the random effects (γi), the PA-
based mixed model may yield a fixed effects model for the marginal means.
More specifically, by using a slightly different (than p∗ij(β, γi) in Eq. 2.2)
marginal-conditional probability given by

Pr[Yij = 1|xij , γi] = p∗∗ij (β, φ(σ
2
γ), γi)

= exp({φ(σ2
γ)}−1x′

ijβ + γi)[1 + exp({φ(σ2
γ)}−1x′

ijβ + γi)],

0 < φ(σ2
γ) < 1, (2.7)
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Wang and Louis (2003, Eqn. (4.2)) have shown that

Pr[Yij = 1|xij ] =

∫ ∞

−∞
p∗∗ij (β, γi)gD(γi)dγi

= pij(β) = exp(x′
ijβ)/[1 + exp(x′

ijβ)], (2.8)

a MFE (marginal fixed effects) based model involving only β parameters,
when

gD(γi) ⇒ gb(γi),

gb(γi) being the so-called “bridge” density of the form

gb(γi) =
1

2π

sin(φπ)

cosh(φγi) + cos(φπ)
; 0 < φ(σ2

γ) < 1, −∞ < γi < ∞. (2.9)

where φ is related to σ2
γ through the relationship, σ2

γ = π2(φ−2 − 1)/3.
We remark that the MFE model for the marginal means given in Eq. 2.8

is simpler than the MME model (2.2) to interpret the effects of the covariates
xij on the SS binary means E[Yij |xij ] as it is σ2

γ free. Also the likelihood
estimate of β obtained by exploiting the likelihood function

L(β, φ/σ2
γ) = ΠI

i=1

∫
exp{

∑ni
j=1 yij(φ

−1x′
ijβ + γi)}

Πni
j=1{1 + exp(φ−1x′

ijβ + γi)}
gb(γi)dγi, (2.10)

can be used for β in the MFE model (2.8). This is because the MFE model
(2.8) can be obtained from the joint probability function used in the likeli-
hood function (2.10). That is βPA ≡ βSS .

However, some of the major drawbacks of this “bridge” random effects
based fixed model are:

(i) Notice that γi involved in the linear mixed predictor in the condi-
tional probability function in Eq. 2.7 may be treated as a random covariate,
whereas xij ’s are known to be fixed covariates. As far as its distributional
properties are concerned, even though the bridge distribution (2.9) (which
has a complex trigonometrical ratio form) technically yields the marginal
fixed effects model, the suitability of this distributional assumption, as op-
posed to the normality assumption (e.g., Breslow and Clayton, 1993; Lee
and Nelder, 1996 in GLMM setup) in practical contexts, is not discussed
adequately in the literature.

(ii) Even though the MFE model (2.8) does not contain φ/σ2
γ , this pa-

rameter has to be estimated anyway as it contains in the likelihood function
or any possible correlation structure. Moreover, the likelihood estimation us-
ing the likelihood function (2.10) would be much more complex than using
the normal clusters based likelihood function.
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(iii) β parameter in the MFE model (2.8) could be estimated using a
QL (quasi-likelihood) approach rather than using the complicated likelihood
approach, provided one could compute the pair-wise correlations among the
clustered binary responses. The computation of these correlations appear to
be complicated under this “bridge” cluster effects assumption.

2.3. CM-B-2: SS Marginal Fixed Effects (MFE) Model Based on Beta-
Binary Random Clustered Probability Function Similar to the CM-B-1 model
(Wang and Louis, 2003, 2004), there exists some early studies (Prentice,
1986; Haseman and Kuper, 1979) in the context of clustered binary regres-
sion analysis in a longitudinal setup, where, in order to obtain a MFE model
for binary means, an extended assumption about the distribution of a func-
tion of γi, specifically for p∗ij(β, γi), was used. For a bounded scale parameter

τ, as a function of σ2
γ , say τ(σ2

γ) satisfying the range 0 < τ(σ2
γ) < 1), suppose

that p∗ij(β, γ) in Eq. 1.1 (see also Eq. 2.2) follows a beta-distribution (g̃B) of

first kind with parameters ({τ(σ2
γ)}−1− 1)pij(β) and ({τ(σ2

γ)}−1− 1)qij(β))
with qij(β) = 1− pij(β). More specifically,

Distributional assumption for the random logistic function p∗ij(β, γi) :

A beta-distribution of first kind

g̃B(p
∗
ij ; τ, pij(β)) =

p∗ij
(τ−1−1)pij−1(1− p∗ij)

(τ−1−1)qij−1

B((τ−1 − 1)pij , (τ−1 − 1)qij)
; 0 ≤ p∗ij ≤ 1, (2.11)

which yields the marginal probability

Pr[Yij = 1|xij ] =

∫ 1

0
p∗ij(β, γi)g̃B(p

∗
ij)dp

∗
ij

= pij(β) = exp(x′
ijβ)/[1 + exp(x′

ijβ)], (2.12)

as in Eq. 2.8 under CM-B-1 model, which is the same as the marginal prob-
ability in Eq. 2.3.

Consequently, under this mixed model approach, one may examine the
effects of xij on the marginal response means E[Yij |xij ] = Pr[Yij = 1|xij ]
by computing β parameter involved in the simpler MFE model Eq. 2.12, i.e.,
in pij(β) = exp(x′

ijβ)/[1 + exp(x′
ijβ)]. This estimation can be achieved by

maximizing the likelihood function

L(β, τ) = ΠI
i=1Π

ni
j=1

∫ 1

0

p∗ij
{(τ−1−1)pij+yij}−1(1−p∗ij)

{(τ−1−1)qij+yij+1}−1

B((τ−1 − 1)pij , (τ−1 − 1)qij)
dp∗ij

= ΠI
i=1Π

ni
j=1

Γ(τ−1 − 1)pij + yijΓ(τ
−1 − 1)qij + yij + 1

Γ(τ−1−1) + 2yij+1B((τ−1−1)pij , (τ−1−1)qij)
, (2.13)
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with respect to β and τ.
However, some of the major drawbacks with this beta-binary approach

based marginal fixed model, are:
(i) The likelihood estimation by exploiting the likelihood function (2.13)

is complex. See, for example, Sutradhar and Das (1997), for an approximate
QL approach estimation in a similar setup.

(ii) The assumption that the whole conditional probability p∗ij(β, γi) =
exp(x′

ijβ + γi)/[1 + exp(x′
ijβ + γi)] in Eq. 1.1 follows a beta distribution,

rather than assuming a distribution for γi such as normality, appears to be
too restrictive and hence it may be impractical, in order to obtain a marginal
fixed model.

(iii) The pair-wise correlations among the clustered responses are not
understood as they may not be easy to compute. This is because, such a
computation will require first the computation of the correlations between
p∗ij(β, γi) = exp(x′

ijβ+ γi)/[1 + exp(x′
ijβ+ γi)] and p∗ik(β, γi) = exp(x′

ikβ+
γi)/[1 + exp(x′

ikβ + γi)] for j �= k; j, k = 1, . . . , ni which is not possible
without making further joint, say bivariate, distributional assumptions for
p∗ij and p∗ik.

(iv) Even though ML approach may give an estimate for τ, estimating σ2
γ ,

the cluster variance, is, however, not possible without knowing the specific
relationship between τ and σ2

γ , τ(σ
2
γ) being currently an implicit function

only.
2.4. CM-C: A SS Arbitrary Marginal Fixed Effects (AMFE) Model Some

authors, for example in an early study, Zeger et al. (1988, Section 3.1), con-
sidered a clustered binary data analysis and suggested to use the MFE model
for the marginal means, given by

E[Yij ]=Pr[Yij=1|xij ]=pij(β)=exp(x′
ijβ)/[1 + exp(x′

ijβ], (2.14)

for all j = 1, . . . , ni. Because the clustered responses are correlated, for infer-
ences about β, these authors have suggested the use of a ‘working’ correlation
structure based GEE (generalized estimating equations) approach discussed
by Liang and Zeger (1986). It is clear that neither the means nor the correla-
tions were modeled under this approach. Hence, the MFE model in Eq. 2.14
is purely an arbitrary fixed effects model. Notice that even though this
model in Eq. 2.14 appears to be the same as the marginal models in Eqs. 2.8
and 2.12, it is however an assumed model without showing its connection
with the marginal-conditional model (1.1), whereas the models in Eqs. 2.8
and 2.12 were derived from Eq. 1.1 under certain distributional (“bridge” and
beta-binary) assumptions for the cluster effects γi. Furthermore, as shown by
Eq. 2.2 (see also Eq. 2.6), this marginal model (2.14) can not be derived from
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Eq. 1.1 under normality assumption for γi, and in such normal based cases,
the MFE model (2.14) would produce biased and hence inconsistent regres-
sion estimate due to ignoring σ2

γ from the marginal mean function. In this
token we remark that the marginal model (2.14) suggested by Zeger et al.
(1988, Section 3.1), therefore, gives a wrong impression that it can be used
for any clustered correlated binary data. This impression is further noticed
in a recent paper by Chen et al. (2011, Section 2.1), where this marginal
model (2.14) was used under a clustered correlated ‘response process’ with-
out misclassification, and was generalized for a possible ‘misclassification
process’. The difference between their models is that Zeger et al. (1988,
Section 3.1) suggested a ‘working’ correlation structure to construct their
GEE, whereas Chen et al. (2011, Section 2.1) suggested a ‘working’ odds
ratio based ‘working’ covariance (or bivariate probability) structure to de-
velop the GEE for β estimation. However, in a longitudinal setup for binary
data, it is well known that these GEE approaches may produce inefficient
estimates as compared to the so-called independence assumption based sim-
pler MM and QL approaches (Sutradhar and Das (1999), Sutradhar (2011,
Section 7.3.6), Sutradhar and Zheng (2018), Sutradhar (2014, Section 4.2)),
which is a serious inference drawback.

