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Abstract

Among the most popular model selection procedures in high-dimensional re-
gression, Lasso provides a solution path to rank the variables and determines
a cut-off position on the path to select variables and estimate coefficients.
In this paper, we consider variable selection from a new perspective mo-
tivated by the frequently occurred phenomenon that relevant variables are
often mixed with noise variables on the solution path. We propose to char-
acterize the positions of the first noise variable and the last relevant variable
on the path. We then develop a new variable selection procedure to control
over-selection of the noise variables ranking after the last relevant variable,
and, at the same time, retain a high proportion of relevant variables ranking
before the first noise variable. Our procedure utilizes the recently developed
covariance test statistic and Q statistic in post-selection inference. In nu-
merical examples, our method compares favorably with existing methods in
selection accuracy and the ability to interpret its results.
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1 Introduction

The authors of the paper deeply mourn the loss of Dr. Jayanta K. Ghosh,
whose dedication to research and mentoring have benefited generations of
statisticians and who has set an eminent example of excellence as a scholar
and role model. Dr. Ghosh has made substantial contributions to a wide
range of research areas such as higher order asymptotics, Bayesian analysis,
and high-dimensional inference. One of the authors, X.J. Jeng, was fortunate
to have Dr. Ghosh as her PhD advisor in Purdue University. Dr. Ghosh’s
work in model selection, multiple testing, and their biomedical applications
(e.g. Wilbur et al., 2002; Chakrabarti and Ghosh, 2007, 2011; Bogdan et al.,
2008, 2011) has inspired the research in this paper.
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We consider the linear regression model

y = Xβ∗ + ε, ε ∼ N(0, σ2I), (1.1)

where y is a vector of response with length n, X is the n× p design matrix
of standardized predictors, and β∗ a sparse vector of coefficients. In high-
dimensional regression, p can be greater than n. Among the most popular
methods for model selection and estimation in the high-dimensional regres-
sion, Lasso (Tibshirani, 1996) solves the following optimization problem

β̂(λ) = argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1, (1.2)

where λ ≥ 0 is a tuning parameter. Lasso provides a solution path, which is
the plot of the estimate β̂(λ) versus the tuning parameter λ.

Lasso solution path is piecewise linear with each knot corresponding to
the entry of a variable into the selected set. Knots are denoted by λ1 ≥ λ2 ≥
· · · ≥ λm ≥ 0, where m = min(n − 1, p) is the length of the solution path
(Efron et al., 2004).

Recent developments in high-dimensional regression focus on hypothesis
testing for variable selection. Impressive progress has been made in Zhang
and Zhang (2014), Van De Geer et al. (2014), Lockhart et al. (2014), Barber
and Candès (2015), Bogdan et al. (2015), Lee et al. (2016), G’sell et al.
(2016), & Jeng and Chen (2019a), etc. Specifically, innovative test statistics
based on Lasso solution path have been proposed. For example, Lockhart
et al. (2014) construct the covariance test statistic as follows. Along the
solution path, the variable indexed by jk enters the selected model at knot
λk. Define active set right before knot λk as Ak = {j1, j2, · · · , jk−1}. In
addition, define true active set to be A∗ = {j : β∗

j �= 0} and the size of
true active set as s = |A∗|. Lockhart et al. (2014) considers to test the null
hypothesis H0k : A∗ ⊂ Ak conditional upon the active set Ak at knot λk

and propose the covariance test statistic as

Tk =
(
〈y,Xβ̂(λk+1)〉 − 〈y,XAk

β̃Ak
(λk+1)〉

)
/σ2, (1.3)

where β̂(λk+1) = argmin
β∈Rp

1
2‖y−Xβ‖22+λk+1‖β‖1 and β̃Ak

(λk+1)=argmin
β∈R|Ak|

1
2‖

y −XAk
βAk

‖22 + λk+1‖βAk
‖1.

