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Abstract

The distance covariance of Székely et al. (Ann. Statist., 35, 2769–2794 207,
2009), a powerful measure of dependence between sets of multivariate ran-
dom variables, has the crucial feature that it equals zero if and only if the
sets are mutually independent. Hence the distance covariance can be ap-
plied to multivariate data to detect arbitrary types of non-linear associations
between sets of variables. We provide in this article a basic, albeit rigor-
ous, introductory treatment of the distance covariance. Our investigations
yield an approach that can be used as the foundation for presentation of
this important and timely topic even in advanced undergraduate- or junior
graduate-level courses on mathematical statistics.

AMS (2000) subject classification. Primary 62G10, 62H20; Secondary 60E10,
62G20.
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1 Introduction

The distance covariance, a measure of dependence between multivariate
random variables and , was introduced by Székely et al. (2007) and
has since received extensive attention in the statistical literature. A crucial
feature of the distance covariance is that it equals zero if and only if and

are mutually independent. Hence the distance covariance is sensitive to
arbitrary dependencies; this is in contrast to the classical covariance, which
is generally capable of detecting only linear dependencies. This property
is illustrated in Fig. 1, which illustrates that tests based on the distance
covariance are able to detect numerous types of non-linear associations even
when tests based on the classical covariance may fail to detect many such
statistical relationships.

Supplement 1,2021, Volume 83-B, pp. S12-S25
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Figure 1: The sub-figures A-C represent scatter-plots of bivariate samples
(X Y ) with = 600 data points to which independence tests, based on the
distance covariance and classical covariance, were applied. In each case a
distance covariance permutation test using 100,000 permutations yields -
values of 10 5, demonstrating that the distance covariance is able to detect
these dependencies. The -values of permutation tests based on the classical
covariance with 100,000 permutations are 0.663, 0.129, and 0.889 for A, B,
and C, respectively

While the dependencies illustrated in Fig. 1 clearly represent purely il-
lustrative examples, the sensitivity of the distance covariance to arbitrary
dependencies can be very useful for applications. This is demonstrated in
Fig. 2, where we show three dependencies between expression values genes
in the breast cancer data set by Van De Vijver et al. (2002); all these depen-
dencies can be detected by the distance covariance but not by the classical
covariance.

For comparisons of the distance covariance and classical covariance in
applications to data, see the examples given by Székely and Rizzo (2009,
Section 5.2) and Dueck et al. (2014, Section 5); for extensive numerical ex-
periments and fast algorithms for computing the distance covariance, see
Huo and Székely (2016, Section 5). We also refer to Sejdinovic et al. (2013),
Dueck et al. (2014), Székely and Rizzo (2009), Székely and Rizzo (2014), &
Huo and Székely (2016), and Edelmann et al. (2020), representing only a
few of the many authors who have given further theoretical results on the
distance covariance and distance correlation coefficients; and to Zhou (2012)
& Fiedler (2016), and Edelmann et al. (2019) as among the applications to
time series analyses. Many applications to data analysis of the distance cor-
relation coefficient and the distance covariance are now available, including:
Kong et al. (2012) on data in sociology, Mart́ınez-Gómez et al. (2014) and
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Figure 2: Sub-figures A-C represent three scatter-plots of the expression
values of genes in a breast cancer data set provided by Van De Vijver et
al. (2002) ( = 295 samples) on which permutation tests, based on the
distance covariance and classical covariance, were applied. The -values of
the distance covariance permutation tests using 100,000 permutations are A:
10 5 ; B: 10 5; C: 3 00 10 4 . The -values of permutation tests based on
the classical covariance with 100,000 permutations are A: 0.079 ; B: 0.503;
C: 0.930

Richards et al. (2014) on astrophysical databases and galaxy clusters, Dueck
et al. (2014) on time series analyses of wind vectors at electricity-generating
facilities, Richards (2017) on the relationship between the strength of gun
control laws and firearm-related homicides, Zhang et al. (2018) for remote
sensing applications, and Ohana-Levi et al. (2020) on grapevine transpira-
tion.