To have a feel about the possible adverse performance of the odds ra-
tio based GEE approach in the present cross-sectional cluster setup, we
consider the most likely practical case with normal random cluster effects
(γi ∼ N(0, σ2

γ)) as discussed in Section 2.1, and compute the odds ratio as
follows to examine whether one can express log of this odds ratio in a linear
form as suggested in Chen et al. (2011, Section 2.1). Because, the odds ratio
for yij and yik (j �= k; j, k = 1, . . . , ni) has the formula

ψijk =
Pr(Yij = 1, Yik = 1)Pr(Yij = 0, Yik = 0)

Pr(Yij = 1, Yik = 0)Pr(Yij = 0, Yik = 1)
, (2.15)

we compute these joint probabilities involved in Eq. 2.15, by exploiting the
independence of yij and yik conditional on γi in Eq. 1.1 and then taking
population average over the normal distribution of γi. More specifically, for
γ∗i = vi−V (1/2)√

V (1/2)(1/2)
≡ h(vi) as in Eq. 2.5, following Eq. 2.6, we write

λ
(1,1)
ijk (β, σ2

γ) = Pr(Yij = 1, Yik = 1) (2.16)

=
V∑

vi=0

exp((x′
ij + x′

ik)β + 2σγh(vi))

[1 + exp(x′
ijβ + σγh(vi))][1 + exp(x′

ikβ + σγh(vi))]

(
V
vi

)

(1/2)vi(1/2)V−vi
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λ
(0,0)
ijk (β, σ2

γ) = Pr(Yij = 0, Yik = 0) (2.17)

=
V∑

vi=0

1

[1 + exp(x′
ijβ + σγh(vi))][1 + exp(x′

ikβ + σγh(vi))]

(
V
vi

)

(1/2)vi(1/2)V−vi

λ
(1,0)
ijk (β, σ2

γ) = Pr(Yij = 1, Yik = 0) (2.18)

=
V∑

vi=0

exp(x′
ijβ + σγh(vi))

[1 + exp(x′
ijβ + σγh(vi))][1 + exp(x′

ikβ + σγh(vi))]

(
V
vi

)

(1/2)vi(1/2)V−vi

λ
(0,1)
ijk (β, σ2

γ) = Pr(Yij = 0, Yik = 1) (2.19)

=
V∑

vi=0

exp(x′
ikβ + σγh(vi))

[1 + exp(x′
ijβ + σγh(vi))][1 + exp(x′

ikβ + σγh(vi))]

(
V
vi

)

(1/2)vi(1/2)V−vi ,

yielding the odds ratio as

ψijk =
λ
(1,1)
ijk (β, σ2

γ)λ
(0,0)
ijk (β, σ2

γ)

λ
(1,0)
ijk (β, σ2

γ)λ
(0,1)
ijk (β, σ2

γ)
. (2.20)

In Chen et al. (2011), these joint probabilities are unknown, and λ
(1,1)
ijk (β, σ2

γ)
is expressed as a function of ψijk, pij(β), pik(β), and then estimate this joint
probability by using an estimate of ψijk. For the estimation, in this approach
they use an ‘working’ log linear model, namely

ψijk = exp(u′
ijkα),

where uijk is a set of suitable covariates and α is set of new regression param-
eters. Notice however that the odds ratio, which is known, and computed
by Eq. 2.20, is far different than what is modeled using a log linear relation-
ship. Thus, this aforementioned example demonstrates that the ‘working’
odds ratio approach by fitting a log linear model for odds ratio estimation
may yield inconsistent estimate for the joint probability, restricting its use
for GEE construction.

3 Existing Marginal Models and Estimation for Longitudinal
Clustered Binary Data

As opposed to cross-sectional clustered data collection, in a longitudinal
setup a cluster is formed with repeated responses over a period of time T,
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from an individual i, for all i = 1, . . . , I. As explained in Section 1, specif-
ically in Eqs. 1.2 and 1.4, the correlations among repeated responses arise
through certain dynamic relationships between past and present responses of
the same individual. We refer to Sutradhar (2010, Section 2.2) and Sutrad-
har and Zheng (2018), for example, for some low order non-stationary (time
dependent covariates based) correlation such as AR(1) (auto-regressive or-
der 1), MA(1) (moving average order 1), and exchangeable/equi-correlation
structures for repeated binary data. Similar but ‘working’ correlation struc-
tures for stationary/non-stationary repeated binary data are also found in
Liang and Zeger (1986), Zeger et al. (1985), and Lin and Carroll (2001), for
example.

As far as the marginal models for the binary means at a given time t
are concerned, similar to the cross-sectional clustered binary models, these
models can be (1) MFE model (LM(1)) such as in Eq. 1.4 obtained from a
linear dynamic conditional model, or (2) MD/MR model (LM(2)) such as in
Eq. 1.5 obtained from a non-linear dynamic conditional logits model, or (3)
AMFE (arbitrary marginal fixed effects) model (LM(3)), where correlations
are thought not to play any roles in mean specification. For convenience, we
refer to Zeger et al. (1985), Sutradhar (2010, 2011), and Sutradhar and Zheng
(2018), for LM(1) type MFE model; Fokianos and Kedem (2003), Sutradhar
and Farrell (2007), and Sutradhar (2011, Section 7.7.2), for LM(2) type
MD/MR (marginal dynamic/recursive) model; and Liang and Zeger (1986),
and Lin and Carroll (2001), for the AMFE model.

We further remark that some studies (e.g., Laird and Ware, 1982; Sti-
ratelli et al., 1984; Parzen and et al., 2011) have used random effects models
those are similar to the cross-sectional clustered models discussed in Sec-
tion 2. However, these models can accommodate only EQC/exchangeable
type correlations, and hence they have limited or no values for longitudinal
data where one encounters correlations through time series type dynamic
models. As discussed in Section 2, these models also have limitations for
specification of marginal means for the cross-sectional cluster binary data.
Thus, we do not include these models any further in our discussion.

3.1. LM(1): Time Specific (TS) Marginal Fixed Effects Model Recall
from Section 1 that the linear dynamic conditional probability (Pr[Yit =
1|yi,t−1]) model (1.2) relates yi,t−1 to yit, for t = 2, . . . , T, through an AR(1)
type relationship. This model produces a MFE model for the binary means
at time t as in Eq. 1.4, specifically it yields

E[Yit] = Pr[Yit = 1] = p̃it = exp(x′
itβ)/[1 + exp(x′

itβ)],
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where β explains the effects of the fixed covariates xit on yit, specifically on
E[Yit]. Notice that the conditional model (1.2) also produces the lag (t− u)
correlations between two responses yiu and yit, for u < t, say, as

corr(Yiu, Yit) = ρt−u[
σiuu
σitt

]
1
2 , (3.1)

[Sutradhar (2011), Eqn. (7.73)) where σitt is the variance of yit, for all
t = 1, . . . , T, and is given in Eq. 1.4 as σitt = p̃it(1− p̃it).

As far as the estimation of β is concerned, if one is willing to ignore the
correlation structure (3.1) (which is equivalent to use ρ = 0 in Eq. 3.1), then
(1) one may solve the MM (method of moments) estimating equation

I∑
i=1

T∑
t=1

∂p̃it
∂β

(yit − p̃it) = 0, (3.2)

or (2) a QL (quasi-likelihood) estimating equation

I∑
i=1

T∑
t=1

∂p̃it
∂β

σ−1
itt (yit − p̃it) = 0, (3.3)

[Wedderburn (1974)] to obtain MM or QL estimate for β. Note that both
MM (3.2) and QL (3.3) estimating equations are unbiased as E[Yit] = p̃it(β)
yielding E[Yit − p̃it(β)] = 0. Consequently, as I → ∞, MM and QL esti-
mators will be consistent under some mild regularity conditions. But these
estimators will be inefficient as compared to other moments based estimators
obtained by accommodating the underlying correlation structure (3.1).

Let Σi(β, ρ) = (σiut(·)) denote the T × T covariance matrix constructed
based on the correlation structure from Eq. 3.1. One may then obtain a
highly efficient estimate of β by solving the GQL estimating equation

I∑
i=1

∂p̃′
i(β)

∂β
Σ−1

i (β, ρ)(yi − p̃i(β)) = 0, (3.4)

[Sutradhar (2003, Section 3)] where

yi = (yi1, . . . , yit, . . . , yiT )
′, p̃i(β) = (p̃i1, . . . , p̃it, . . . , p̃iT )

′.