Lockhart et al. (2014) derived that under orthogonal design, if all s rel-
evant variables rank ahead of noise variables with probability tending to 1,
then for any fixed d,

(Ts+1, Ts+2, · · · , Ts+d)
d→ (Exp(1),Exp(1/2), · · · ,Exp(1/d)), (1.4)
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as p → ∞, and that T1, T2, · · · , Td are asymptotically independent.
Later, G’sell et al. (2016) proposed to perform sequential test on H0k :

A∗ ⊂ Ak for k increasing from 0 to m and developed the Q statistics for a
stopping rule. The Q statistics are defined as

qk = exp

⎛
⎝−

m∑
j=k

Tj

⎞
⎠ (1.5)

for k = 1, . . . ,m. It has been proved that in the case of perfect separation
where all s relevant variables rank ahead of noise variables, if Ts+1, · · · , Tm

are independently distributed as (Ts+1, · · · , Tm) ∼ (Exp(1),Exp(1/2), · · ·
Exp(1/(m− s))), then

qk
d
= (k − s)th order statistic of m− s independent standard uniform

random variables(1.6)

for s+ 1 ≤ k ≤ m. G’sell et al. (2016) developed a stopping rule (TailStop)
implementing the Q statistics in the procedure of Benjamini and Hochberg
(1995). Given the distribution of qk in Eq. 1.6, TailStop controls false dis-
covery rate at a pre-specified level.

In this paper, we consider more general scenarios where relevant variables
and noise variables are not perfectly separated and some (or all) relevant
variables intertwine with noise variables on the Lasso path. Such scenarios
would occur when the effect sizes of relevant variables are not large enough.
In fact, even with infinitely large effect size, perfect separation on solution
path is still not guaranteed when the number of relevant variables is rel-
atively large (Wainwright, 2009; Su et al., 2017; Jeng and Chen, 2019).
Studies in theory and method are limited in such general scenarios because
the inseparability among relevant and noise variables make it difficult to
estimate Type I and/or Type II errors. In order to perform variable selec-
tion in the more general and realistic settings, we propose a new theoretical
framework to characterize the region on the solution path where relevant
and noise variables are not distinguishable.

Figure 1 illustrates the indistinguishable region on solution path. Denote
m0 as the position right before the first noise variable on the path such that
all entries up to m0 correspond to relevant variables and m1 as the position
of the last relevant variable where all entries afterwards correspond to noise
variables. Given a solution path, both m0 and m1 are realized but unknown,
and the region between m0 and m1 is referred to as the indistinguishable
region.
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Figure 1: An example of m0 and m1 on Lasso solution path. m0 is the
entry right before the first noise variable. m1 is the entry of the last relevant
variable

Given the solution path, a sensible variable selection procedure would
select all variables up to m0 but no variables after m1. Since both m0

and m1 are unknown stochastic quantities, the selection procedure should
automatically adapt to the unknown m0 and m1.

We develop a new variable selection procedure utilizing the Q statistic
in Eq. 1.5. We refer to the new procedure as Q-statistic Variable Selection
(QVS). QVS searches through the solution path and determines a cut-off
position that is likely between m0 and m1 under certain conditions that are
more general than Eq. 1.6 on the distribution of the Q statistic.

2 Method and Theory

QVS is inspired by earlier works on estimating the proportion of non-null
component in a mixture model of p-value (Meinshausen and Buhlmann, 2005,
2006). We extend the technique to high-dimensional regression considering
the general scenarios with indistinguishable relevant and noise variables.

Given a Lasso path, QVS searches through the empirical process k/m−
qk − cm

√
qk(1− qk), 1 ≤ k ≤ m, where qk is defined in Eq. 1.5, and deter-

mines the cut-off position as

k̂qvs = m · max
1≤k≤m/2

{
k

m
− qk − cm

√
qk(1− qk)

}
, (2.1)

where cm is a bounding sequence to control over selection of noise variables
after m1 and constructed as follows. For 0 < t < 1, let

Um(t) =
1

m

m∑
i=1

1(Ui ≤ t),

where U1, · · · , Um are i.i.d. standard uniform random variables. Further, let

Vm = sup
t∈(0,1)

Um(t)− t√
t(1− t)

. (2.2)
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Then determine cm as an upper bound of Vm so that P (Vm > cm) < αm → 0
as m → ∞.

