
Sankhyā : The Indian Journal of Statistics

c© 2019, Indian Statistical Institute

A Weighted Likelihood Approach to Problems in Survival
Data

Adhidev Biswas and Ayanendranath Basu
Indian Statistical Institute, Kolkata, India

Suman Majumder
North Carolina State University, Raleigh, USA

Pratim Guha Niyogi
Michigan State University, East Lansing, USA

Abstract

This work is motivated by the need to perform the appropriate “robust”
analysis on right-censored survival data. As in other domains of application,
modelling and analysis of data generated by medical and biological studies
are often unstable due to the presence of outliers and model misspecification.
Use of robust techniques is helpful in this respect, and has often been the
default in such situations. However, a large contaminating set of observations
can often mean that the group is generated systematically by a model which is
different from the one to which the majority of the data are attributed, rather
than being stray outliers. The method of weighted likelihood estimating
equations might provide a solution to this problem, where the different roots
obtained can indicate the presence of distinct parametric clusters, rather than
providing a single robust fit which ignores the observations incompatible with
the major fitted component. Efron’s (J. Am. Stat. Assoc. 83, 402, 414–425,
1988) head-and-neck cancer data provide an ideal scenario for the application
of such a method. A recently developed variant of the weighted likelihood
method provides a nice illustration of the presence of different clusters in
Efron’s data, and highlights the benefits of the weighted likelihood method
in relation to classical robust techniques.

AMS (2000) subject classification. Primary 62F35; Secondary 62N02.
Keywords and phrases. Censored survival data, Kaplan-Meier estimator,
Root selection, Weibull distribution, Weighted likelihood estimation

1 Introduction

Analyzing survival data is a problem of immense practical interest. Sur-
vival data naturally occur in diverse medical research areas such as epidemi-
ology, cancer research, biomedical experiments, etc., as well as in various
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fields such as industrial life testing, criminology, engineering, sociology, mar-
keting and insurance. Motivated by the need to provide appropriate analysis
of right-censored survival data involving a large proportion of outliers, the
present paper develops a robust method of analysis for such right-censored
survival data. In particular, we have attempted to provide a neat analysis of
Efron’s head-and-neck cancer data set, Arm A (Efron, 1988) which exhibits
several right-censored observations as well as an appreciable proportion of
large outlying observations.

The application of robust statistics comes into play in such situations
where one or more standard assumptions of parametric inference fail to hold.
Robust procedures protect the analysis from degenerating into useless num-
bers under the presence of a group of observations which are incompatible
with the rest of the data under the assumed model. Often robust proce-
dures provide a nice fit to the majority of the observations in the sample
while completely sacrificing a smaller but discordant minority. The appli-
cation of robust techniques is increasingly becoming more popular as the
need for stability under model misspecification and data contamination is
becoming more and more real in the age of big data.

A robust method, however, generally tends to provide a single meaning-
ful fit to the given data on the basis of the assumed model. Observations
which stand out subsequent to the model fit may be termed as outliers. Yet
it is possible that the group of outliers that are discarded by the robust
model fit may themselves form a separate homogeneous cluster which may
be appropriately described by a different model and is, sometimes, also of
interest to us. Thus, apart from simply looking at a single robust fit to the
entire data set, our aim, at times, is to uncover the different segments of
the data set in question which clearly appears to be generated by different
models. The primary aim of this paper is to demonstrate that our method
can be useful when there are different groups in the data.

Efron’s head-and-neck cancer (Arm A) data set (Efron, 1988) is an obvi-
ous and prominent example of the type of situations we want to handle. It
has a small but non-negligible proportion of moderately extreme outliers as
well as a small proportion of censored observations. In addition, the largest
observation in this case is an actual failure (and not a censored value). Thus
we have a well defined and complete empirical estimate of the theoretical
survival curve through the Kaplan-Meier product-limit estimator (Kaplan
and Meier, 1958).

The rest of the paper is organized as follows. In Section 2 we describe
the Arm A data set for the head-and-neck cancer study considered by Efron
(1988). Section 3 is devoted to the description of the concept of the weighted
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likelihood estimation procedure developed in Biswas et al. (2015) and Ma-
jumder et al. (2016). Necessary adjustments via the Kaplan-Meier product-
limit estimator have been done in Section 4 in order to accommodate cen-
sored observations in the analysis. Section 5 contains necessary theoretical
results for the weighted likelihood estimator under the right-censored sur-
vival set up. The statistical analysis of Efron’s Arm A data set has been
presented in Section 6. Some simulation results have been provided for expo-
nential and Weibull distributions in Section 7. A tuning parameter selection
technique is described in Section 8. Finally, Section 9 has some concluding
remarks. All the numerical computations have been performed using the R
programming language.

It is also pertinent to mention here that what we have demonstrated
in this paper is an application of the robust and efficient weighted likeli-
hood methodology that is general and not specific to this particular vari-
ant (Biswas et al., 2015; Majumder et al., 2016) of the weighted likelihood
method alone. This inference procedure would work equally well with the
weighted likelihood approach of Markatou et al. (1997) and Markatou et al.
(1998). In addition, our method will work perfectly well as the robust esti-
mator of choice when there is a single and prominent majority component in
the data with the other observations being stray outliers, and a single robust
fit is desired. We primarily emphasize the property of identifying discordant
model clusters, rather than the robustness issue per se, because we want to
highlight its novelty with relation to the former.

2 Efron’s Head-and-Neck Cancer Data

Efron (1988) considered two batches of head-and-neck cancer patients
for the experiment conducted by the Northern California Oncology Group.
The two batches, denoted Arm A and Arm B, differ in the medication ad-
ministered to them. The first batch of patients was treated only with ra-
diation therapy whereas the second batch received both radiation therapy
and chemotherapy. Both batches have some large outlying observations as
well as a few censored observations. We wish to study such data, particu-
larly that in Arm A, in the present exposition. The survival times (in days)
recorded for the patients in Arm A are provided in Table 1 (“+” indicates
a censored observation).