Alternatively, one may obtain an optimal estimate of β by solving a likeli-
hood estimating equation for θ = (β′, ρ)′ given by

∂log L(β, ρ)

∂θ
= 0, (3.5)
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where

L(β, ρ) = ΠI
i=1[f(yi1)Π

T
t=2f(yit|yi,t−1)], (3.6)

with

f(yi1) = p̃yi1i1 [1− p̃i1]
1−yi1

as the binary density at t = 1, and conditional density of the form

f(yit|yi,t−1) = [λ∗
it(β, ρ|yi,t−1)]

yit [1− λ∗
it(β, ρ|yi,t−1)]

1−yit , (3.7)

for t = 2, . . . , T, with λ∗
it(β, ρ|yi,t−1) = P [yit = 1|yi,t−1] as the conditional

probability as given in Eq. 1.2.
Note that as the likelihood estimation is more complex than the GQL

estimation approach, GQL approach becomes practically useful as it also pro-
vides more efficient estimates than the MM and QL approaches. We further
remark that under this MFE model (LM(1)), where correlations are specified
by Eq. 3.1, the so-called GEE approach (Liang and Zeger (1986)) becomes
redundant because no ‘working’ correlation structure is needed when true
correlation structure is known.

3.2. LM(2): Time Specific (TS) Marginal Dynamic/Recursive (MD/MR)
Model Many existing studies such as Liang and Zeger (1986), Zeger et al
(1988, Section 3.1), Lipsitz et al. (1991), and Yi and Cook (2002), among
others, have specified the marginal binary means as a function of regression
parameters only, specifically as

E[Yit] = Pr[Yit = 1] = p̃it = exp(x′
itβ)/[1 + exp(x′

itβ)], (3.8)

which is similar to Eq. 2.14 in a cross-sectional cluster setup, and estimated
β using ‘working’ correlations based so-called GEE approach. Thus, it is
clear that these and other follow up works neither did model the marginal
means nor the correlation structure for the underlying longitudinal binary
responses. Between these two specifications, i.e., specifying the marginal
means by Eq. 3.8, and specifying a ‘working’ correlations matrix, for repeated
binary data, the former specification can seriously effect the validation of the
regression estimates when the marginal means for correlated binary data
can not be specified as a function of regression parameters only. One such
important situation is indicated by Eq. 1.5 under Section 1, where marginal
means for the longitudinal binary data appear to involve both regression (β)
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and correlation (ρ) parameters. More specifically, the dynamic logit model
(1.4) yields

μi1(β) = E[Yi1|xi1] = p̃i1(β) = exp(x′
i1β)/[1 + exp(x′

i1β)]

μi2(β, ρ) = E[Yi2|Hi2] =
exp(x′

i2β)

[1 + exp(x′
i2β)]

+μi1(β)

(
exp(x′

i2β + ρ)

[1 + exp(x′
i2β + ρ)]

− exp(x′
i2β)

[1 + exp(x′
i2β)]

)

μi3(β, ρ) = E[Yi3|Hi3] =
exp(x′

i3β)

[1 + exp(x′
i3β)]

+μi2(β, ρ)

(
exp(x′

i3β + ρ)

[1 + exp(x′
i3β + ρ)]

− exp(x′
i3β)

[1 + exp(x′
i3β)]

)
, (3.9)

and so on. Clearly, these means show a recursive relationship. These
marginal means take the so-called fixed effects model form, i.e., μit(·) =
p̃it(β) = exp(x′

itβ)/[1 + exp(x′
itβ)], for all t = 1, . . . , T, only when ρ = 0.

Otherwise, μi2(·) (marginal mean at time point t = 2) is p̃i2(β) plus an in-
crement or decrement due to ρ weighted by previous mean μi1, and so on.
It is then clear that one can no longer estimate the regression effects β by
using the so-called GEE approach (Liang and Zeger, 1986). This is because
the binary means (1.5) under this BDL model are not free of correlation
parameter, whereas GEE approach is developed for the estimation of fixed
effects based marginal means all containing only regression parameters β,
correlations are being nuisance. In summary, any β estimates for the mean
model (3.8) when in fact the mean model by Eq. 1.5 is true, would produce
inconsistent regression estimates, which is a serious inference issue.

For the regression analysis of the BDL (binary dynamic logit) model
(1.4) which produces the marginal recursive (MR) means as in Eq. 1.5 in-
volving both β and ρ, (Sutradhar and Farrell, 2007) (see also Amemiya
(1985, p. 422) in a time series setup) have develop a GQL (generalized quasi-
likelihood) estimation approach which exploits the true correlation structure
of the data. For u < t, the formula for the lag (t−u) auto-correlation between
yiu and yit, is given by

corr(Yiu, Yit) = ρ̃t−u(β, ρ)

=

√
μiu(·)(1− μiu(·))
μit(·)(1− μit(·))

Πt
v=u+1(˜̃piv(β, ρ)− p̃iv(β)), (3.10)

[Sutradhar and Farrell (2007)] where

p̃it(β) = exp(x′
itβ)/[1 + exp(x′

itβ)], for all t = 1, . . . , T,
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˜̃pit(β, ρ) = exp(x′
itβ + ρ)/[1 + exp(x′

itβ + ρ)], for all t = 2, . . . , T,

μi1(β) = p̃i1(β),

and μit(β, ρ) for t = 2, . . . , T, have the recursive/dynamic formula as in
Eq. 1.5. Subsequently, one may construct the T × T true covariance matrix
of the response vector yi = (yi1, . . . , yit, . . . , yiT )

′, of the i-th individual, as

Σ̃i(β, ρ) = cov[Y i] = A
1
2
i (β, ρ)ρ̃M (β, ρ)A

1
2
i (β, ρ), (3.11)

where

Ai(β, ρ) = diag[μi1(·)(1− μi1(·)), . . . , μiT (·)(1− μiT (·))]

ρ̃M (β, ρ) =

⎛
⎜⎜⎜⎜⎜⎝

1 ρ̃1 ρ̃2 . . . ρ̃� . . . ρ̃T−2 ρ̃T−1

· 1 ρ̃1 . . . ρ̃�−1 . . . ρ̃T−3 ρ̃T−2
...

...
... . . .

... . . .
...

· · · . . . · . . . 1 ρ̃1
· · · . . . · . . . · 1

⎞
⎟⎟⎟⎟⎟⎠

. (3.12)

Onemay then exploit the mean vector μi(β, ρ)=E[Y i]=(μi1(β), μi2(β, ρ)
, . . . , μiT (β, ρ))

′ and the above covariance matrix Σ̃i(β, ρ) from Eq. 3.11, for
the GQL estimation of the main regression parameter β. The dynamic de-
pendence or correlation index parameter ρ can be estimated by using the
method of moments (MM). See Section 5, for specific GQL and MM esti-
mating equations for these parameters. In the same section, it is shown that
as I → ∞, the GQL estimator of β and the MM estimator of ρ are con-
sistent under some mild regularity conditions. The asymptotic normality of
the GQL estimator of the main parameter β is also given for convenience of
the construction of confidence intervals, when needed.

3.3. LM(3): A TS (Time Specific) Arbitrary Marginal Fixed Effects
(AMFE) Model for Longitudinal Binary Data This model is similar to the
AMFE model (2.14) under the cross-sectional cluster setup. More specifi-
cally, the AMFE model under the longitudinal setup is written as in Eq. 3.8,
i.e.,

E[Yit] = Pr[Yit = 1] = p̃it(β) = exp(x′
itβ)/[1 + exp(x′

itβ)],

without writing any correlation structures for its derivation, as the underly-
ing structure is assumed to be unknown. Some possible correlation models
those might yield the above marginal mean model (as in Eq. 3.8) are: (a)
the AR(1) type model given in Eq. 1.2. (b) MA(1) (moving average order
1), and (c) EQC (equi-correlations)/Exchange, models. We may refer to Su-
tradhar (2011, Sections 7.4.1 to 7.4.3) for a detailed discussion about these
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three basic longitudinal models, all yielding the same marginal fixed effects
based mean model.

Notice that to obtain a consistent estimate of β involved in the above
marginal mean p̃it(β), one may solve the MM or QL estimating equations
shown in Eqs. 3.1 and 3.2, as they are unbiased estimating equations. These
MM and QL estimating equations are free of correlations and hence the re-
gression estimates obtained from them are bound to be less efficient than
any moments based equations involving correlations. However, for the cases
where true correlation models are unknown, Liang and Zeger (1986) pro-
posed a ‘working’ correlation matrix based GEE (generalized estimating
equations) approach for efficient estimation of β. More specifically, for ef-
ficient β estimation, they define a ‘working’ correlation matrix as Ri(α),
α being a set of working correlation index parameters, and solve the GEE
given by

I∑
i=1

∂p̃′
i(β)

∂β
V −1

i (β, α)(yi − p̃i(β)) = 0, (3.13)

where p̃i(β) = (p̃i1(β), . . . , p̃it(β), . . . , p̃iT (β))
′, and V i(β, α) = Ã

1
2
i (β)Ri(β,

α)Ã
1
2
i (β), with Ãi(β) = diag[p̃i1, . . . , p̃it, . . . , p̃iT ]. Because this GEE ap-

proach was ambitiously aimed to deal with any types of correlated binary
data, it was used by hundreds and hundreds researchers over two decades or
so until it was discovered that this approach may in fact yield less efficient
estimates than an independence assumption-based estimating equation ap-
proach (Sutradhar and Das (1999), Sutradhar (2011, Section 7.3.6; see also
Sutradhar and Zheng (2018) under a semi-parametric setup)) such as QL
approach in Eq. 3.2 (also may be referred to as independence based GEE
(GEE(I)).