We consider the setting where some relevant variables intertwine with
noise variables on the Lasso path. In order to gain theoretical insights for
the performance of QVS, we adopt a similar strategy as in Section 4.2.1 of
G’sell et al. (2016), and simplify the problem by considering a sequence of
arbitrary statistics q1, . . . , qm corresponding to the m ranked variables.

Define U(1),m−s, . . . , U(m−s),m−s as increasingly ordered statistics of m−s
independent standard uniform random variables, independent of q1 . . . , qm.
Assume that

qm0+1 ≤ U(1),m−s (2.3)

with probability tending to 1 as m → ∞. It is easy to see that in the special
case of perfect separation with m0 = m1 = s, Eq. 2.3 is implied by condition
(1.6) from G’sell et al. (2016). In the more general case with m0 �= m1, we
show that QVS provides an asymptotic upper bound for the unknown m0

under (2.3).

Theorem 1. Consider the stopping rule in Eq. 2.1 under condition (2.3).
Assume that the number of relevant variables s = o(m) and that

√
logm/m0

→ 0 in probability. Then

P
(
k̂qvs ≥ (1− ε)m0

)
→ 1 (2.4)

as m → ∞ for any small constant ε > 0.

The proof of Theorem 1 is provided in Appendix A. The condition,√
logm/ m0 → 0 in probability, holds when m0 is large enough, which

may be satisfied if the number of relevant variables and their effect sizes are
large enough. The result in Theorem 1 implies that QVS can asymptotically
retain a high proportion of relevant variables ranked up to m0.

Next, we show the property of QVS to provide a lower bound for m1

in Fig. 1. Recall the definition of U(j),m−s as the jth ordered statistic of
m−s independent standard uniform random variables. Assume that for any
t ∈ (0, 1),

m∑
k=m1+1

1(qk ≤ t) ≤
m−s∑

k=m1−s+1

1(U(k),m−s ≤ t), (2.5)

with probability tending to 1 as m → ∞, where 1(·) denotes an indicator
function. Note that in the special case with m0 = m1 = s, condition (2.5))
is implied by Eq. 1.6 because the latter assumes that qk has the same dis-
tribution as that of U(k−s),m−s for k = s + 1, . . . ,m. In the more general
setting when m0 �= m1, we have the following result.
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Theorem 2. Consider the stopping rule in Eq. 2.1 under condition (2.5).
As m → ∞,

P (k̂qvs ≤ m1) → 1.

The proof of Theorem 2 is presented in Appendix B. Theorem 2 implies
that QVS provides a parsimonious variable selection such that noise variables
ranked after m1 are not likely to be over-selected. Combining Theorem 1
and 2, the following corollary is straightforward.

Corollary 1. Consider the stopping rule in Eq. 2.1 under conditions (2.3)
and (2.5). If s = o(m) and

√
logm/m0 → 0 in probability, then

P
(
(1− ε)m0 ≤ k̂qvs ≤ m1

)
→ 1

as m → ∞ for any small constant ε > 0.

3 Simulation

In our simulation study, design matrix Xn×p is a Gaussian random ma-
trix with each row generated from Np(0,Σ). Response y is generated from
Nn(Xβ∗, I), where β∗ is the vector of true coefficients. The locations of
non-zero entries of β∗ are randomly simulated.

For the QVS procedure, we simulate the bounding sequence cm by the
following steps. We generate Xn×p and yn×1 under the null model and com-
pute the Lasso solution path using the lars package in R. Covariance test
statistics and Q statistics {qi}mi=1 are calculated by Eqs. 1.3 and 1.5, respec-
tively. Then, we compute Vm using Vm = max1≤i≤m/2(i/m−qi)/

√
qi(1− qi).