The data in Arm B can also be studied by the method presented here.
However, in case of Arm B, the last observation is censored (and is not an
actual failure), so we do not have a complete estimate of the survival curve
through the Kaplan-Meier approach, and some artificial method of complet-
ing it has to be adopted. We plan to tackle such cases in a sequel paper.
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Table 1: Efron’s Head-and-Neck Cancer Data (Arm A, in Days)
7 108 149 218 405 1116+
34 112 154 225 417 1146
42 129 157 241 420 1226+
63 133 160 248 440 1349+
64 133 160 273 523 1412+
74+ 139 165 277 523+ 1417
83 140 173 279+ 583
84 140 176 297 594
94 146 185+ 319+ 1101

A quick look at the data, as well as the kernel density plots of Figs. 1
and 2 appear to indicate there are two distinct clusters in the data, one
constituted by the first forty four observations, the other by the last seven.
We will make use of this fact later in this paper.

3 Weighted Likelihood Estimation

The likelihood is normally defined as the product of the density values at
the data points under the assumed model. All the observations in the sample
get uniform treatment in the construction of the likelihood. Maximizing the
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Figure 1: Fitted Weibull densities including those corresponding to the MLE,
WLE1 = (1.4651, 251.4444) and WLE2 = (10.5922, 1451.7040)) for Efron’s
data (Arm A), together with a kernel density estimate (KDE). The forty
two actual failure times are indicated in the base of the plot
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Figure 2: Fitted Weibull densities (WLE1 = (1.4651, 251.4444), WLE2 =
(10.5922, 1451.7040)) scaled by the proportion of weights attributed to each
for Efron’s Arm A data, together with a kernel density estimate

likelihood with respect to the parameter, therefore, leads to an estimator in
which contributions from all the sample points get the same, uniform weight.
Similarly, in the maximum likelihood score equation, the score function is
the ordinary sum of the scores of each observation. In case observations
incompatible with respect to the model are present in the sample, there
may be a considerable amount of influence of these points on the estimation
process which may often lead to inaccurate inference. Consequently, the
usefulness of the maximum likelihood estimator (MLE) is often questionable
in such cases.

One of the objectives of robust statistical procedures in these situations
is to develop an estimator on which the impact of the outliers should not
be as high as their impact on the MLE. At the same time, the asymptotic
efficiency of the estimator under the true model should not be unduly low in
comparison with the MLE. Weighting the likelihood so that the observations
incompatible with the model get lower weights and do not significantly affect
the estimation process is one such strategy.

A variety of weighted likelihood estimation methods have been developed
in the literature. In the weighted likelihood strategy proposed by Biswas et
al. (2015), we obtain an estimator which is simultaneously robust and asymp-
totically fully efficient. The idea and form of this method closely resembles
that of Markatou et al. (1998), which is another approach which could have
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produced similar results in this context. It has been shown in Majumder et
al. (2016) that the Biswas et al. estimator enjoys many important theoret-
ical properties (as also does the Markatou et al., 1998, method), e.g., full
asymptotic efficiency at the model and location-scale equivariance. Instead
of the density function, the sample (Fn(·) or Sn(·)) and model (Fθ(·) or Sθ(·))
cumulative distribution functions (CDF) and survival functions have been
employed in Biswas et al. (2015). The idea is to construct a residual func-
tion τn,θ(·), similar to the Pearson residual (Lindsay, 1994), which is defined
by

τn,θ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fn(x)

Fθ(x)
− 1, if Fθ(x) � p,

0, if p < Fθ(x) < 1− p,
Sn(x)

Sθ(x)
− 1, if Fθ(x) � 1− p,

(3.1)

where p ∈ (0,0.5] is a tuning parameter determining the proportion of obser-
vations to be downweighted. So, essentially we are keeping the contribution
of the sample points coming from the central 100 × (1 − 2p)% area of the
model distribution intact. Observations representing the tails of the distri-
bution are possible candidates for downweighting. But we will downweight
them only if they appear to be incompatible with the model in relation to
the rest of the data. Based on the residual in Eq. (3.1), the observations
are weighted by a suitable function H(·). The function H(·) is chosen to
be a nonnegative unimodal function, with the maximum value 1 when the
residual τn,θ(x) equals zero; the tails decrease smoothly on both sides to
downweight the effect of discordant observations. In particular, the function
H(·) drops to zero as its argument runs away to (positive) infinity. Detailed
construction of the weight function H(·) along with some examples has been
provided in Majumder et al. (2016). One such example of H-function ob-
tained as suitable ratios of the gamma density gα,β is given by

HGamma(x) =
gα,β(x+ 1)

gα,β(1)
= e−(β−1)x(x+ 1)β−1, (3.2)

where β > 1 is the shape parameter and α = 1/(β−1) is the scale parameter
necessary for the function HGamma(·) to have the right properties. Another
choice for H may be on the basis of the Weibull density hα,β , with shape
parameter β and scale parameter α = (1− 1/β)−1/β , β > 1, which leads to
the weight function

HWeibull(x) =
hα,β(x+ 1)

hα,β(1)
= (x+ 1)β−1 exp

[

−(β − 1)

{
(x+ 1)β − 1

β

}]

.

(3.3)
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Based on the above formulation, the proposed weight function is then defined
by

wθ(x) = H(τn,θ(x)). (3.4)

We now introduce the basic mathematical set up for the subsequent weighted
likelihood analyses. Let X1, X2, · · · , Xn be independent and identically dis-
tributed (i.i.d.) observations from an unknown distribution, which we model
by the family FΘ = {Fθ : θ ∈ Θ ⊂ R

d}. The aim is to estimate the un-
known parameter θ that best fits the data at hand. The maximum likelihood
estimator of θ is obtained by solving the estimating equation

n∑

i=1

uθ(Xi) = 0, (3.5)

where uθ(x) = ∂
∂θ log fθ(x) is the likelihood score function. In weighted

likelihood estimation, the estimator is the solution to

n∑

i=1

wθ(Xi)uθ(Xi) = 0, (3.6)

where the weight wθ(·) is as in Eq. (3.4). This strategy downweights out-
lying observations, but does so adaptively, so that it does not necessarily
downweight a proportion of the observations. This provides an intuitive
explanation of why the estimators are simultaneously robust and asymptot-
ically fully efficient.

4 Weighted Likelihood Estimation for Right-Censored Data

In the earlier section, we described the weighted likelihood strategy devel-
oped for i.i.d. data. In this section we are going to describe the appropriate
extension under which it may be used in the survival analysis situation to
accommodate the censored observations. The precise mathematical set up
is as follows.