Further note that as pointed out in the last section, one can not at all
use the marginal fixed effects (MFE) based GEE approach for certain lon-
gitudinal binary data where correlation parameters enter to the formulas
for the binary marginal means. More specifically, if GEE is used in such
cases, it will produce inconsistent regression estimates. For example, sup-
pose that the longitudinal responses follow the BDL (binary dynamic logit)
model (1.4) yielding the marginal mean models as in Eq. 1.5. Under this
BDL model, the response vector yi = (yi1, . . . , yit, . . . , yiT )

′ has the mean
μi(β, ρ) = E[Y i] = (μi1(β), μi2(β, ρ), . . . , μiT (β, ρ))

′ (see Eq. 1.5) and the
covariance matrix Σi(β, ρ) as in Eq. 3.11, i.e.,

Y i ∼ (μi(β, ρ),Σi(β, ρ)), (3.14)
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where marginal means are function of both β and ρ, whereas the GEE ap-
proach will specify the mean vector as p̃i(β) = (p̃i1(β), . . . , p̃it(β), . . . , p̃iT
(β))′, with p̃it(β) = exp(x′

itβ)/[1 + exp(x′
itβ)].

Now to examine the convergence of β̂GEE obtained from Eq. 3.13 when
it is known that yi has the true mean vector and covariance matrix as in
Eq. 3.14, we first write the iterative equation to obtain β̂GEE , as follows:

β̂GEE(r + 1) = β̂GEE(r)

+

[{
I∑

i=1

∂p̃i(β)

∂β′ V −1
i (β, α̂)

∂p̃′
i(β)

∂β

}

I∑
i=1

∂p̃′
i(β)

∂β
V −1

i (β, α̂)(yi − p̃i(β))

]

β=β̂GEE(r)

. (3.15)

Notice that because the mean vector and covariance matrix of yi are the
function of both β and ρ, and because α̂ is usually a moment estimator, it
then follows that α̂ will converge to a quantity, say α0, which must be a
function of ρ. That is,

α̂ → α0(ρ) (3.16)

[Crowder (1995), Sutradhar and Das (1999)]. Thus, one may approximate
the limiting (as I → ∞) difference between β̂GEE and true parameter β, as

lim
I→∞

[β̂GEE − β]

≈ lim
I→∞

[{
I∑

i=1

∂p̃i(β)

∂β′ V −1
i (β, α0(ρ))

∂p̃′
i(β)

∂β

}

I∑
i=1

∂p̃′
i(β)

∂β
V −1

i (β, α0(ρ))(yi − p̃i(β))

]

→ Ey

[{
I∑

i=1

∂p̃i(β)

∂β′ V −1
i (β, α0(ρ))

∂p̃′
i(β)

∂β

}

I∑
i=1

∂p̃′
i(β)

∂β
V −1

i (β, α0(ρ))(yi − p̃i(β))

]

=

[{
I∑

i=1

∂p̃i(β)

∂β′ V −1
i (β, α0(ρ))

∂p̃′
i(β)

∂β

}

I∑
i=1

∂p̃′
i(β)

∂β
V −1

i (β, α0(ρ))(μi(β, ρ)− p̃i(β))

]
�= 0, (3.17)
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because of the fact that under the BDL model (1.4), E[Y i] = μi(β, ρ) as in
Eq. 3.9 (see also Eq. 3.14), which is quite different than p̃i(β). Thus β̂GEE

obtained from Eq. 3.13 is asymptotically biased and can not converge to β
unless ρ = 0, which is unlikely to happen in the longitudinal setup.

4 Further Estimation and Asymptotic Properties
in Cross-sectional Cluster Setup

4.1. GQL and MM Estimation Recall from Section 2 that except the
MME based general cluster model A (CM-A), the remaining MFE based
cluster models were developed either under restrictive assumptions about
the distribution of the random effects such as “bridge” distribution leading
to the fixed effects model CM-B-1, and beta-binary distribution leading to
the fixed effects model CM-B-2, or using ‘working’ specification both for
means and correlations leading to the AMFE model (CM-C). As discussed
in details in the same section, these later three MFE based models have
limited practical use, in particular the AMFE model (CM-C) can not be
trusted at all as it does not justify how a fixed effects based marginal mean
model can be derived from the conditional random effects model (1.1). For
these reasons, we concentrate in this section only on the estimation of the
parameters of the MME based CM-A model.

More specifically we turn back to the CM-A model described in Sec-
tion 2.1. The model parameters β and σ2

γ are involved in the marginal mean
function μij(β, σ

2
γ) in Eq. 2.2 which has its BA (binomial approximation)

based computational version given by Eq. 2.6. For the estimation of these
parameters, as discussed in Section 2.1.1 that there exist several likelihood
based approaches (exact likelihood, PQL (penalized quasi-likelihood), HL
(hierarchical likelihood)), but they are either computationally involved or
they produce biased and hence mean squared error inconsistent estimates
specially for large values of σ2

γ . In this section, following the GQL approach
of Sutradhar (2004) developed under the GLMM (generalized linear mixed
model) setup, we simplify the binomial approximation (to standard normal
random effects) based GQL estimating equation for β, and MM estimating
equation for σ2

γ . Furthermore, as in practice one (specially the statistical
agencies) deals with large number of clusters each containing large number
of individuals so that

∑I
i=1 ni → ∞, in the next section we make sure for

the benefit to these practitioners that the GQL estimator of β and the MM
estimator of σ2

γ , are consistent. In Section 4.2.2, we show that the GQL
estimator of the main regression parameters β has asymptotically normal
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distribution providing an opportunity for confidence interval construction,
when needed.

4.1.1. GQL Estimation of β. Once the mean function is specified, one
requires the true covariance/correlation structure to construct the desired
GQL estimating equation (Sutradhar (2003, Section 3.1)) for the parameter
of interest. Under the conditional cluster model (1.1) with normal random
cluster effects (γi), the mean function of the i-th cluster response vector
yi = (yi1, . . . , yij , . . . , yini)

′ is computed as in Eq. 3.14. More specifically,
by using the BA (binomial approximation) to the standard normal cluster
effect γ∗i as in Eq. 2.5, we write the BA based mean function as

E[Y i] = μBA
i (β, σ2

γ)

= (μBA
i1 (β, σ2

γ), . . . , μ
BA
ij (β, σ2

γ), . . . , μ
BA
ini

(β, σ2
γ))

′, (4.1)

where by Eq. 2.6,

μBA
ij (β, σ2

γ) =
V∑

vi=0

p∗ij(xij ;β, σγh(vi))

(
V
vi

)
(1/2)vi(1/2)V−vi ,

for all j = 1, . . . , ni, V being a large number such as V = 10, or 15. It
immediately follows that

var(Yij) = σBA
i,jj (β, σ

2
γ) = μBA

ij (β, σ2
γ)(1− μBA

ij (β, σ2
γ)). (4.2)

We now turn to the computation of the ni × ni covariance matrix of yi.
For two responses yij and yik, j �= k; j, k = 1, . . . , ni, by Eq. 1.1, we first
write

λi,jk(β, σ
2
γ) = E[YijYik] = EγiE[YijYik|γi]

= Eγi [E(Yij |γi)E(Yik|γi)] =
∫

p∗ij(β, γi)p
∗
ik(β, γi)gN (γi)dγi, (4.3)

where p∗ij(β, γi) = exp(x′
ijβ + γi)/[1 + exp(x′

ijβ + γi)], and gN (γi) ≡ [γi ∼
N(0, σ2

γ)]. Notice that the normal integration (4.3) of a complex function
in γi, can be computed as in Eq. 2.6 using the BA. More specifically, for
γ∗i = γi/σγ ≡ h(vi) as in Eq. 2.5, the integration in Eq. 4.3 is approximated
as

λBA
i,jk(β, σ

2
γ)

=
V∑

vi=0

p∗ij(xij ;β, σγh(vi))p
∗
ik(xik;β, σγh(vi))

(
V
vi

)
(1/2)vi(1/2)V−vi , (4.4)
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yielding the covariance between yij and yik as

cov[Yij , Yik] = E[YijYik]− E[Yij ]E[Yik]

= λBA
i,jk(β, σ

2
γ)− μBA

ij (β, σ2
γ)μ

BA
ik (β, σ2

γ) = σBA
i,jk(β, σ

2
γ), (4.5)

where the formula for μBA
ij (β, σ2

γ), for example, is given by Eq. 4.1 (see also
Eq. 2.6). Subsequently, combining Eqs. 4.2 and 4.5 we obtain the ni × ni

covariance matrix of yi, as

cov[Y i] = ΣBA
i (β, σ2

γ) = (σBA
i,jk) : ni × ni. (4.6)

Because E[Y i] = μBA
i (β, σ2) and cov[Y i] = ΣBA

i (β, σ2
γ) can be com-

puted by Eqs. 4.1 and 4.6, respectively, following Sutradhar (2003, Section
3.1), for given σ2

γ , one may then construct the desired GQL estimating equa-
tion for β as

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1(yi − μBA
i (β, σ2)) = 0. (4.7)

Let the solution of this GQL estimating Eq. 4.7 be denoted by β̂GQL. For
practical benefit, the asymptotic properties of this estimator must be stud-
ied. The consistency of this estimator is examined in Section 4.2.1, along
with its asymptotic normality property in Section 4.2.2. To solve the esti-
mating Eq. 4.7, it remains to compute the matrix derivative involved in the
equation, which we derive as follows.