We repeat the above steps for 1000 times and obtain V 1
m, V 2

m, · · · , V 1000
m . The

bounding sequence cm is computed as the upper αm percentile of V 1
m, V 2

m, · · · ,
V 1000
m . We set αm = 1/

√
logm as recommended in Jeng et al. (2019) to

bound the exceedance probability of Vm at a degenerating level. For each
combination of sample size n and dimension p, we only need to simulate the
bounding sequence once.

3.1. Positions of k̂qvs, m0, and m1 Recall the definitions of the m0 and

m1 on the Lasso path and Fig. 1. Table 1 reports the realized values of k̂qvs,
m0, m1. It can be seen that the distance between m0 and m1 increases as
the number of relevant variables s increases. In all the cases, k̂qvs is greater
than m0, which agrees with the theoretical property of QVS in Theorem 1.
On the other hand, k̂qvs is less than m1 with high frequency when n = 200.

When n = 300, k̂qvs is mostly less than m1 with relatively large s but greater
than m1 with smaller s. We suspect that in the latter case, condition (2.5)
in Theorem 2 may not hold.
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Table 1: Mean values of the QVS cut-off positions (k̂qvs), the positions of
m0, and the positions of m1 from 1000 replications

n s k̂qvs m0 m1 F (k̂qvs ≥ m0) F (k̂qvs ≤ m1)

200 30 79(6.2) 4(2.8) 142(32.9) 1.00 0.99
40 92(3.4) 3(2.4) 171(21.4) 1.00 1.00
50 96(1.9) 3(2.2) 180(17.5) 1.00 1.00

300 30 68(8.1) 10(4.8) 58(17.7) 1.00 0.18
40 99(9.9) 8(4.5) 120(41.2) 1.00 0.68
50 127(7.7) 6(3.9) 206(49.8) 1.00 0.98

Standard errors are in parenthesis. F (k̂qvs ≥ m0) and F (k̂qvs ≤ m1) represent the frequen-
cies of k̂qvs ≥ m0 and k̂qvs ≤ m1, respectively. In these examples, p = 2000, Cov(X) = I,
and non-zero coefficients are equal to 0.5

Recall that condition (2.3) is imposed in Theorem 1 for QVS to retain
relevant variables before m0, and condition (2.5) is imposed in Theorem 2
to avoid over-selecting noise variables after m1. Consider the settings in
Table 1. Figure 2 shows the empirical distributions of qm0+1 and U(1),m−s,

Figure 2: Histograms of qm0+1 and U(1),m−s. The top row has n = 200,
s = 30, p = 2000, Cov(X) = I, and non-zero coefficients equal to 0.5. The
bottom row increases the sample size to n = 300
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respectively, from 1000 replications. The top row has n = 200 and s = 30,
and the bottom row increases the sample size to n = 300. The results
seem to support condition (2.3) that qm0+1 ≤ U(1),m−s with high probability.
Condition (2.5) is more difficult to check in simulation because it is supposed
to hold for arbitrary t ∈ (0, 1) with high probability. We would defer the
verification of this condition to future research.

3.2. Comparisons with other methods We compare the performance
of QVS with other variable selection methods, such as Lasso with BIC
(“BIC”), Lasso with 10-fold cross-validation (“LCV”), Bonferroni proce-
dure applied to the Q statistics (“Q-BON”), and Benjamini-Hochberg pro-
cedure applied to the Q statistics (“Q-FDR”). Specifically, Q-BON and Q-
FDR select the top-ranked variables on the solution path with sizes equal to
argmax

k
{k : qk ≤ 0.05/m} and argmax

k
{k : qk ≤ 0.05k/m}, respectively.

The nominal levels for both Q-BON and Q-FDR are set at 0.05. We note
that Q-FDR is equivalent to the TailStop method introduced in G’sell et al.
(2016).