Let T1, T2, . . . , Tn represent the lifetimes of a group of individuals (or the
failure times of a certain brand of products) obeying the law Fθ(·) (with
density fθ(·) and survival function Sθ(·)). Letting T denote the lifetime
variable, Fθ and Sθ are defined as

Fθ(t) = Pθ(T � t) and Sθ(t) = Pθ(T � t).

It may not always be possible to monitor all the items till their actual failure
times; as a result, some censoring is often introduced in the sampling scheme.
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Here we assume that there is an independent censoring mechanism and the
censoring time for each item is randomly governed by the distribution FC(·)
(with density fC(·) and survival function SC(·)). Let C1, C2, . . . , Cn be the
corresponding censoring times for the items under consideration. In practice,
we have information about whether a particular item is censored and the
corresponding time. In other words, what we know about the data set are
the variables

Xi = min{Ti, Ci} and Δi = 1{Ti�Ci}; i ∈ {1, 2, . . . , n}.

The latter variable is the indicator of the event {Ti � Ci}. For a particular
realization, we shall consider the lower case versions, i.e., the pair (xi, δi)
will denote the ith observation.

Next we propose the weighted likelihood strategy by defining the residual
function. In the survival analysis scenario, we consider the Kaplan-Meier
estimate of the survival function, defined by

ŜKM (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏

i:X(i)�x

(
n− i

n− i+ 1

)δ[i]

, if x � X(n),

0, if δ[n] = 1 for x > X(n),

undefined, if δ[n] = 0 for x > X(n),

where X(i), i ∈ {1, 2, . . . , n}, are the order statistics of (X1, X2, . . . , Xn) and
δ[i] is the ith concomitant corresponding to X(i), i ∈ {1, 2, . . . , n} (i.e., δ[i]
is the indicator corresponding to Xj , where Xj is the i-th order statistic).
In case the largest value is a censored observation (rather than being an
actual failure), the survival curve remains incomplete, and artificial meth-
ods are required to complete them. We will not bring that situation within
the ambit of the present discussion. However, in case of the Arm A data
set of Efron (1988), the final observation is indeed an uncensored observa-
tion. So the product-limit estimator does not need any modification in this
case.

Notice that in this definition ŜKM (x) is the estimated probability P(T >
x). For example, if the first observation is a failure at x, then ŜKM (x) =
(n − 1)/n. On the other hand, F̂KM (x) = 1 − ŜKM (x) is an estimate of
the probability P(T � x). In order to get the estimated probabilities corre-
sponding to P(T � x) we actually use Ŝ∗

KM (x) in our subsequent analysis,
obtained by adding the Kaplan-Meier mass, equal to the jump of the original
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Kaplan-Meier curve at that point, to each failure point x. This leads us to
the definition of the modified residual function as

τKM,θ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F̂KM (x)

Fθ(x)
− 1, if Fθ(x) � p,

0, if p < Fθ(x) < 1− p,

Ŝ∗
KM (x)

Sθ(x)
− 1, if Fθ(x) � 1− p.

(4.1)

Having set up the above concepts, we now proceed to define the estimating
equation in the right-censored, independent censoring scenario. The likeli-
hood function is given by

L(θ) =
n∏

i=1

f δi
θ (xi)S

1−δi
θ (xi).

We further consider the log-likelihood function in order to define the score
equation and this leads to the expression

�(θ) ≡ �(θ|x, δ) =
n∑

i=1

{δi log fθ(xi) + (1− δi) logSθ(xi)}

+
n∑

i=1

{δi logSC(xi) + (1− δi) log fC(xi)}. (4.2)

We obtain the maximum likelihood estimator of θ by maximizing this log-
likelihood with respect to θ ∈ Θ or, equivalently, solving the estimating
equation given by

∇�(θ) =

n∑

i=1

{δiu1,θ(xi) + (1− δi)u2,θ(xi)} =

n∑

i=1

Uθ(xi, δi) = 0, (4.3)

where ∇ represents derivative with respect to θ, u1,θ(x) = ∇ log fθ(x),
u2,θ(x) = ∇ logSθ(x) and

Uθ(x, δ) =

{
u1,θ(x), if δ = 1,
u2,θ(x), if δ = 0.

Hence, the proposed weighted likelihood estimating equation turns out to be

n∑

i=1

wθ(Xi)Uθ(Xi, δi) = 0. (4.4)

The weighted likelihood estimator (WLE) of θ is a suitable root of the esti-
mating Eq. (4.4).
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5 Theoretical Properties of the Proposed Weighted Likelihood
Estimator

In this paper, we have primarily focused on the methodology and ap-
plication of the weighted likelihood method in the right-censoring scenario.
The theoretical properties, viz., the influence function and the asymptotic
distribution of the corresponding weighted likelihood estimators have been
dealt with elsewhere by Biswas et al. (2018). Here, we briefly mention the
results for the sake of completion and understanding. We first begin with
the following important lemma.

Lemma 1. The proposed weighted likelihood estimator is Fisher-consistent.

Using the above lemma, we write down the expression of the influence
function under the right-censored set up as below.

Theorem 1 (Influence Function of the Proposed Estimator). The influence
function of the proposed weighted likelihood estimator is given by

IF (y;T,G) ≡ θ′ε
∣
∣
ε=0

= D−1N, (5.1)

where

D =

∫

X1

H ′(τ(x))
G(x)

Fθg(x)

∇Fθg(x)

Fθg(x)
u1,θg(x)SC(x)dG(x)

+

∫

X2

H ′(τ(x))
Ḡ(x)

Sθg(x)

∇Sθg(x)

Sθg(x)
u2,θg(x)Ḡ(x)dFC(x)

−
∫

X
H(τ(x))∇u1,θg(x)SC(x)dG(x)−

∫

X
H(τ(x))∇u2,θg(x)Ḡ(x)dFC(x),

(5.2)

and

N =

∫

X1

H ′(τ(x))
1{x�y} −G(x)

Fθg(x)
u1,θg(x)SC(x)dG(x)

+

∫

X2

H ′(τ(x))
1{x<y} − Ḡ(x)

Sθg(x)
u1,θg(x)SC(x)dG(x)

+H(τ(y))u1,θg(y)SC(y)

+

∫

X1

H ′(τ(x))
1{x�y} −G(x)

Fθg(x)
u2,θg(x)Ḡ(x)dFC(x)

+

∫

X2

H ′(τ(x))
1{x<y} − Ḡ(x)

Sθg(x)
u2,θg(x)Ḡ(x)dFC(x)

+

∫

X
H(τ(x))u2,θg(x)1{x<y}dFC(x), (5.3)
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where X1 = {x : Fθ(x) � 1/2}, X2 = {x : Fθ(x) > 1/2}, X = X1 ∪ X2,
Ḡ(x) = P(T > x) under the true distribution G, and θg is the solution of the
weighted likelihood estimating Eq. (4.4) under the true distribution G.