Computation of the Derivative
∂[μBA

i (β,σ2)]′

∂β For this matrix compu-

tation it is sufficient to compute the derivative vector,
∂μBA

ij (β,σ2)

∂β , which,
following Eq. 4.1, can be derived as

∂μBA
ij (β, σ2

γ)

∂β
=

V∑
vi=0

∂p∗ij(xij ;β, σγh(vi))

∂β

(
V
vi

)
(1/2)vi(1/2)V−vi (4.8)

=

V∑
vi=0

xijp
∗
ij(xij ;β, σγh(vi))q

∗
ij(xij ;β, σγh(vi))

(
V
vi

)

(1/2)vi(1/2)V−vi : p× 1,

where q∗ij(xij ;β, σγh(vi)) = 1 − p∗ij(xij ;β, σγh(vi)) = [1 + exp(x′
ijβ + σγh

(vi))]
−1.
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4.1.2. MM Estimation of σ2
γ. Notice that the GQL estimating Eq. 4.24

for β was developed for known σ2
γ , which is, however, unknown in practice.

Similar to Sutradhar (2004) (see also Jiang, 1998), in this section we esti-
mate this parameter by exploiting second order binary responses, whereas
β was estimated using the first order responses. However, because σ2

γ is a
parameter of secondary interest, as opposed to the GQL approach for σ2

γ es-
timation by Sutradhar (2004), for simplicity, we use the well known method
of moments (MM). It is shown in Section 4.2.3, this simpler MM estimation
produces consistent σ2

γ estimate, similar to the consistency property of the

GQL regression estimator β̂GQL. As pointed out above, this MM estimator
of σ2

γ is expected to be less efficient than its GQL estimator, this efficiency
is not being a concerning issue as σ2

γ is a parameter of secondary interest.
Let the second order response vectors under the present clustered binary

setup, be denoted by

gi = (y2i1, . . . , y
2
ij , . . . , y

2
ini

)′ ≡ (yi1, . . . , yij , . . . , yini)
′ = yi : ni × 1

qi = (yi1yi2, . . . , yijyik, . . . , yi(ni−1)yini)
′ : j < k :

ni(ni − 1)

2
× 1

≡ (qi,12, . . . , qi,jk, . . . , qi,(ni−1)ni
)′, (4.9)

containing all possible squared and pair-wise responses. Because, gi = yi,
clearly E[Gi] = μBA

i (β, σ2
γ) as in Eq. 4.1. Next, by Eqs. 4.3 and 4.4, we

write

E[Qi] = (λBA
i,12(β, σ

2
γ), . . . , λ

BA
i,jk(β, σ

2
γ), . . . ,λ

BA
i,(n1−1)ni

(β, σ2
γ))

′

= λBA
i (β, σ2

γ), (say), (4.10)

where the BA based formula for E[YijYik] = λi,jk(β, σ
2
γ) is given in Eq. 4.4.

Because both μBA
i (·) and λBA

i (·) contain σ2
γ on top of β, we may construct

a MM estimating equation for σ2
γ , as

I∑
i=1

[
∂[μBA

i (β, σ2
γ)]

′

∂σ2
γ

(yi − μBA
i (β, σ2

γ))

+
∂[λBA

i (β, σ2
γ)]

′

∂σ2
γ

(qi − λBA
i (β, σ2

γ))

]
= 0, (4.11)

where

∂μBA
i (β, σ2

γ)

∂σ2
γ

=(
∂μBA

i1 (β, σ2
γ)

∂σ2
γ

, . . . ,
∂μBA

ij (β, σ2
γ)

∂σ2
γ

, . . . ,
∂μBA

ini
(β, σ2

γ)

∂σ2
γ

)′, (4.12)
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with

∂μBA
ij (β, σ2

γ)

∂σ2
γ

(4.13)

=
V∑

vi=0

1

2σγ
h(vi)p

∗
ij(xij ;β, σγh(vi))q

∗
ij(xij ;β, σγh(vi))

(
V
vi

)
(1/2)vi(1/2)V−vi ,

and

∂λBA
i (β, σ2

γ)

∂σ2
γ

= (
∂λBA

i,12(β, σ
2
γ)

∂σ2
γ

, . . . ,
∂λBA

i,jk(β, σ
2
γ)

∂σ2
γ

, . . . ,

∂λBA
i,(n1−1)ni

(β, σ2
γ)

∂σ2
γ

)′, (4.14)

where, it follows from Eq. 4.4 that

∂λBA
i,jk(β, σ

2
γ)

∂σ2
γ

=
V∑

vi=0

1

2σγ
h(vi)p

∗
ij(xij ;β, σγh(vi))p

∗
ik(xik;β, σγh(vi))

× [q∗ij(xij ;β, σγh(vi)) + q∗ik(xik;β, σγh(vi))]

(
V
vi

)
(1/2)vi(1/2)V−vi , (4.15)

for all j < k; j, k = 1, . . . , ni.
Let σ̂2

γ,MM denote the solution of the moment (4.11). In Section 4.2.3

we show that this MM estimator for σ2
γ is a consistent estimator under some

mild regularity conditions.
4.2. Consistency and Asymptotic Normality
4.2.1. Consistency of β̂GQL Obtained from Eq. 4.7. We first apply a

first order Taylor series expansion to the GQL estimating function in the
left hand side of the estimating in Eq. 4.7 and obtain

β̂GQL − β � −
[

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1∂[μ
BA
i (β, σ2)]

∂β′

]−1

×
[

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1(yi − μBA
i (β, σ2))

]

+op(1/
√
N), (4.16)

where N =
∑I

i=1 ni. Let GN be a N -dependent finite and bounded quantity,
and it increases as N gets larger. Notice that the p × p matrix in the first
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term in the right hand side of Eq. 4.16 is free from responses {y}. Suppose
that this p× p matrix satisfies the regularity condition

1∑I
i=1 ni

I∑
i=1

|∂[μ
BA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1∂[μ
BA
i (β, σ2)]

∂β′ | ≤ GN , (4.17)

implying that

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1∂[μ
BA
i (β, σ2)]

∂β′ ≡ O(NGN ). (4.18)

Next the second term in the right hand side of Eq. 4.16 converges to zero
as

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1(yi − μBA
i (β, σ2))

→ E

[
I∑

i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1(yi − μBA
i (β, σ2))

]
= 0, (4.19)

in the order of

[
|cov

{
I∑

i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1(yi − μBA
i (β, σ2))

}
|
] 1

2

(4.20)

= |
[

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1∂[μ
BA
i (β, σ2)]

∂β′

] 1
2

|

� Op(
√
NGN ), by (4.35).

Hence applying Eqs. 4.18 and 4.20 into 4.16, we obtain

[β̂GQL − β] = O(N−1G−1
N )Op(

√
NGN ) + op(1/

√
N)

= Op((1/
√
N)G

− 1
2

N ) + op(1/
√
N) ≡ op(1/

√
N), (4.21)

because GN is a finite and bounded quantity. It then follows that

lim
N→∞

[β̂GQL − β] → 0. (4.22)

Thus, β̂GQL obtained from Eq. 4.7 is consistent for β.
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Note that as β̂GQL is asymptotically unbiased for β, it follows from
Eq. 4.16 that its asymptotic covariance matrix is given by

lim
I→∞

cov(β̂GQL)

=

[
I∑

i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1∂[μ
BA
i (β, σ2)]

∂β′

]−1

, (4.23)

which can be estimated by replacing β and σ2
γ , with β̂GQL and σ̂2

γ,MM , re-

spectively, provided σ̂2
γ,MM is a consistent estimator of σ2

γ . This later consis-
tency property is examined in Section 4.2.3. Further note that the aforemen-
tioned estimate for cov(β̂GQL) becomes more useful when confidence interval
construction for the β parameter is needed. However, for such a confidence
interval construction one needs to examine the asymptotic distribution of
β̂GQL, which we do in the following section.