We demonstrate the performances of these methods by presenting the
true positive proportion (TPP), false discovery proportion (FDP), and g-
measure of these methods. TPP is the ratio of true positives to the number
of relevant variables entered the solution path. FDP is the ratio of false
positives to the number of selected variables. TPP and FDP measure the
power and type I error of a selection method, respectively. We also compute
the g-measure, which is the geometric mean of specificity and sensitivity, i.e.
g-measure =

√
specificity× sensitivity, where specificity is the ratio of true

negatives to the number of noise variables in the solution path and sensitivity
is equivalent to TPP. G-measure can be used to evaluate the overall perfor-
mance of a variable selection method. Higher value of g-measure indicates
better performance (Powers, 2011).

Figure 3 summarizes the mean values of TPP, FDP, and g-measure for
different methods under various model settings with p = 2000, n = 200 and
Cov(X) = Σ = (0.5|i−j|)i=1,··· ,p; j=1,··· ,p. The number of non-zero coefficients
s = 10, 20, 40, and the non-zero effect vary from 0.3 to 2. It can be seen that
the Lasso-based BIC and LCV tend to select fewer variables, which results
in lower TPP and FDP. On the other hand, the Q Statistic-based methods,
Q-BON, Q-FDR, and QVS, all have higher TPP and FDP. However, in these
examples, Q-BON does not control family-wise error at the nominal level of
0.05, and Q-FDR does not control FDR at the nominal of 0.05. The reason
is because relevant and noise variables are not perfectly separated in these
examples. As illustrated in Table 1, m0 is much smaller than m1, and the
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Figure 3: Comparisons of QVS with other methods when p = 2000, Σ =
(0.5|i−j|)i=1,··· ,p; j=1,··· ,p, and n = 200

results of Q-BON and Q-FDR cannot be interpreted presumably. In terms of
g-measure, QVS generally outperforms other methods. We suspect that the
relatively better performance of QVS is related to its control of over-selecting
noise variables and under-selecting relevant variables to certain degrees in
the challenging scenarios when m0 and m1 are far apart.

4 Real Application

We obtain a dataset for expression quantitative trait loci (eQTL) analysis
related to Down Syndrome. Down Syndrome is one of the most common
gene-associated diseases. Our dataset includes the expression levels of gene
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Table 2: Covariance test statistics and Q statistics along Lasso solution path
for samples from Asian, Yoruba, and European populations, respectively
Knots Asian Yoruba European

Covtest Q statistic Covtest Q statistic Covtest Q statistic

1 6.09e-01 0.00 4.20e-01 0.00 9.81e-03 0.85
2 3.05e 00 0.01 6.46e 00 0.00 2.94e-02 0.85
3 1.98e-01 0.26 4.41e-02 0.45 1.64e-02 0.88
4 5.66e-02 0.32 1.23e-01 0.47 1.78e-03 0.89
5 1.24e-01 0.34 1.06e-04 0.54 1.05e-02 0.90
6 3.94e-03 0.39 2.77e-02 0.54 6.99e-03 0.91
7 2.05e-02 0.39 1.60e-03 0.55 1.06e-03 0.91
8 2.24e-02 0.40 4.31e-02 0.55 6.49e-03 0.91
9 1.09e-02 0.41 9.26e-03 0.58 1.03e-04 0.92
10 4.61e-02 0.41 1.29e-02 0.58 7.83e-03 0.92

CCT8, which contains a critical region of Down syndrome, and genome-wide
single-nucleotide polymorphism (SNP) data from three different populations
(Bradic et al., 2011): Asia (Japan and China) with sample size n = 90,
Yoruba with n = 60, and Europe with n = 60. We perform eQTL mapping
to identify SNPs that are potentially associated with the expression level of
gene CCT8 for each population. Due to the limited sample size, we randomly
select subsets of SNPs with p = 6000, 2000, 4000 for the three populations,
respectively.