If the true distribution G belongs to the model, i.e., G = Fθ0 for some
θ0 ∈ Θ, then the influence function turns out to have the simpler form

IF (y;T,Fθ0) = −
[∫

X
∇u1,θ0(x)SC(x)dFθ0(x)+

∫

X
∇u2,θ0(x)Sθ0(x)dFC(x)

]−1

×
[

u1,θ0(y)SC(y) +

∫

X
u2,θ0(x)1{x<y}dFC(x)

]

, (5.4)

which is nothing but the influence function of the maximum likelihood
estimator.

To prove the asymptotic normality of the proposed weighted likelihood
estimator under the right-censored scenario, we need the following assump-
tions. For simplicity the results are presented with a scalar parameter in
mind; however they may be extended to the vector parameter case with
appropriate generalizations in the notation.

(A1) The weight function H(τ) is non-negative, bounded and twice contin-
uously differentiable such that H(0) = 1 and H ′(0) = 0.

(A2) The functions H ′(τ)(1 + τ) and H ′′(τ)(1 + τ)2 are bounded. Further,
H ′′(τ) is continuous in τ .

(A3) For every θ0 ∈ Θ, there is a neighbourhood N(θ0) such that for

every θ ∈ N(θ0), the quantities
∣
∣
∣Ũθ(x)∇Uθ(x, δ)

∣
∣
∣,

∣
∣
∣Ũ2

θ (x)Uθ(x, δ)
∣
∣
∣,

∣
∣
∣∇Ũθ(x)Uθ(x,δ)

∣
∣
∣ and |∇2Uθ(x,δ)| are bounded byM1(x),M2(x),M3(x)

and M4(x) respectively, with Eθ0 [Mi(X)] < ∞ for all i ∈ {1, 2, 3, 4}.

(A4) Eθ0 [Ũ
2
θ (X)U2

θ (X,Δ)] < ∞ and Eθ0 [∇U2
θ0
(X,Δ)] < ∞.

(A5) The analogue of Fisher information in the survival context, J(θ) =
Eθ[U

2
θ (X,Δ)] is non-zero and finite for all θ ∈ Θ.

(A6) SC(x) � Sε
θ0
(x), for some ε > 0.

Here, the function Ũθ is defined as

Ũθ(x) =

{ ∇Fθ(x)
Fθ(x)

, if Fθ(x) � 1
2 ,

∇Sθ(x)
Sθ(x)

, if Fθ(x) >
1
2 .

We now present the main result in the following theorem.
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Theorem 2. Let the true distribution G of the failure time data belong to
the model, with θ0 being the true parameter value. Let θ̂n,WLE be the proposed
weighted likelihood estimator. Define

An(θ) =
1

n

n∑

i=1

H(τKM,θ(Xi))Uθ(Xi,Δi),

Bn(θ) =
1

n

n∑

i=1

∇ (H(τKM,θ(Xi))Uθ(Xi,Δi)) , and

Cn(θ) =
1

n

n∑

i=1

∇2 (H(τKM,θ(Xi))Uθ(Xi,Δi)) ,

where ∇2 represents the second derivative with respect to θ. Then, under
Assumptions (A1)–(A6) listed above, the following results hold.

(a)
√
n
∣
∣An(θ0)− 1

n

∑n
i=1 Uθ0(Xi,Δi)

∣
∣ = oP (1).

(b)
∣
∣Bn(θ0)− 1

n

∑n
i=1∇Uθ0(Xi,Δi)

∣
∣ = oP (1).

(c) Cn(θ
′) = OP (1), where θ′ lies on the line segment joining θ0 and

θ̂n,WLE.

Based on the above theorem, we present two very important corollaries
in the following.

Corollary 1. There exists a sequence {θ̂n,WLE}n∈N of roots of the weighted
likelihood estimating Eq. (4.4) such that

θ̂n,WLE
P−→ θ0.

Corollary 2.
√
n(θ̂n,WLE − θ0)

D−→ N(0, J−1(θ0)).

6 Analysis of Efron’s Data

This section is devoted to the statistical analyses of the Arm A data set
considered by Efron (1988). While monitoring 51 of the patients from Arm
A, it was found that 9 (about 18%) of the values were censored. In order to
analyze these data, we will apply the proposed weighted likelihood method
under the Weibull distribution model.

The Weibull density, with shape parameter b and scale parameter a, is
given by

fb,a(x) =

(
b

a

)(x

a

)b−1
exp

[

−
(x

a

)b
]

, x > 0, a, b > 0. (6.1)
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We have also considered the Weibull model (and some other models) for a
brief simulation study in Section 7. The Eqs. (7.1) and (7.2) in Section 7.2
have to be iteratively solved to obtain the WLEs of a and b. In the present
section, the weight function in Eq. (3.4) is chosen based on the gamma den-
sity function as defined by HGamma in Eq. (3.2), with the shape parameter
β of the gamma density being the tuning constant. Throughout the present
analysis and in the subsequent simulation studies as well, the tuning param-
eter p of the weighting scheme is fixed at 0.5. The resulting estimates of a
and b (rounded up to 4th decimal places), for various choice of the initial
values, are presented in Table 2.

The MLE of the parameter vector (b, a) for the fifty one observations
of the Arm A data under the Weibull model is (0.9301, 426.9934). A closer
look at the WLEs in Arm A for varying tuning parameters reveals that there
is an increasing pattern in the values of the shape parameter as the tuning
constant β increases. This is true for all the initial values, viz., the MLE,
the pair (1.44, 257.33) and the pair (9.30, 1427.04). The last two pairs are
the MLEs of the first forty four observations and the last seven observations,
respectively. Also, in general the roots are fairly close to the initial values
in each case.