The original papers of Székely et al. (2007, 2009) are now widely rec-
ognized as seminal and important contributions to measuring dependence
between sets of random variables; however, the exposition therein includes
some ingenious arguments that may make the material challenging to read-
ers not having an advanced background in mathematical statistics. With the
benefit of hindsight, we are able to provide in this article a simpler, albeit
mathematically rigorous, introduction to the distance covariance that can
be taught even in an undergraduate-level course covering the basic theory of
U-statistics. Other than standard U-statistics theory and some well-known
properties of characteristic functions, the requirements for our treatment are
a knowledge of multidimensional integration and trigonometric inequalities,
as covered in a course on undergraduate-level advanced calculus. Conse-
quently, we hope that this treatment will prove to be beneficial to non-
mathematical statisticians.
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Our presentation introduces the distance covariance as an important al-
ternative to the classical covariance. Moreover, the distance covariance con-
stitutes a particularly interesting example of a U-statistic since it includes
both the “non-degenerate” and “first-order degenerate” cases of the asymp-
totic distribution theory of U-statistics, these corresponding to the situations
in which and are dependent, leading to the non-degenerate case, or
and are independent, leading to the first-order degenerate case of the
asymptotic theory.

Throughout the exposition, denotes the Euclidean norm and
the corresponding inner product. Also, we denote by the modulus in
or the absolute value in , and the imaginary unit is = 1.

2 The Fundamental Integral of Distance Covariance Theory

Following Székely et al. (2007), we first establish a closed-form expres-
sion for an integral that plays a central work in this article, leading to the
equivalence of two crucial expressions for the distance covariance. The first
expression displays the distance covariance as an integrated distance between
the joint characteristic function of ( ) and the product of the marginal
characteristic functions of and ; we will deduce from this expression that
the distance covariance equals zero if and only if and are independent.
The second expression allows us to derive consistent distance covariance esti-
mators that are expressible as polynomials in the distances between random
samples.

Since the ability to characterize independence and the existence of easily
computable estimators are arguably the most important properties of the
distance covariance, we will refer to this integral as the fundamental integral
of distance covariance.

Lemma 2.1. For ,

p

1 cos
+1

d =
( +1) 2

Γ ( + 1) 2
(2.1)

Proof. Since (2.1) is valid for = 0, we need only treat the case in
which = 0.

Denote by the integral in Eq. 2.1. For = 1, replacing by yields

1 =
1 cos

2
d =

1 cos
2

d (2.2)
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Denoting the latter integral in Eq. 2.2 by 1, it follows by integration-by-
parts that

1 = 2
0

1 cos
2

d = 2
0

sin
d = (2.3)

the last equality being classical in calculus (Spivak 1994, Chapter 19, Prob-
lem 43).

For general , note that is invariant under orthogonal transformations
of :

p

1 cos
+1

d =
p

1 cos
+1

d

=
p

1 cos
+1

d

where the first equality follows from the transformation , which leaves
the Lebesgue measure d unchanged; and the second equality holds because
the norm and the inner product are orthogonally invariant. Therefore, in
evaluating we may replace by (1 0 0); letting = ( 1 ),
we obtain

=
p

1 cos ( 1 )
+1

d =
p

1 cos 1

+1
d (2.4)

the last equality obtained by replacing by , = 1 .
Denoting by the latter integral in Eq. 2.4, we substitute in that integral

= , = 1 1, and = 1 2( 2
1+ + 2

1)
1 2 . As the Jacobian

of this transformation is 1 2( 2
1 + + 2

1)
1 2, we obtain

= 1 2

p 1

1 cos 1

( 2
1 + + 2

1)
2
d 1 d 1

d

(1 + 1 2)( +1) 2

= 1 2
1

d

(1 + 1 2)( +1) 2
(2.5)

As the remaining integral in Eq. 2.5 is the familiar normalizing constant of
the Student’s -distribution on degrees-of-freedom, we obtain

=
1 2Γ( 2)

Γ ( + 1) 2
1

Starting with 1 = , we solve this recursive equation for , obtaining (2.1).
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3 Two Representations for the Distance Covariance

We now introduce the representations of the distance covariance men-
tioned above. Following Székely et al. (2007), we define the distance co-
variance through its characteristic function representation. For jointly dis-
tributed random vectors and , let ( ) = +

be the joint characteristic function of ( ) and ( ) = ( 0) and
( ) = (0 ) be the corresponding marginal characteristic functions.

Definition 3.1. The distance covariance ( ) between and is de-
fined as the nonnegative square-root of

2( ) =
1

p q

( ) ( ) ( ) 2

+1 +1
d d (3.1)

where is the normalizing constant in Eq. 2.1.