4.2.2. Asymptotic Normality of β̂GQL. We outline the derivation of the
asymptotic distribution as follows. Notice from Eq. 4.16 that for large I, β
estimator satisfy the approximation

β̂GQL − β � −
[
1

I

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1∂[μ
BA
i (β, σ2)]

∂β′

]−1

×
[
1

I

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1(yi − μBA
i (β, σ2))

]
, (4.24)

which we re-express as

β̂GQL − β �= −
[

I∑
i=1

∂f i(β|σ2
γ ,yi)

∂β′

]−1 [ I∑
i=1

f i(β|σ2
γ ,yi)

]
. (4.25)

Let

f̄ I(β|σ2
γ) =

1

I

I∑
i=1

f i(β|σ2
γ ,yi), (4.26)

where f i’s are clearly independent because y1, . . . ,yi, . . . ,yI are indepen-
dent vectors from I independent clusters. But, they are not identically
distributed because of the fact that

{Y i : ni × 1} ∼ (μBA
i (β, σ2

γ),Σ
BA
i (β, σ2

γ)), (4.27)
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by Eqs. 4.1 and 4.6, i.e., the means, variances and covariances are cluster
dependent, i.e., they vary from cluster to cluster. Notice from Eqs. 4.24–4.26
that f̄ I(β|σ2

γ ,yi) in Eq. 4.26 has the mean vector and covariance matrix as
given by

E[f̄ I(β)] = 0, and

cov[f̄ I(β)] =
1

I2

I∑
i=1

∂[μBA
i (β, σ2)]′

∂β
[ΣBA

i (β, σ2
γ)]

−1∂[μ
BA
i (β, σ2)]

∂β′

=
1

I2
V ∗

I(β, σ
2
γ), (say). (4.28)

Next we assume that the multivariate version of Lindeberg’s condition holds,
that is,

limI→∞V ∗−1
I

I∑
i=1

∑
{f ′

iV
∗−1
I f i}>ε

f if
′
ip

†(f i) = 0 (4.29)

holds, for all ε > 0, p†(·) being the probability distribution of f i. Then the
Lindeberg-Feller central limit theorem [Amemiya (1985). Theorem 3.3.6),
McDonald (2005, Theorem 2.2)] implies the following convergence in distri-
bution (→d) :

ZI = I[V ∗
I ]
− 1

2 f̄ I(β) →d Np(0, Ip). (4.30)

Ip being the p× p identity matrix.
By using the notations from Eq. 4.26 it follows from Eqs. 4.25 and 4.30

that

β̂GQL − β � −
[

I∑
i=1

∂f i(β)

∂β′

]−1 [ I∑
i=1

f i

]

= [V ∗
I(β, σ

2
γ)]

−1[V ∗
I(β, σ

2
γ)]

1
2 [V ∗

I(β, σ
2
γ)]

− 1
2 If̄ I(β)

= [V ∗
I(β, σ

2
γ)]

− 1
2ZI . (4.31)

Clearly, by Eq. 4.30, the quantity in Eq. 4.31 converges in distribution, as

[V ∗
I(β, σ

2
γ)]

− 1
2ZI →d Np(0, [V

∗
I(β, σ

2
γ)]

−1). (4.32)

Notice that this normal covariance matrix [V ∗
I(β, σ

2
γ)]

−1 is the same as the
limiting covariance matrix in Eq. 4.23, as expected.
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4.2.3. Consistency of σ̂2
γ,MM Obtained from Eq. 4.11. Consistency prop-

erty of σ̂2
γ,MM can be established in a similar way as that of β̂GQL discussed

in Section 4.2.1. For convenience we, however, highlight the main steps be-
low. Because σ̂2

γ,MM is the solution of the MM estimating Eq. 4.11, a first
order Taylor series expansion of the estimating function in the left hand side
of Eq. 4.11 about σ2

γ provides

[σ̂2
γ,MM − σ2

γ ]

� −
[

I∑
i=1

{
∂[μBA

i (β, σ2
γ)]

′

∂σ2
γ

∂[μBA
i (β, σ2

γ)]

∂σ2
γ

+
∂[λBA

i (β, σ2
γ)]

′

∂σ2
γ

∂[λBA
i (β, σ2

γ)]
′

∂σ2
γ

}]−1

×
[

I∑
i=1

{
∂[μBA

i (β, σ2
γ)]

′

∂σ2
γ

(yi − μBA
i (β, σ2

γ)) +
∂[λBA

i (β, σ2
γ)]

′

∂σ2
γ

(qi − λBA
i (β, σ2

γ))

}]

+ op(1/
√
N), (4.33)

where N =
∑I

i=1 ni. For convenience of further calculations, we re-express
the equation in (4.33) as

σ̂2
γ,MM − σ2

γ � −S−1
1 S2,y + op(1/

√
N). (4.34)

Suppose that HN is a N -dependent increasing but finite and bounded
quantity, and S1 in Eq. 4.34 satisfies the following regularity condition:

1∑I
i=1 ni

S1 ≤ HN , (4.35)

implying that

S1 ≈ O(NHN ). (4.36)

Notice that EY [S2,y] = 0. It then follows that S2,y →p EY [S2,y] = 0, but

in order of [var(S2,y)]
1
2 . To compute this variance formula, it is convenient

to re-express S2,y, by using Eq. 4.33, as

S2,y =
I∑

i=1

{∑ni
j=1 ∂[μ

BA
ij (β, σ2

γ)]

∂σ2
γ

(yij − μBA
ij (β, σ2

γ))

+

ni∑
j<k

∂[λBA
i,jk(β, σ

2
γ)]

∂σ2
γ

(yijyik − λBA
i,jk(β, σ

2
γ))

⎫⎬
⎭ , (4.37)

and obtain its variance as

var(S2,y)
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=
I∑

i=1

⎡
⎣
⎧⎨
⎩

ni∑
j=1

(
∂[μBA

ij (β, σ2
γ)]

∂σ2
γ

)2

var(Yij)

+2

ni∑
j<k

(
∂[μBA

ij (β, σ2
γ)]

∂σ2
γ

∂[μBA
ik (β, σ2

γ)]

∂σ2
γ

)

× cov (Yij , Yik)}+

⎧⎨
⎩

ni∑
j<k

(
∂[λBA

i,jk(β, σ
2
γ)]

∂σ2
γ

)2

var(YijYik)

+

ni∑
j<k

ni∑
�<m

(
∂[λBA

i,jk(β, σ
2
γ)]

∂σ2
γ

∂[λBA
i,�m(β, σ2

γ)]

∂σ2
γ

)
cov(YijYik, Yi�Yim)

⎫⎬
⎭

+

⎧⎨
⎩

ni∑
j=1

ni∑
k<�

(
∂[μBA

ij (β, σ2
γ)]

∂σ2
γ

∂[λBA
i,k�(β, σ

2
γ)]

∂σ2
γ

)
cov(Yij , YikYi�)

⎫⎬
⎭
⎤
⎦

=

I∑
i=1

Ωi(β, σ
2
γ), (say), (4.38)

where var(Yij) = σBA
i,jj (β, σ

2
γ), and cov (Yij , Yik) = σBA

i,jk(β, σ
2
γ), are given by

Eqs. 4.2 and. 4.5, respectively. The computational formulas for the remaining
third and fourth order moments, i.e., for var(YijYik) = ωBA

i,jjkk(β, σ
2
γ); cov(Yij

Yik, Yi�Yim) = ωBA
i,jk�m(β, σ2

γ); cov(Yij , YikYi�) = φBA
i,jk�(β, σ

2
γ), are relatively

lengthy and given in Appendix A, for convenience.
Suppose that for a N -dependent finite and bounded quantity KN , var

(S2,y) satisfies the regularity condition

1∑I
i=1 ni

I∑
i=1

Ωi(β, σ
2
γ) ≤ KN , (4.39)

implying that

[var(S2,y)] = Op(
√

NKN ). (4.40)

Now by applying Eqs. 4.35 and 4.40 to 4.34, one obtains

σ̂2
γ,MM − σ2

γ � O(N−1H−1
N )Op(

√
NKN ) + op(1/

√
N)

= Op(N
− 1

2

√
KN

HN
) + op(1/

√
N) = op(1/

√
N), (4.41)

290



Fixed versus Mixed Effects Based...

because both HN and KN are finite and bounded. Hence,

limN→∞[σ̂2
γ,MM − σ2

γ ] →p 0, (4.42)

justifying that σ̂2
γ,MM is consistent for σ2

γ , and this can be used in the GQL
(4.7) while estimating β.

We remark that because by Eq. 4.42, σ̂2
γ,MM is asymptotically unbiased

for σ2
γ , one may then compute the asymptotic variance of σ̂2

γ,MM by exploit-
ing Eqs. 4.33 and 4.34. More specifically,

var[σ̂2
γ,MM ] = S−1(β, σ2

γ)var[S2,y]S
−1(β, σ2

γ)

= S−1(β, σ2
γ)

I∑
i=1

Ωi(β, σ
2
γ)S

−1(β, σ2
γ), (4.43)

by Eq. 4.38, which can be estimated by replacing β with β̂GQL, and σ2
γ with

σ̂2
γ,MM .