The final fitted weights, corresponding to all the observations for each
of the three initial values are provided in Table 3 corresponding to the tun-
ing parameter β = 1.05. The column ‘status’ indicates the censoring status,
with ‘0’ indicating a censored observation. It may be observed that when
the MLEs represent the set of initial values all the final fitted weights are
close to 1 and the root is an MLE-like root. With the second set of ini-
tial values, the final fitted weights for the last seven observations are all
equal to zero (rounded up to the fourth decimal place) although the first
forty four observations get weights close to 1. The situation reverses for the
third set of initial values, where all the first forty four observations are now
sacrificed.

In Fig. 1, we plot the densities based on the MLE and the WLEs (1.4651,
251.4444) and (10.5922, 1451.7040). We also report a kernel density estimate
for the Kaplan-Meier estimator (Wand and Jones, 1994) in the same plot
which uses the Kaplan-Meier masses of the forty two fully observed fail-
ure times in its construction. For the kernel density estimate, we use the
bandwidth

h = 0.9×min{sd(Data), IQR(Data)/1.34} × n−0.2,

where sd(·) and IQR(·) refer to the standard deviation and interquartile
range of the data respectively and n is the sample size.
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Table 2: WLEs with different initial estimates for arm A data
Tuning Constant (β) Shape (b) Scale (a)

Initial estimate: (b = 0.93, a = 426.99)
1.01 0.9307 426.4139
1.02 0.9314 425.8148
1.03 0.9321 425.1946
1.04 0.9327 424.5519
1.05 0.9335 423.8850
1.06 0.9342 423.1919
1.07 0.9350 422.4705
1.08 0.9358 421.7183
1.09 0.9366 420.9324
1.10 0.9375 420.1097

Initial estimate: (b = 1.44, a = 257.33)
1.01 1.4461 256.4093
1.02 1.4507 255.2861
1.03 1.4550 254.1302
1.04 1.4597 252.8597
1.05 1.4651 251.4444
1.06 1.4712 249.8387
1.07 1.4784 247.9677
1.08 1.4875 245.6899
1.09 1.4999 242.6716
1.10 1.5232 237.4208

Initial estimate: (b = 9.30, a = 1427.04)
1.010 9.4070 1430.5239
1.015 9.4694 1432.3907
1.020 9.5405 1434.3601
1.025 9.6228 1436.4542
1.030 9.7202 1438.7053
1.035 9.8390 1441.1647
1.040 9.9913 1443.9242
1.045 10.2053 1447.1866
1.050 10.5922 1451.7040

While Fig. 1 is useful in demonstrating that the two components WLE1 =
(1.4651, 251.4444) and WLE2 = (10.5922, 1451.7040) represent two different
segments of the data, these densities have to be appropriately scaled to
highlight the degree of their match with the different patterns in the data.
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Table 3: Final fitted weights corresponding to the three different roots for
the Arm A observations

MLE-like WLE1 WLE2
Observations Status Weights Weights Weights

7 1 0.9998 0.9316 0.0000
34 1 0.9866 0.9982 0.0000
42 1 0.9922 0.9993 0.0000
63 1 0.9906 0.9956 0.0000
64 1 0.9952 0.9985 0.0000
74 0 0.9927 0.9957 0.0000
83 1 0.9945 0.9962 0.0000
84 1 0.9971 0.9983 0.0000
94 1 0.9977 0.9981 0.0000
108 1 0.9978 0.9973 0.0000
112 1 0.9987 0.9982 0.0000
129 1 0.9985 0.9971 0.0000
133 1 0.9997 0.9988 0.0000
133 1 0.9997 0.9988 0.0000
139 1 0.9999 0.9990 0.0000
140 1 0.9999 0.9998 0.0000
140 1 0.9999 0.9998 0.0000
146 1 0.9998 0.9999 0.0000
149 1 0.9995 1.0000 0.0000
154 1 0.9993 1.0000 0.0000
157 1 0.9989 1.0000 0.0000
160 1 0.9978 0.9998 0.0000
160 1 0.9978 0.9998 0.0000
165 1 0.9975 0.9998 0.0000
173 1 0.9974 0.9998 0.0000
176 1 0.9968 0.9997 0.0000
185 0 0.9975 0.9999 0.0000
218 1 0.9987 0.9996 0.0000
225 1 0.9984 0.9996 0.0000
241 1 0.9986 0.9993 0.0000
248 1 0.9983 0.9994 0.0000
273 1 0.9987 0.9982 0.0000
277 1 0.9984 0.9986 0.0000
279 0 0.9985 0.9991 0.0000
297 1 0.9984 0.9976 0.0000
319 0 0.9983 0.9959 0.0000
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Table 3: (continued)
MLE-like WLE1 WLE2

Observations Status Weights Weights Weights

405 1 0.9998 0.9671 0.0000
417 1 0.9996 0.9655 0.0000
420 1 0.9991 0.9696 0.0000
440 1 0.9988 0.9641 0.0000
523 1 0.9996 0.8934 0.0000
523 0 0.9996 0.8934 0.0000
583 1 0.9998 0.8071 0.0000
594 1 0.9991 0.8128 0.0000

1101 1 0.9823 0.0000 0.5377
1116 0 0.9882 0.0000 0.5933
1146 1 0.9854 0.0000 0.6794
1226 0 0.9881 0.0000 0.8630
1349 0 0.9743 0.0000 0.9749
1412 0 0.9646 0.0000 0.9708
1417 1 0.9638 0.0000 0.9718

To facilitate this we consider the scaled densities corresponding to WLE1 and
WLE2 in Fig. 2. To do this we multiply these two densities with the sum
of the Kaplan-Meier masses for the observations getting non-zero weights
in the corresponding fit. Thus we multiply the WLE1 density with the
sum of the masses of the thirty nine failure times among the first forty four
observations (the other five observations are censored); similarly the WLE2
density is scaled with the sum of the masses of the three failure times among
the last seven observations. For future reference, we refer to these two scaling
constants as γ and 1 − γ. In Fig. 2 we plot the kernel density estimate of
the full data, as well as the two scaled densities. It is clearly seen that the
scaled densities provide nice and close fits to the kernel density estimate in
the two segments of the data. The peaks of both the components are very
closely matched.