For the sample of each population, we first compute the covariance test
statistics by Eq. 1.3 and Q statistics by (1.5) based on Lasso solution path.
Table 2 presents these statistics for the top 10 knots on the path.

We apply QVS as well as all the other methods analyzed in Section 3.2
to the datasets. Table 3 presents the number of selected variables along the
solution path for different methods. It can be seen that QVS generally selects
more variables than the other methods for these datasets. Particularly, when
there exists a gap in the list of Q-statistics, such as for Asian and Yoruba
samples, QVS tends to stop right after the gap. This is because such gap is

Table 3: The number of selected variables long the Lasso solution path for
different methods
Population n p BIC LCV Q-BON Q-FDR QVS

Asian 90 6000 0 1 0 0 3
Yoruba 60 2000 1 2 2 2 3
European 60 4000 0 0 0 0 0
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Table 4: Locations on the Lasso solution paths of the reference variables
identified in Bradic et al. (2011)
Population n p location of reference variables m0 m1 QVS

Asian 90 1955 1, 2, 6, 46 2 46 3
Yoruba 60 1978 1, 4, 17, 34, 50, 58 1 58 3
European 60 2146 2, 4, 18, 30 0 30 0

likely to occur in the indistinguishable region between m0 and m1. Stopping
right after the gap would include relevant variables ranked before m0 and,
at the same time, not over-select the noise variables ranked after m1.

We further verify the result of QVS by comparing with the findings in
literature. Bradic et al. (2011) studied the same samples for eQTL mapping
but only focused on cis-eQTLs. Therefore, the numbers of SNPs included
in their analysis are much smaller with p = 1955, 1978, 2146 for the three
populations, respectively. More SNP variables are identified in Bradic et al.
(2011) for each population due to larger ratio of sample size to dimension.
Table 4 reports the locations on the solution path of the variables identified
in Bradic et al. (2011). Note that the Lasso solution path is computed using
our datasets with lower ratio of sample size to dimension. We utilize this
result as a reference to evaluation the results of QVS.

For the solution path of Asian population, according to (Bradic et al.,
2011), the first noise variable enters after two relevant variables and the last
relevant variable enters at the position 46. Therefore, m0 = 2 and m1 = 46.
QVS selects the top 3 variables on the path, which is in-between m0 and m1.
This result supports the theoretical property of QVS as a sensible variable
selection procedure. Similar results are observed in the other two cases.

5 Conclusion and Discussion

We develop a new variable selection procedure whose result is inter-
pretable in the scenarios where relevant variables may be mixed indistin-
guishably with noise variables on the Lasso solution path. Our theoretical
findings are very different from the existing results which consider variable
selection properties in the ideal setting where all relevant variables rank
ahead of noise variables on the solution path. The new analytic framework
is unconventional but highly relevant to Big Data applications.

The proposed QVS procedure utilizes the Q statistic (G’sell et al., 2016)
that is built upon the limiting distribution of the covariance test statistic de-
veloped in Lockhart et al. (2014) under orthogonal design. In a more general
setting where design matrix is in general position as described in Lockhart et
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al. (2014), the theoretical analysis on covariance test statistic is much more
complicated and its limiting distribution has not be fully derived. Lockhart
et al. (2014) provides a control on the tail probability of the covariance test
statistic. It will be interesting to characterize the indistinguishable region
on the Lasso solution path and interpret the result of the proposed QVS
method in the more general setting. We note that the simulation and real
data analyses in the paper have design matrices that are not orthogonal.
Compared with other popular methods, QVS shows advantages in selection
accuracy and the ability to interpret its results.