5. On the Bayesian Approach for Correlated Binary Data

We continue discussing mixed effects models (1.1) for cross-sectional clus-
ter binary data and a time dynamic fixed effects models (1.4) for longitudinal
cluster data. However, as opposed to the parametric correlation structures
based regression analysis, here we focus on some of the the existing alter-
native studies using the Bayesian approach where, without specifying the
correlation structures, multilevel conditional models are used to estimate
the main parameters such as the individual level covariates effects (β) and
cluster specific parameters such as cluster variation σ2

γ in Eq. 1.1 under
cross-sectional cluster model (e.g., McCulloch, 1997), or dynamic depen-
dence parameter (ρ) in Eq. 1.4 under longitudinal cluster model (e.g Chib
and Jeliazkov, 2006). We remark that because the mixed effects models are
also used by some authors such as Stiratelli et al. (1984), and Zeger et al.
(1988) for binary longitudinal data, we also include these models under the
longitudinal setup on top of the dynamic fixed effects models.

5.1. Monte Carlo Based Likelihood Estimation for Cluster Binary Data
We keep focussing on the clustered binary model but instead of common
random cluster effect γi, consider a more general situation using γij as the
cluster specific individual random effect for the j-th individual in the i-th
cluster. Let z∗ij denote a cluster-specific scalar covariate associated with ran-
dom cluster effects γij . Thus, z

∗
ij = 1, and γij = γi for all j = 1, . . . , ni, would

refer to the basic cluster-specific mean model (1.1). Similar to Stiratelli et al.
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(1984, Eqn. (2.2)), Zeger et al. (1988, Eqn. (2.1), and Daniels and Gatsonis
(1999, Eqns. (1)-(2)), we may write the logit link for this general case, as

logit(p∗ij(β, γij)) ≡ �(p∗ij) = x′
ijβ + z∗ijγij , (5.1)

for j = 1, . . . , ni; i = 1, . . . , I. Notice that Daniels and Gatsonis (1999) have
expressed the logit link as �(p∗ij) = x∗′

ijαi. For our discussion it is convenient
to use the notation in Eq. 5.1. Write γi = (γi1, . . . , γij , . . . , γni)

′. Similar to
the normality assumption in Eq. 2.2, and also in the aforementioned studies,
one may assume that

γi ∼ N(0,Di), (5.2)

where Di is the ni × ni covariance matrix.
Recall from Eq. 2.1 that a closed-form likelihood function cannot be

obtained due to the problem of integration over the distribution of the ran-
dom effect γi. To handle such an integration problem, some numerical al-
gorithms are developed where γi is considered to be a missing data, and
it is drawn from a conditional distribution of γi|y by using the so-called
Metropolis algorithm (Gelfand and Carlin, 1993), which does not require
specification of the unconditional density of the binary data y. More specif-
ically, the Metropolis algorithm is used to simulate the random effects and
the so-called expectation-maximization (EM) or Newton−Ralphson (NR)
technique is used to maximize the Monte Carlo (simulated) (MC) based
approximate likelihood function for the estimation of the regression effects
β. We may refer to McCulloch (1997), for example, for these MCEM and
MCNR approaches. Some authors such as Daniels and Gatsonis (1999), in
stead of normality in Eq. 5.2, have assumed more general symmetric multi-
variate t distribution for γi given by

γi ∼ tν(Giγ,Di), (5.3)

where Gi is a cluster level covariates dependent known matrix of dimension
ni × q, and γ is a q-dimensional vector of suitable parameters, and ν is the
unknown degrees of freedom parameter. Next, using suitable proper prior
distributions for γ and Di, Daniels and Gatsonis (1999, Section 2.2) used
the Markov Chain Monte Carlo (MCMC) approach for the desired model
fitting.

However, as expected the above monte carlo based likelihood inference
approach is computationally expensive. Moreover, the selection of proper
prior distributions is a challenge in this approach. For example, while under
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normality assumption for γi (5.2), it is reasonable to consider D−1
i has

the prior so-called Wishart distribution, but it may not be a proper prior
distribution when γi follows the multivariate t distribution as in Eq. 5.3.
This is because as Sutradhar and Ali (1989), for example, derived a Wishart
distribution under the multivariate t-model which is different than the usual
normality based Wishart distribution. More specifically, it is also dependent
of the degrees of freedom of the t-distribution.

Turning back to the parametric inferences discussed in Section 4, when
the normality assumption in Eq. 5.2 holds, using the so-called Binomial
approximation (BA), one may easily construct the correlation structure as
explained in Section 4.1.1 and apply the generalized quasi-likelihood estima-
tion approach (4.7) to obtain consistent and highly efficient estimate for β,
and method of moments (MM) estimation approach (4.11) to obtain consis-
tent estimates for the variance parameters involved in Di. Alternatively, as
also pointed out by Daniels and Gatsonis (1999, Section 1), one may use the
other parametric approaches such as the PQL (penalized quasi-likelihood)
approach of Breslow and Clayton (1993) or hierarchical likelihood (HQL) ap-
proach of Lee and Nelder (1996), which are simpler than the MCMC based
Bayesian approach.

5.2. Monte Carlo Based Likelihood Estimation for Longitudinal Binary
Data With regard to the analysis of longitudinal binary data in Bayesian
setup, the most of the existing studies used the same random effects based
logit link model (5.1) with some modifications as follows. Using the notations
from Section 3, we re-write the logit link model for longitudinal data as

logit(p̃it(β, γi)) ≡ �(p̃it) = x′
itβ + z̃itγi, (5.4)

for the binary response yit, recorded at time t (t = 1, . . . , T ), for the i-th
individual. Here both xit and z̃it are time dependent covariates. Under
this model, the binary responses yiu at time u, and yit at time t, become
correlated under the assumption that i-th individual’s random effect remains
the same over time.

We remark that in a longitudinal setup, irrespective of the nature of
the responses whether linear, count or binary, it is expected in practice
that as time lag increases the correlations between two responses must de-
crease. Two dynamic models considered in the literature for binary re-
sponses, such as the AR(1) type dynamic model (1.2) and binary dynamic
logit (BDL) model (1.4) satisfies this lag dependent decaying correlation
property. Specifically, the AR(1) model (1.2) produced the correlations

corr(Yiu, Yit) = ρt−u[σiuu
σitt

]
1
2 as in Eq. 3.1 which (a) becomes smaller as |t−u|
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increases, and also (b) it contains time varying covariates involved in σitt.
Similarly, the BDL model (1.4) produced the correlations

corr(Yiu, Yit) =

√
μiu(·)(1− μiu(·))
μit(·)(1− μit(·))

Πt
v=u+1(˜̃piv(β, ρ)− p̃iv(β)

as in Eq. 3.10, which decay as |t− u| increases. This is because

0 < (˜̃piv(β, ρ)− p̃iv(β) < 1,

for all v = (u+ 1), . . . , t. Also it contains time varying covariates.
Note that the random effects model (5.4), for example, does not satisfy

decaying correlation property (a) mentioned above. It, however, satisfies (b)
indicating that correlations contain time varying covariates. This is because

under the assumption that γi
iid∼N(0, σ̃2

γ), we can compute

E[Yit] = Eγi [E(Yit|γi)] = μ̃it(xit, z
∗
it,β, σ̃

2
γ)

=

∫ [
exp(x′

itβ + z∗itγi)

[1 + exp(x′
itβ + z∗itγi)]

]
dGN (γi, σ̃

2
γ), (5.5)

and

E[YiuYit] = Eγi [E(Yiu|γi)E(Yit|γi)] = λ̃iut(xiu,xit, z
∗
iu, z

∗
it,β, σ̃

2
γ)

=

∫ [{
exp(x′

iuβ + z∗iuγi)

[1 + exp(x′
iuβ + z∗iuγi)]

}{
exp(x′

itβ + z∗itγi)

[1 + exp(x′
itβ + z∗itγi)]

}]

dGN (γi, σ̃
2
γ)

− μ̃iu(xiu, z
∗
iu,β, σ

2
γ)μ̃it(xit, z

∗
it,β, σ

2
γ), (5.6)

yielding the (t− u) lag correlation as

corr[Yiu, Yit] =
λ̃iut(xiu,xit, z

∗
iu, z

∗
it,β, σ̃

2
γ)

[μ̃iu(·)(1− μ̃iu(·))μ̃it(·)(1− μ̃it(·))]
1
2

− [μ̃iu(·)μ̃it(·)]
1
2

[(1− μ̃iu(·))(1− μ̃it(·))]
1
2

, (5.7)

which contains time varying covariates but provides equi-correlations for any
(u, t) when these covariates are same over time. Thus, it does not show any
decaying correlations when lag |t− u| increases.

Some authors in the past such as Stiratelli et al. (1984, Eqns. (2.2),
(3.1)–(3.2)), recognizing that serial correlations play an important role for
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longitudinal binary data, to reflect such correlations, as opposed to Eq. 5.4,
they have used a logit link random effects model similar but different than
Eq. 5.1. More specifically,

logit(p̃it(β, γit)) ≡ �(p̃it) = x′
it(yi,t−1, . . . , yi1)β + z̃itγit, (5.8)

where the covariates xit is composed of the past binary responses as given
covariates, and γ̃i = (γi1, . . . , γit, . . . , γiT )

′ denote the variable random effects
of the i-th individual over the time period T. As far as the distribution of
γ̃i is concerned, the authors have considered

γ̃i ∼ N(0, D̃), (5.9)

similar to Eq. 5.2, and estimated β and D̃ : T × T, using the so-called
empirical Bayes estimation approach. Notice that the dimension of β in
Eqs. 5.8 and 5.4 is different. This is because β in Eq. 5.8 also contains the
regression effects/parameters of the past binary responses.