As the integrand in Eq. 3.1 is nonnegative, it follows that 2( ) 0.
Further, we will show in Corollary 3.4 that 2( ) whenever and

have finite first moments.
An advantage of the representation (3.1) is that it directly implies one

of the most important properties of the distance covariance, viz., the char-
acterization of independence.

Theorem 3.2. For all and , 2( ) = 0 if and only if and are
independent.

Proof. If and are independent then ( ) = ( ) ( ) for
all and ; hence 2( ) = 0.

Conversely, if and are not independent then the functions ( )
and ( ) ( ) are not identical (Van der Vaart 2000, Lemma 2.15). Since
characteristic functions are continuous then there exists an open set

such that ( ) ( ) ( ) 2 0 for all ( ) . Hence,
by Eq. 3.1, 2( ) 0.

For the purpose of deriving estimators for 2( ), we now apply Lemma
2.1 to obtain a second representation of the distance covariance.

Theorem 3.3. Suppose that ( 1 1) ( 4 4) are independent, identi-
cally distributed (i.i.d.) copies of ( ). Then

2( )= 1 2 1 2 2 1 2 1 3 + 1 2 3 4

(3.2)
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Proof. First, we observe that the numerator in the integrand in Eq. 3.1
equals

( ) ( ) ( ) 2

=( ( ) ( ) ( )) ( ( ) ( ) ( ))

= 1 2 + 1 2 2 1 2 + 1 3 + 1 2 + 3 4

Since the latter expression is real, any term of the form , , can be
replaced by cos . Hence, by Eq. 3.1,

2( ) =
p q

12( ) 2 13( ) + 34( )
+1 +1

d d (3.3)

where, for each ( ),

( ) = cos 1 2 + (3.4)

Replacing by in Eq. 3.3, we also obtain

2( ) =
p q

12( ) 2 13( ) + 34( )
+1 +1

d d (3.5)

and by adding (3.3) and (3.5), we find that

2( ) =
p q

12( ) 2 13( ) + 34( )
+1 +1

d d

where for each ( ),

( ) =
1

2
( ) + ( ) (3.6)

On applying to Eqs. 3.4 and 3.6 the trigonometric identity,

cos( + ) + cos( ) = 2 cos cos

we deduce that

( ) = cos 1 2 cos (3.7)
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For 1 2 3 4 , we apply to Eq. 3.7 the elementary identity,

cos 1 2 cos = 1 cos 1 2 1 cos

1 + cos 1 2 + cos ; (3.8)

then we obtain

2( )

=
p q

1 cos 1 2 1 cos 1 2

2 1 cos 1 2 1 cos 1 3

+ 1 cos 1 2 1 cos 3 4
d d
+1 +1

which is obtained by decomposing all summands on the right-hand side using
Eq. 3.8 and observing that all terms which are not of the form [cos
cos ] cancel each other. By applying the Fubini-Tonelli Theorem
and the linearity of expectation and integration, we obtain

2( )

=
p q

1 cos 1 2 1 cos 1 2

2 1 cos 1 2 1 cos 1 3

+ 1 cos 1 2 1 cos 3 4
d d
+1 +1

The proof is completed by applying Lemma 2.1 to calculate these three
integrals.

Before establishing estimators for 2( ), we remark briefly on the
assumptions necessary for the existence of the distance covariance.

Corollary 3.4. Suppose that and . Then 2( )
.

Proof. From the representation (3.2), we directly obtain the alternative
representation

2( ) = 1 2 1 2 1 2 1 3

1 2 2 3 + 1 2 3 4 (3.9)
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Applying the triangle inequality yields

1 2 1 2 1 2 1 3 1 2 2 3 0

and hence

0 2( ) 1 2 3 4

= 1 2 3 4 4

where the last inequality follows again by the triangle inequality.

4 Asymptotic Theory for Estimating the Distance Covariance

Using the representation of the distance covariance given in Eq. 3.2, it is
straightforward to derive a U-statistic estimator for 2( ). Specifically, we
define the symmetric kernel function

( 1 1) ( 4 4)

=
1

24
2 +

(4.1)

where the sum is over all 1 2 3 4 such that , , , and are
distinct.