Since the fitted curves (or the scaled curves) corresponding to WLE1 and
WLE2 are associated with Weibull densities, they are technically supported
over the entire range [0,∞). For all practical purposes, however, the densities
f1 and f2 corresponding to WLE1 and WLE2, respectively, are disjoint,
as is observed in Figs. 1 and 2. In Fig. 3 we plot the mixture fmix =
γf1 + (1 − γ)f2 of the two Weibull densities (with γ being the sum of the
masses of the first component as defined earlier) and the two component
Weibull mixture fit for the full data as reported in Basu et al. (2006). It
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Figure 3: Mixture of the two densities corresponding to WLE1 =
(1.4651, 251.4444) and WLE2 = (10.5922, 1451.7040) for Efron’s Arm A
data, indicated as “Proposed” in the legend together with an estimated
mixture density as reported in Basu et al. (2006)

is obvious that the two curves are extremely close to each other. Thus
the mixture of the fits obtained by the two non MLE-like roots is entirely
successful in replicating the fit of the mixture without getting into the (quite
substantial) complications of Weibull mixture modelling in this case.

7 Simulation Results

To study the performance of the estimators in a little more detail, we take
up a simulation study. In the following we compare the empirical efficiency,
i.e., the ratio of the mean squared error (MSE) of the MLE to the MSE of
the WLE for different levels of contamination and censoring. Various values
of the tuning parameters are also explored in this investigation.

We consider the following two distributions prevalent in modelling sur-
vival data.

(i) The exponential distribution with rate λ, whose density is given by

fλ(x) = λe−λx, λ > 0, x > 0.

(ii) The Weibull distribution as described in Eq. (6.1).

We want to study the performance of the method when the data are both
contaminated and censored. We take up the two distributions separately.
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In order to evaluate the empirical MSE for both the estimators (MLE and
WLE), we draw 5000 samples with different levels (10% and 20%) of cen-
soring and different proportions (0%, 10%, 15% and 20%) of contamination.
It is to be noted that we have employed two different weighting functions
for the definition of H(·) as discussed in Section 3 in the following analyses,
viz., one based on the gamma density given by Eq. (3.2), and the other on
the basis of the Weibull density as illustrated in Eq. (3.3). All the estima-
tors corresponding to every sample are calculated for different values of the
tuning constants.

7.1. Exponential Distribution For ease of description, let us denote the
exponential distribution with rate parameter λ by Exp(λ). The weighted
likelihood estimating equation in this case boils down to

n∑

i=1

wλ(xi)

{
δi
λ

− xi

}

= 0,

where wλ(xi) is as described in Eq. (4.4) with λ = θ, and this leads to the
solution

λ =
n∑

i=1

wλ(xi)δi

/
n∑

i=1

wλ(xi)xi.

First we simulate from the Exp(5) distribution, with, say, ε proportion of
contamination from Exp(1.5). We also introduce censoring at the appropri-
ate proportion in our system. Let the failure time distribution T be Exp(λ);
if the censoring variable C, independently of the failure time distribution,
has distribution Exp(κ), and if the censoring proportion is �, then, an eval-
uation of the expression

P[T > C] = �

gives,

κ =
5�

1− �
.

So, in case of 10 % censoring, we choose the rate parameter of the censoring
distribution to be 5/9, and to be 5/4 for 20% censoring.

Tables 4 and 5 represent the empirical efficiencies of the WLE with re-
spect to the MLE. As is evident from the tables and our theoretical intu-
itions, the efficiency is less than 1 at the 0% contamination, i.e., under pure
data. The efficiency increases as the contamination increases, although the
pattern with respect to increase in the tuning constant is not quite uniform.
Under contamination, the efficiency decreases as we increase the censoring
proportion. For each contamination level and weight function combination,
the highest empirical efficiency is highlighted.
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Table 4: Empirical efficiencies of WLE in the exponential model under
10% censoring and Exponential(1.5) contamination (rounded to 4th deci-
mal places)

Contamination proportion (ε)

Sample Weight Tuning 0% 10% 15% 20%
size function parameter (β)

50 Gamma 1.05 0.9077 1.1941 1.2660 1.3040
1.07 0.8738 1.1949 1.2891 1.3488
1.09 0.8382 1.1814 1.3032 1.3728

Weibull 1.05 0.8974 1.1680 1.2435 1.3166
1.07 0.8600 1.1615 1.2641 1.3607
1.09 0.8061 1.1371 1.2590 1.3797

7.2. Weibull Distribution For streamlining the following discussion, the
Weibull density is denoted by W (b, a), where b is the shape parameter and a
is the scale parameter. Here also, as before, we obtain the estimating equa-
tion for applying an algorithm similar to the Iteratively Reweighted Estimat-
ing Equation (IREE) algorithm (Basu and Lindsay, 2004). The equations
turn out to be

a =

(
n∑

i=1

wb,a(xi)x
b
i

/ n∑

i=1

wb,a(xi)δi

)1/b

(7.1)

1/b =

n∑

i=1

wb,a(xi)x
b
i log xi

/ n∑

i=1

wb,a(xi)x
b
i

−
n∑

i=1

wb,a(xi)δi log xi

/ n∑

i=1

wb,a(xi)δi. (7.2)

Table 5: Empirical efficiencies of WLE in the exponential model under
20% censoring and Exponential(1.5) contamination (rounded to 4th deci-
mal places)

Contamination Proportion (ε)

Sample Weight Tuning 0% 10% 15% 20%
size function parameter (β)

50 Gamma 1.05 0.9433 1.0648 1.1044 1.1230
1.07 0.9202 1.0687 1.1174 1.1470
1.09 0.8986 1.0689 1.1275 1.1632

Weibull 1.05 0.9403 1.0463 1.1025 1.1222
1.07 0.9120 1.0406 1.1140 1.1400
1.09 0.8800 1.0269 1.1169 1.1528
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We simulate pure data from W (5, 2) distribution, in which we impose ε pro-
portion of contamination from Exp(1.5) distribution. We choose Exp(λ(�))
for censoring at proportion �. As in the case of exponential distribution,
we solve for λ(�) and, in respect of the original W (5, 2) data generating
distribution, it turns out to be the solution of

∫ ∞

0
exp[−λ(�)t]f5,2(t)dt = 1− �,

which we solve numerically in order to obtain

λ(0.1) = 0.0576 and λ(0.2) = 0.1226.

