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Abstract

Nonparametric estimation of a mixing density based on observations from
the corresponding mixture is a challenging statistical problem. This paper
surveys the literature on a fast, recursive estimator based on the predictive
recursion algorithm. After introducing the algorithm and giving a few ex-
amples, I summarize the available asymptotic convergence theory, describe
an important semiparametric extension, and highlight two interesting appli-
cations. I conclude with a discussion of several recent developments in this
area and some open problems.
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1 Introduction

Estimating a mixing distribution based on samples from a mixture is
arguably one of the most difficult statistical problems. It boils down to
estimating the distribution of a variable based on only indirect or noise-
corrupted observations. Nonparametric density estimation is already suf-
ficiently challenging when one has direct observations let alone with only
indirect observations. But understanding this latent variable distribution
has many important practical consequences so, despite the problem’s diffi-
culty, there are now a number of different methods available for estimating
that distribution. Here I will focus on a particular method, known as predic-
tive recursion (PR), that provides a fast and easy-to-compute nonparametric
estimate of a mixing density.

The work on computation for Bayesian nonparametrics—in particular,
for the Dirichlet process mixture model—in the late 1990s and early 2000s
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provided the original impetus for the development of PR. At that time,
Markov chain Monte Carlo (MCMC) for fitting Dirichlet process mixture
models was an active area of research, e.g., Escobar (1994), Escobar and
West (1995), MacEachern (1994) & MacEachern (1998), MacEachern and
Müller (1998), and Neal (2000), but computational power then was nowhere
close to what it is now, so there was also an interest in developing alterna-
tives to MCMC which were faster and easier in some sense. At that time,
Michael Newton and collaborators, in a series of papers (Newton et al.,
1998; Newton and Zhang, 1999; Newton, 2002), developed the predictive
recursion algorithm which aimed at providing a fast, MCMC-free approxi-
mation of the posterior mean of the mixing distribution under a Dirichlet
process mixture model. There was no doubt that the algorithm was fast and
produced high-quality estimates in real- and simulated-data examples, but
by the mid-2000s it was still unclear what specifically the PR algorithm was
doing and what kind of properties the resulting PR estimator had. Jayanta
K. Ghosh, or JKG for short, learned of the challenging open questions sur-
rounding the PR algorithm and, naturally, was intrigued. In 2005, he and
his then student, Surya Tokdar, published the first fully rigorous investiga-
tion of the convergence properties of the PR estimator (Ghosh and Tokdar,
2006). Around that time, I was a PhD student at Purdue University look-
ing for an advisor and a research project. JKG generously shared with me
a number of very promising ideas, but the one that stuck—and eventually
became the topic of my thesis (Martin, 2009)—was a deeper theoretical and
practical investigation into the rather elusive PR algorithm.

Between 2007 and 2012, JKG, Surya, and I were actively working on
theory for and methodology based on PR. The three of us eventually shifted
our respective research foci to other things, but the developments continued.
In particular, James Scott and his collaborators found that PR is a powerful
tool for handling the massive data and associated large-scale multiple testing
problems arising in real-world applications. I have also recently started
working on some new PR-adjacent projects and those results shed light on
the PR algorithm itself. More on these efforts below.

Sadly, on September 30th, 2017, JKG passed away, leaving a gaping hole
in the scientific community that had once been overflowing with kindness and
ingenuity. Aside from his tremendous scholarly impact, JKG also touched
the lives of many in a personal way. I had the privilege of participating in
several special JKG memorial conference sessions and I was moved by the
many fond memories of JKG shared by the participants.1 To me, JKG was

1Anirban DasGupta’s “Remembering Professor Jayanta K. Ghosh” is an absolute must-
read; see http://www.stat.purdue.edu/news/2017/jayanta-ghosh.html.
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the epitome of a scientist: his research efforts were fueled by nothing other
than an intense curiosity about the world, and his generosity as a teacher and
mentor stemmed from an equally intense desire to share all that he knew.

At face value, the goal of this paper is to review the PR algorithm, its
theoretical properties, applications, and various extensions. In particular,
after a review of mixture models in Section 2, I proceed in Section 3 to
define the PR estimator, give some illustrative examples, and summarize
its theoretical convergence properties. An important extension of PR is
presented in Section 4, one that sets the scene for the applications described
in Section 5. At a higher level, however, the goal of this paper is to highlight
an interesting albeit lesser-known area of statistics in which JKG had a
major influence. With this in mind, I present some recent developments and
open problems in Sections 6 and 7, respectively, in hopes of stimulating new
research activity in this area and furthering JKG’s legacy. Section 8 gives
some concluding remarks.