It follows from the representation (3.2) that each of the 24 summands in
Eq. 4.1 has expectation 2( ). Therefore,

( 1 1) ( 4 4) = 2( )

Letting ( 1 1) ( ) be a random sample from ( ), we find that
an unbiased estimator of 2( ) is

Ω =
4

1

1

( ) ( ) ( ) ( ) (4.2)

We can now derive the consistency and asymptotic distribution of this esti-
mator using standard U-statistic theory (Lee, 2019). For this purpose, let
us define

1( ) = ( ) ( 2 2) ( 3 3) ( 4 4)

and

2(( 1 1) ( 2 2)) = ( 1 1) ( 2 2) ( 3 3) ( 4 4)

The preceding formulas and a classical result on U-statistics (Hoeffding 1948,
Theorem 7.1) leads immediately to a proof of the following result.

D. Edelmann et al.S20



Theorem 4.1. Suppose that 0 Var ( 1( )) . Then Ω
2( ) as , where 0 16Var ( 1( ) .

Except for pathological examples, Theorem 4.1 provides the asymptotic
distribution of 2( ) if and are dependent. For the crucial case
of independent and , however, the asymptotic distribution of (Ω
( )2) is degenerate; in this case, the asymptotic distribution can be

derived using results on first-order degenerate U-statistics (Lee 2019, Section
3.2.2).

Lemma 4.2. Let and be independent, and ( 1 1) and ( 2 2) be
i.i.d. copies of ( ). Then 1( ) 0 and Var 2(( 1 1) ( 2 2)) =
2( ) 2( ) 36.

The proof follows by elementary, but lengthy, transformations and may
be left as an exercise to students. A complete proof is provided by Huang
and Huo (2017), Appendices B.6 and B.7.

Finally, the following result follows directly from Lemma 4.2 and classical
results on the distributions of first-order degenerate U-statistics (Lee 2019,
Section 3.2.2).

Theorem 4.3. Let and be independent, with ( ) and ( )
. Then,

Ω 2( ) 6
=1

( 2 1) (4.3)

as , where 1 2 are i.i.d. standard normal random variables and

1 2 are the eigenvalues of the integral equation

2 ( 1 1) ( 2 2) ( 2 2) = ( 1 1)

5 Concluding Remarks

In this article, we have derived under minimal technical requirements
the most important statistical properties of the distance covariance. From
this starting point, there are several additional interesting topics that can
be explored, e.g., as instructional assignments:
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(i) The estimator Eq. 4.2 is ( 4) and is computationally inefficient. A
straightforward combinatorial computation shows that an ( 2) esti-
mator of is given by

Ω =
1

( 3)
=1

+
1

( 1) ( 2)
=1 =1

2

( 2)
=1

;

(5.1)
see Huo and Székely (2016).

(ii) We remark that although no assumption was provided in Theorem 4.1
to ensure that Var( 1( )) , it can be shown that this condition
holds whenever and have finite second moments; see Edelmann
et al. (2020).

(iii) Important contributions of Székely et al. (2007) and (Székely and
Rizzo, 2009) are based on the distance correlation coefficient, which
is defined as the nonnegative square-root of

2( ) =
2( )

2( ) 2( )

Numerous properties of 2( ) (see, e.g., Székely et al. 2007, Theorem 3)
may be derived using the methods that we have presented here.

We also remark on the fundamental integral, Eq. 2.1, that underpins
the entire distance covariance and distance correlation theory. As noted
by Dueck et al. (2015), the fundamental integral and variants of it have
appeared in functional analysis (Gelfand and Shilov 1964, pp. 192–195), in
Fourier analysis (Stein 1970, pp. 140 and 263), and in the theory of fractional
Brownian motion on generalized random fields (Chilès and Delfiner P. 2012,
p. 266; Reed et al. 1995).

The fundamental integral also extends further. For and ,
define

cos ( ) :=
1

=0

( 1)
2

(2 )!
(5.2)

D. Edelmann et al.S22



the truncated Maclaurin expansion of the cosine function. Dueck et al.
(2015) proved that for ,

d

cos ( ) cos( )
+

d =
2 2 Γ(1 2)

2 Γ ( + ) 2
(5.3)

with absolute convergence if and only if 2( 1) ( ) 2 . For =
1 and = 1, Eq. 5.3 reduces to Eq. 2.1. Further, for = 1 and 0

2, the integral (5.3) provides the Lévy-Khintchine representation of the
negative definite function , thereby linking the fundamental integral to
the probability theory of the stable distributions.

In conclusion, the statistical analysis of data through distance covariance
and distance correlation theory, by means of the fundamental integral, is seen
to be linked closely to many areas of the mathematical sciences.
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