Appendix

A Proof of Theorem 1

By the construction of k̂qvs in Eq. 2.1,

k̂qvs
m0

− 1 = max
1≤k≤m/2

{
k

m0
− 1− m

m0
qk −

m

m0
cm

√
qk(1− qk)

}

≥ m0 + 1

m0
− 1− m

m0
qm0+1 −

m

m0
cm

√
qm0+1

> − m

m0
qm0+1 −

m

m0
cm

√
qm0+1, (A.1)

where the second step above is by taking k = m0 + 1.
By condition (2.3), P (qm0+1≤U(1),m−s)→1, where U(1),m−s∼Beta(1,m−

s). Therefore, given s = o(m) and
√
logm/m0 → 0 in probability,

m

m0
qm0+1 = Op(

1

m0
) = op(1). (A.2)

On the other hand, it has been shown in Meinshausen and Rice (2006)
that cm = O(

√
logm/

√
m). Then, by s = o(m) and

√
logm/m0 → 0 in

probability, we have

m

m0
cm

√
qm0+1 = Op(

√
logm

m0
) = op(1). (A.3)

Combining (A.1) - (A.3) gives (2.4).

B Proof of Theorem 2

Define Fm(t) = 1
m

∑m
k=1 1(qk ≤ t). Re-write k̂qvs in Eq. 2.1 as

k̂qvs = m max
0<t<1

{Fm(t)− t− cm
√
t(1− t)}. (A.4)
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For notation convenience, define π1 = m1/m. Then

Fm(t) =
m1

m

1

m1

m1∑
j=1

1(qj ≤ t) +
1

m

m∑
j=m1+1

1(qj ≤ t) ≤ π1 +
1

m

m∑
j=m1+1

1(qj ≤ t).

Therefore,

P (k̂qvs > m1)

≤ P ( sup
0<t<1

{Fm(t)− t− cm
√
t(1− t)} > π1)

≤ P ( sup
0<t<1

{π1 +
1

m

m∑
j=m1+1

1(qj ≤ t)− t− cm
√
t(1− t)} > π1)

= P ( sup
0<t<1

{ 1

m

m∑
j=m1+1

1(qj ≤ t)− t− cm
√
t(1− t)} > 0)

≤ P ( sup
0<t<1

{ 1

m

m−s∑
j=m1−s+1

1(U(j),m−s ≤ t)− t− cm
√
t(1− t)} > 0) + o(1),

(A.5)

where the last step above is by condition (2.5). Note that
∑m−s

j=m1−s+1 1

(U(j),m−s ≤ t) is stochastically dominated by
∑m−s

j=1 1(U(j),m−s ≤ t), which

has the save distribution as that of
∑m−s

j=1 1(U ′
j ≤ t), where {U ′

j}m−s
j=1 is

a sequences of independent standard uniform random variables, indepen-
dent of {Uj}mj=1. Further,

∑m−s
j=1 1(U ′

j ≤ t) is stochastically dominated by∑m
j=1 1(U

′
j ≤ t), which has the same distribution as that of mUm(t). Sum

up the above, we have

P ( sup
0<t<1

{ 1

m

m−s∑
j=m1−s+1

1(U(j),m−s ≤ t)− t− cm
√
t(1− t)} > 0)

≤ P ( sup
0<t<1

{Um(t)− t− cm
√
t(1− t)} > 0). (A.6)

By the definition of the bounding sequence cm,

P

(
sup

0<t<1

Um(t)− t√
t(1− t)

> cm

)
= αm.

Further,

P

(
sup

0<t<1

Um(t)− t− cm
√

t(1− t)√
t(1− t)

> 0

)
≤ P

(
sup

0<t<1

Um(t)− t√
t(1− t)

> cm

)
= αm.
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And for every t ∈ (0, 1),

Um(t)− t− cm
√
t(1− t)√

t(1− t)
> Um(t)− t− cm

√
t(1− t)

almost surely. The above implies that

P

(
sup

0<t<1
{Um(t)− t− cm

√
t(1− t)} > 0

)
≤ αm = o(1). (A.7)

Combining (A.5) with (A.6) and (A.7) gives P (k̂qvs > m1) → 0 as m →
∞.
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