Tables 6 and 7 display the empirical efficiencies. The increasing pattern
of efficiency with increasing contamination remains the same. The other
observations also are, in general, similar. The pure data efficiencies of the
shape parameter appear to be lower than the scale parameter.

7.3. Half Cauchy Contamination The simulation study presented in the
previous subsections involves the exponential distribution as the contaminat-
ing distribution in both exponential and Weibull models. As advised by a ref-
eree, we have further investigated the performance of the weighted likelihood
estimators of the parameters in these two models when the contaminating

Table 6: Empirical efficiencies of WLE in Weibull distribution under 10%
censoring and Exponential(1.5) contamination (rounded to 4th decimal
places)

Contamination Proportion (ε)

Parameter Weight Tuning 0% 10% 15% 20%
function parameter (β)

Scale, â Gamma 1.02 0.9901 2.7412 2.9967 2.5686
1.04 0.9673 3.1635 4.1441 3.9781
1.06 0.9417 3.2746 4.7763 5.2933

Weibull 1.02 0.9781 2.7924 3.1949 2.5547
1.04 0.9440 3.1803 4.5717 4.1709
1.06 0.9068 3.2659 5.2205 5.6464

Shape, b̂ Gamma 1.02 0.8645 3.5462 3.5754 2.8468
1.04 0.7404 3.4737 4.2011 3.6922
1.06 0.5884 2.8384 3.7441 3.5647

Weibull 1.02 0.8569 3.6834 3.7681 2.8458
1.04 0.7079 3.5309 4.4880 4.0968
1.06 0.5999 2.6944 3.2690 3.6214
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Table 7: Empirical efficiencies of WLE in the Weibull model under 20% cen-
soring and Exponential(1.5) contamination (rounded to 4th decimal places)

Contamination Proportion (ε)

Parameter Weight Tuning 0% 10% 15% 20%
function parameter (β)

Scale, â Gamma 1.02 0.9916 2.4845 2.6651 2.2426
1.04 0.9693 2.8743 3.6104 3.3720
1.06 0.9398 2.9984 4.2144 4.4185

Weibull 1.02 0.9843 2.5537 2.7848 2.2792
1.04 0.9516 2.9008 3.9751 3.5978
1.06 0.9107 3.0230 4.6290 4.7146

Shape, b̂ Gamma 1.02 0.8927 3.4033 3.2426 2.5637
1.04 0.7596 3.4173 3.7808 3.4275
1.06 0.6078 2.7205 3.3235 3.2253

Weibull 1.02 0.9470 3.4298 3.3442 2.6088
1.04 0.7865 3.3025 3.7743 3.6628
1.06 0.6231 2.4417 2.9703 3.1255

distribution is the one-sided Cauchy distribution with parameters (μ, σ) with
the probability density function given by

fHC(x) =

{
2
π × σ

σ2+(x−μ)2
, if x � 0,

0, otherwise.
(7.3)

We undergo the same simulation study under this modified contamina-
tion. To make the distribution comparable with the exponential contam-
ination, we choose μ = 0 and σ = 1/π. The results are summarized in
Tables 8, 9, 10 and 11. The patterns are, on the whole, similar to the expo-
nential contamination patterns.

8 Selection of the Tuning Parameter

In the analysis of the Efron data set in Section 6 and the simulation stud-
ies in Section 7 we employ both the Gamma and Weibull type weights with
a variety of tuning parameters for the evaluation of the weighted likelihood
estimates. While it is our experience that the behaviour of the estimator
only differs marginally over the choice of the weight function type (Gamma,
Weibull or other) with comparable tuning parameter, the tuning parameter
itself has a much more pronounced impact on the estimate. In general, the
finite sample efficiency of the estimator appears to decrease with increase in
the value of the tuning parameter β. On the other hand, larger values of β
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Table 8: Empirical efficiencies of WLE in the exponential model under
10% censoring and one-sided Cauchy contamination (rounded to 4th dec-
imal places)

Contamination Proportion (ε)

Sample Weight Tuning 0% 10% 15% 20%
size function parameter (β)

50 Gamma 1.05 0.9077 1.4444 1.6966 1.8214
1.07 0.8738 1.4152 1.6999 1.8566
1.09 0.8382 1.3629 1.6789 1.8753

Weibull 1.05 0.8974 1.4078 1.6880 1.7987
1.07 0.8600 1.3669 1.6673 1.8127
1.09 0.8061 1.2739 1.6270 1.7956

appear to give greater stability under data contamination. It is, therefore,
extremely important to choose the tuning parameter judiciously. One would
want to choose a larger tuning parameter for stability in estimation only if
it is necessary.

In connection with choosing the optimal tuning parameter for the mini-
mum divergence estimator based on the density power divergence (DPD;
Basu et al., 1998), an algorithm was presented by Warwick and Jones (2005)
which minimizes an empirical measure of mean squared error (MSE); also
see Basak et al. (2019). In calculating this empirical measure of the MSE for
any given real data set, the Warwick-Jones algorithm exploits the theoretical
form of the asymptotic variance of the estimator, the empirical distribution,
and a robust pilot estimator for the computation of the bias. Then the

Table 9: Empirical efficiencies of WLE in the exponential model under
20% censoring and one-sided Cauchy contamination (rounded to 4th dec-
imal places)

Contamination Proportion (ε)

Sample Weight Tuning 0% 10% 15% 20%
size function parameter (β)

50 Gamma 1.05 0.9433 1.0970 1.1796 1.2415
1.07 0.9202 1.0785 1.1887 1.2632
1.09 0.8986 1.0664 1.1903 1.2700

Weibull 1.05 0.9403 1.0632 1.1837 1.2482
1.07 0.9120 1.0403 1.1869 1.2657
1.09 0.8800 1.0176 1.1850 1.2611
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Table 10: Empirical efficiencies of WLE in Weibull distribution under 10%
censoring and one-sided Cauchy contamination (rounded to 4th decimal
places)