2 Background on Mixture Models

Consider independent and identically distributed (iid) data Y1, . . . , Yn
with common density function given by the mixture model

f(y) = fp(y) =

∫
U

k(y | u) p(u) ν(du), y ∈ Y ⊆ R
d. (2.1)

Here k(· | u) is (for now) a fully known kernel, i.e., a density function with
respect to, say, Lebesgue measure on Y for each u ∈ U, and p is an unknown
density with respect the given measure ν on U. The goal is estimation of
the mixing density p based on iid data Y1, . . . , Yn from the mixture density
f . I will assume throughout that p is identifiable, but this is non-trivial; see
Teicher (1961, 1963) and San Martin and Quintana (2002). Deconvolution is
a special case, where k(y | u) = k(y−u), and special techniques are available
for this problem (Stefanski and Carroll, 1990; Zhang, 1990, 1995; Fan, 1991).
Here I will focus on methods for general mixture models.

There are a number of approaches to this problem. One is to give p some
additional structure, for example, to express p as a discrete distribution.
This makes f in Eq. 2.1 a finite mixture model and producing maximum
likelihood estimates (MLEs) of the parameters that characterize p, namely,
the mixture weights and locations, can be readily found via, say, the EM
algorithm (Dempster et al., 1977). One can alternatively give a prior distri-
bution for the mixture weights and locations and then use, say, an EM-like
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data-augmentation strategy (e.g., van Dyk and Meng, 2001) to sample from
the posterior distribution and perform Bayesian inference.

This approach, unfortunately, has some drawbacks. In particular, the
methods above can only be easily employed when the number of mixture
components is known, which is an unrealistic assumption. One can use
model selection techniques to choose the number of components as part
of a likelihood-based analysis (e.g., Leroux, 1992). Similarly, the Bayesian
can put a prior distribution on the number of mixture components (e.g.,
Richardson and Green, 1997). Ideally, one could let the data automatically
choose the number of components, and there are nonparametric methods
that can handle this. Neither the nonparametric MLE (e.g., Lindsay, 1995;
Laird, 1978) nor the Dirichlet process mixture model (e.g., Müller and Quin-
tana, 2004; Ghosal, 2010) require the user to choose the number of mix-
ture components. In fact, JKG frequently worked with Dirichlet process
mixture models; see Ghosal et al. (1999) and Ghosh and Ramamoorthi
(2003).

What makes estimation of p difficult is that there are many different
p for which the corresponding mixture closely approximates the empirical
distribution of Y1, . . . , Yn. That is, even if p is identifiable, it is “just barely
so.” Since the above methods are primarily focused on finding a p such that
the mixture Eq. 2.1 fits the data well, there is no guarantee that the resulting
p̂ is a good estimate of p. In fact, the nonparametric MLE is discrete almost
surely (Lindsay, 1995, Theorem 21), and the posterior mean of p under a
Dirichlet process mixture model also has some discrete-like features (e.g.,
Tokdar et al., 2009, Figs. 1–2). Therefore, if p is assumed to be a smooth
density, then a discrete estimator would clearly be unsatisfactory. Smoothing
of, say, the nonparametric MLE has been considered, but I will not discuss
this here; see Eggermont and LaRiccia (1995). One could also consider maxi-
mizing a penalized likelihood, one that encourages smoothness (Liu et al.,
2009; Madrid-Padilla et al., 2018), but the computations are non-trivial.

The mixture Eq. 2.1 and the desire to estimate the mixing density man-
ifests naturally when the model is expressed hierarchically. That is, if unob-
servable latent variables U1, . . . , Un are iid p and the conditional distribution
of Yi, given Ui = u, is k(y | u), then the marginal distribution of Yi has a
density of the form Eq. 2.1. Often, the latent variables are the relevant quan-
tities, e.g., measures of students’ “ability,” so estimating p would be of imme-
diate practical interest. This is a hopeless endeavor with only a few indirect
observations from p, but, in the early 2000s, DNA microarray technologies
changed this. As Efron (2003) explains, this technology created a plethora of
real-life problems where the individual Yi carries minimal information about
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its corresponding Ui, but the collection (Y1, . . . , Yn) carries a lot of informa-
tion about p. One way to take advantage of this information is to model
U1, . . . , Un as exchangeable rather than iid, which amounts to assuming some
“similarity” across cases. This similarity suggests that it may be beneficial
to share information and, mathematically, the exchangeability assumption
results in inference about Ui that depend on all the data, not just on Yi. This
type of “borrowing strength” (e.g., Ghosh et al., 2006, p. 257) was a central
theme that emerged in much of JKG’s later work, including Bogdan et al.
(2011) & Bogdan et al. (2008), Dutta et al. (2012), and Datta and Ghosh
(2013). An attractive alternative to a full hierarchical model, one that re-
tains its “borrowing strength” feature, is an empirical Bayes solution, à la
Robbins (1956, 1964, 1983), where the data is used to estimate p.