As compared to the logit link model (5.8), Chib and Jeliazkov (2006,
Eqns. (1),(6)) have used a more general semi-parametric dynamic mixed
model for longitudinal binary data, constructed based on a latent linear
semi-parametric dynamic mixed model. This allows one either to use logit or
probit links. More specifically, suppose that y∗it is an unobservable continuous
variable satisfying a linear semi-parametric dynamic mixed model, as

g∗it = E[Y ∗
it |·] = x′

itβ + z̃itγit + φ1yi,t−1 + . . .+ φmyi,t−m

+g(sit) + εit, (5.10)

where yi,t−j is the binary response occurred in the past at time (t− j) with
its regression effect φt−j , g(sit) is a smooth non-parametric function in sit
covariates, and εit is the model error. Next, suppose that the binary response
yit be determined based on the relationship

yit =

{
1 if y∗it > 0
0 otherwise.

(5.11)

Note that if y∗it follows a logistic (L) distribution (e.g., Johnson and Kotz

(1970)) with mean g∗it as in Eq. 5.10, and variance π2

3 , then by using the
condition in Eq. 5.11, one can compute the binary probability as

Pr(Yit = 1|g∗it] =

∫ g∗it

−∞
fL(y

∗
it)dy

∗
it =

exp(g∗it)

1 + exp(g∗it)
= π∗∗

it (·), (5.12)
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which has the same form as in Eq. 1.4, with a difference in the formula for
g∗it, specifically in Eq. 1.4 g∗it has the dynamic form, whereas g∗it in Eq. 5.10
considered by Chib and Jeliazkov (2006) has the dynamic mixed model form
which is a logit link function (logit(π∗∗

it ) = g∗it) for clustered longitudinal
data (see Sutradhar (2011, Chapter 11) for similar familial/cluster longi-
tudinal binary data). For linear data, g∗it itself is the linear link function
which has been studied by some authors such as Das et al. (2013) in a
Bayesian setup. For some more discussions on binary dynamic mixed mod-
els, similar to that of Chib and Jeliazkov (2006), one may be referred to
Sutradhar et al. (2010), for example, in a parametric setup, and Congdon
(2014, Section 7.1.1, p. 287), among others, in a Bayesian frame work.

6 Concluding Remarks

This review paper clarifies at least two main misconceptions around the
analysis of correlated binary data collected under a cluster in both cross-
sectional cluster and longitudinal cluster data setups. First many authors
over the past forty years used random effect models to model the correla-
tions for longitudinal binary data. This approach is either misleading or too
restrictive. This is because similar to time series modeling, the longitudi-
nal correlations are best modeled through suitable dynamic models relating
repeated responses from the same individual. More clearly a common indi-
vidual random effect among longitudinal responses is unable to address the
time effects on the binary responses, rather it generates equi-correlations
type structure among the repeated responses which is too restrictive.

Second, in both cross-sectional and longitudinal cluster setups, many
studies have pre-specified the marginal means as the function of regression
parameters only which may lead to inconsistent regression estimates when
a mixed effects model is the true model for the marginal means. To clarify
this issue in the cross-sectional cluster setup, we have considered 3 differ-
ent important situations where fixed effects based marginal means may or
may not appropriate. (A) In the first approach, random cluster effects are
assumed to follow a normal distribution, and a likelihood function is con-
structed averaging (referred to as population average (PA)) the conditional
likelihood function (which is a product of independent binary distributions
conditional on the cluster effects) over the normal random effects, and then
the likelihood estimates of the regression and cluster variance parameters
are obtained and interpreted. Under this approach, the binary response
means were shown to have a marginal mixed effects (MME) model. Thus
any fixed effects based marginal mean specification in such cases is bound
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to produce inconsistent regression estimates, which is a serious inference
issue. (B) In the second approach, certain suitable distributions for the ran-
dom cluster effects were technically developed so that it provides a marginal
fixed effects (MFE) model for the binary means involving only the regres-
sion parameters (referred to as the subject specific (SS) regression effects),
which may be estimated and interpreted by using the likelihood estimates
computed in the same way as in (A). But, these distributional assumptions
such as so-called “bridge” or beta- binary distributions for the random ef-
fects or their functions, are too narrow or restrictive for practical use. (C)
In the third approach, no assumption is made about the random cluster
effects distribution, in stead an arbitrary MFE (AMFE) model was used
for the means involving only regression parameters. Also in this approach
no attempts were made to develop any correlation structure or likelihood
function, in stead a ‘working’ correlation structure based GEE (generalized
estimating equations) approach was used for the SS regression parameters
estimation. This approach is misleading as under (A) one never gets a fixed
mean model, and under (B) only a limited number of assumptions for the
distribution of random effects, those too technically restrictive, may lead to
a marginal fixed effects based mean model. In summary, because normal
random effects based cluster model (A) is quite practical, we have given de-
tails for estimation of the mean model (involving both β and σ2

γ) using the
so-called GQL approach. As asymptotic properties of such estimators are
not available, they (consistency and normality) are discussed in details.

The paper has also equally studied the longitudinal clustered models for
binary data where repeated responses from an individual are collected over a
short period. Longitudinal correlations arise due to a dynamic relationship
among the present and past binary responses and they are different than
clustered correlations. Similar to the cluster setup, it is shown that in many
situations MFE model can not be used to study the regression effects. For
example, an alternative MD/MR (marginal dynamic/recursive) model does
not produce fixed effects based mean model. The existing GEE approach
is not useful in such a situation because the recursive means contains both
regression and correlation parameters, whereas GEE is based on fixed effects
based marginal means.

Furthermore, there also exists some studies dealing with clustered and/or
panel/longitudinal binary data in a Bayesian setup. These studies are based
on generalized linear mixed models with certain suitable link functions to
reflect the correlations of the clustered and/or longitudinal data. But the
inferences are not made based on any correlation structures, rather they
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exploit conditional likelihood using monte carlo techniques. We have high
lighted some of these important studies in this paper.
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Appendix A. Higher Order Moments (up to order 4)
for Clustered Binary Responses

To compute Ωi(β, σ
2
γ) in Eq. 4.38 on top of var(Yij) and cov(Yij , Yik),

we need the formulas for certain specific third and fourth order moments as
follows.

Computation of var(YijYik) This variance is computed as

var(YijYik) = E[Y 2
ijY

2
k ]− [E(YijYik)]

2

= E(YijYik)− [E(YijYik)]
2 = λBA

i,jk[1− λBA
i,jk] = ωBA

i,jjkk, (A.1)

where λBA
i,jk is computed by Eq. 4.4.
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Computation of cov(Yij , YikYi�) = φi,jk�(β, σ
2
γ) Because

cov(Yij , YikYi�) = E[YijYikYi�]− μBA
ij λBA

i,k�, (A.2)

we need the formula for the third order moments, namely

E[YijYikYi�] = EγiE[{YijYikYi�}|γi]
= Eγi [E(Yij |γi)E(Yik|γi)E(Yi�|γi)]

=

∫
p∗ij(β, γi)p

∗
ik(β, γi)p

∗
i�(β, γi)gN (γi)dγi, (A.3)

where, for example, p∗ij(β, γi) = exp(x′
ijβ + γi)/[1 + exp(x′

ijβ + γi)], and

gN (γi) ≡ [γi ∼ N(0, σ2
γ)]. Similar to Eq. 4.4, this normal integration in

Eq. A.3 may be computed approximately by

λBA
i,jk�(β, σ

2
γ)

=
V∑

vi=0

p∗ij(xij ;β, σγh(vi))p
∗
ik(xik;β, σγh(vi))

× p∗i�(xi�;β, σγh(vi))

(
V
vi

)
(1/2)vi(1/2)V−vi , (A.4)

yielding

φBA
i,jk�(β, σ

2
γ) = λBA

i,jk�(β, σ
2
γ)− μBA

ij λBA
i,k�. (A.5)

Computation of cov(YijYik, Yi�Yim) = ωi,jk�m(β, σ2
γ) By similar calcula-

tions as in Eq. A.4, one obtains

ωBA
i,jk�m(β, σ2

γ) = λBA
i,jk�m(β, σ2

γ)− λBA
i,jk(β, σ

2
γ)λ

BA
i,�m(β, σ2

γ), (A.6)

where

λBA
i,jk�m(β, σ2

γ)

=

V∑
vi=0

p∗ij(xij ;β, σγh(vi))p
∗
ik(xik;β, σγh(vi))p

∗
i�(xi�;β, σγh(vi))

× p∗im(xim;β, σγh(vi))

(
V
vi

)
(1/2)vi(1/2)V−vi . (A.7)
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