Contamination Proportion (ε)

Parameter Weight Tuning 0% 10% 15% 20%
function parameter (β)

Scale, â Gamma 1.02 0.9901 2.4646 2.2750 1.9754
1.04 0.9673 2.6619 1.8223 1.7754
1.06 0.9417 2.6730 2.4601 1.8126

Weibull 1.02 0.9781 2.8714 1.8715 1.8639
1.04 0.9440 3.1737 2.1991 2.2983
1.06 0.9068 3.3561 2.2354 2.7687

Shape, b̂ Gamma 1.02 0.8645 2.2395 2.4204 2.2422
1.04 0.7404 2.2117 2.6783 2.8180
1.06 0.5884 2.0142 2.4713 2.7552

Weibull 1.02 0.8569 2.3023 2.5497 2.2093
1.04 0.7079 2.2303 2.7087 2.8254
1.06 0.5999 1.9355 2.4134 2.6988

empirical mean squared error is the estimated, summed, asymptotic vari-
ance plus the estimated squared bias computed against an initial robust
pilot estimator.

Table 11: Empirical efficiencies of WLE in the Weibull model under 20% cen-
soring and one-sided Cauchy contamination (rounded to 4th decimal places)

Contamination Proportion (ε)

Weight Tuning 0% 10% 15% 20%
Parameter Function Parameter (β)

Scale, â Gamma 1.02 0.9916 2.2236 2.5992 1.9965
1.04 0.9693 2.3809 3.2115 2.6055
1.06 0.9398 2.4264 3.2515 2.8774

Weibull 1.02 0.9843 2.0491 2.2575 1.9254
1.04 0.9516 1.9800 3.2729 2.6881
1.06 0.9107 1.9964 3.5663 3.1690

Shape, b̂ Gamma 1.02 0.8927 2.3704 2.3613 2.1060
1.04 0.7596 2.3507 2.6031 2.6705
1.06 0.6078 2.0727 2.3915 2.6221

Weibull 1.02 0.9470 2.2939 2.5130 2.0903
1.04 0.7865 2.2096 2.7467 2.6910
1.06 0.6231 1.9252 2.4213 2.4860
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In this paper, we propose to extend this idea to make it suitable for our
situation. Notice that unlike the case of the DPD, where the asymptotic
variance was a function of the tuning parameter α, our estimators are all
first-order efficient, and hence there is no asymptotic discrimination between
the estimators in terms of the variance. The finite sample variance varies
quite a bit, however, and we try to make use of this fact in the development
of our algorithm, which proceeds along the following steps for any of our
weight functions which depends on a single parameter β, when a real data
set of size n is available.

1. We choose a fine sequence of values of the tuning parameter β over the
appropriate range.

2. We select B bootstrap samples of the same size n from the given data
set.

3. We compute the weighted likelihood estimators of the parameters for
each bootstrap sample and each value of β in our sequence.

4. For each value of β, the variance of the estimator is calculated as
the observed variance of the parameter estimates over the bootstrap
samples. This is following the idea of Léger and Romano (1990) to
consider the bootstrap estimate of the variance.

5. We compute the empirical mean squared error at any given value of
β as the sum of the estimated bootstrap variances at that β and the
squared bias estimated as the squared deviation of the estimator for
that β against a suitable pilot estimator.

6. The optimal value of the tuning parameter is then chosen as the value
of β which minimizes the above criterion.

In case of the Efron data (Arm A), we illustrate our tuning parameter
selection technique with Gamma weights. Here we have used a fine sequence
of β values between 1.00 and 1.05. We restrict the upper limit of the tuning
parameter at 1.05 because for larger values of β the pure data efficiency
of the WLEs appears to be unacceptably low, particularly for the shape
parameter estimate. Note that the sample size (51) for Efron data (Arm
A) is approximately equal to the sample size (50) used in our simulations
as reported in Tables 4 to 11. The optimal value of β through the above
exercise is found to be 1.05 for the Efron (Arm A) data, indicating a strongly
robust estimator is needed in this case. Interestingly, if we were to exclude
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the seven large observations of this data set (i.e., the observations belonging
to the second cluster), the optimal value of the tuning parameter turns out
to be 1.00 which generates the MLE of this truncated group. In both cases,
the pilot estimator was the WLE at β = 1.05 with Gamma weights. Thus, at
least in this example, the algorithm suggested by us appears to be successful
in detecting where a robust estimator is necessary and where it is not. A
further refinement of the above procedure is possible which selects the tuning
parameter adaptively by letting the optimal solution at any stage be the pilot
for the next iteration; see Basak et al. (2019). We hope to pursue such a
procedure in the future.

9 Concluding Remarks

This article has been devoted to analyzing right-censored survival data
by adapting a weighted likelihood approach. Studies of various theoretical
properties of this newly devised estimator have been provided in Biswas et al.
(2018). While obtaining the numerical findings, it has been noticed that the
convergence of the IREE type algorithm (Basu and Lindsay, 2004) heavily
depends upon the choice of the starting values, and, to a lesser extent, on
the value of the tuning parameter. A suitable robust estimator should be
employed for the quick convergence of the IREE type algorithm.

The scope of this method has been illustrated, apart from simulation,
through Efron’s (Efron, 1988) head-and-neck cancer data. In Efron’s data
(Arm A), the two clusters in the data were easily separable, and, conse-
quently, the roots representing these clusters could be easily identified. In
general, we need some algorithm to uncover all the roots of the system.
For this we recommend the bootstrap root search algorithm as described in
Markatou et al. (1998).

The problem of early failure in reliability theory is a common one and
seems an area worth exploring for the purpose of applying robust statisti-
cal methods. In this situation, failure of some items may occur at a very
primary period of the experiment. These observations, we suspect, are ex-
ceptional when considering the appropriate statistical model. We wish to
take up the problem of analyzing data with early failures in a subsequent
work.

Another possible approach of study, which could be useful for the sit-
uation considered in this paper, was suggested by a referee. This would
involve performing an initial cluster analysis, followed by an application of
the weighted likelihood method of estimation for each of the identified clus-
ters. This would, however, require a robust clustering technique appropriate
for right-censored data. We hope to take it up in a sequel paper.
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