3 Predictive Recursion

3.1. Algorithm The methods described above are all likelihood-based,
i.e., either the likelihood is optimized to produce an estimator or the likeli-
hood is used to update a prior via Bayes’s theorem, leading to a posterior
distribution. The predictive recursion (PR) algorithm, on the other hand, is
not likelihood-based, at least not in its formulation. Instead, PR processes
the data points one at a time, using the following fast recursive update.

Predictive Recursion Algorithm. Initialize the algorithm with a
guess p0 of the mixing density and a sequence {wi : i ≥ 1} ⊂ (0, 1) of weights.
Given the data sequence Y1, . . . , Yn from the mixture model Eq. 2.1, evaluate

pi(u) = (1− wi) pi−1(u) + wi
k(Yi | u)pi−1(u)

fi−1(Yi)
, i = 1, . . . , n, (3.1)

where fi−1(y) =
∫
k(y | u)pi−1(u) ν(du) is the mixture corresponding to

pi−1. Return pn and fn = fpn as the final estimates.

Motivation for the PR algorithm, as described in Newton et al. (1998),
came from the simple and well-known formula for the posterior mean of
p, under a Dirichlet process mixture model, based on a single observation.
That is, if the mixing distribution is assigned a Dirichlet process prior, with
precision parameter α > 0 and base measure with density p0, then the
posterior mean has density

α

α+ 1
p0(u) +

1

α+ 1

k(Y1 | u)p0(u)
f0(Y1)

,

which corresponds to the PR update with wi = (α+ i)−1. Therefore, PR is
exactly the Dirichlet process mixture model posterior mean when n = 1; I
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refer to this as the one-step correspondence. For n ≥ 1, Newton’s proposal
is simply to apply the one-step correspondence in each iteration. That is,
the PR algorithm treats the output from the previous iteration like a prior
in the next, and the update is just a weighted average of the “prior” and its
corresponding posterior based on a single data point. This is an intuitively
very reasonable idea, easy to implement, and fast to compute.

Next are several quick observations about the PR algorithm.

• PR can estimate a density with respect to any user-specified dominat-
ing measure. That is, if p0 is a density with respect to ν, then so is
pn for all n. Contrast this to the discrete nonparametric MLE and the
“rough” (e.g., Figure 1, Tokdar et al., 2009) Dirichlet process mixture
posterior mean. Having control of the dominating measure gives PR
some advantages in certain applications; see Section 5.

• The weight sequence (wi) affects PR’s practical performance. Theory
in Section 3.3 gives some guidance about the choice of weights, and
examples usually take wi = (c + i)−γ for some constants c > 0 and
γ ∈ (12 , 1].

• The PR algorithm takes the form of stochastic approximation (Robbins
and Monro, 1951), which is designed for root-finding when function
evaluations are subject to error. This connection between the two
recursive algorithms, fleshed out in Martin and Ghosh (2008), throws
light on how the PR algorithm works. Convergence properties for PR
can be derived from general results for stochastic approximation (e.g.,
Martin 2012), but this is so far limited to finite mixture cases.

• One potentially concerning feature of PR is that the final estimate de-
pends on the order in which the data sequence is processed. In other
words, at least in the iid case, pn is not a function of the sufficient statis-
tic and, therefore, is not a Bayes estimate. This order dependence is
relatively weak even for moderate n, and can be effectively eliminated
by averaging over permutations of the data sequence, resulting in a
Rao–Blackwellized version of the original PR estimator (Tokdar et al.,
2009). In my experience, averaging over only a relatively small number
of permutations, say, 25, is needed for the order-dependence to be neg-
ligible; more permutations will not adversely affect the estimate, but
it will not lead to any substantial improvements either. An approach
that leverages PR’s order-dependence for uncertainty quantification is
discussed in Dixit and Martin (2019).
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• The only non-trivial computation involved in the PR algorithm is the
evaluation of the normalizing constant, fi−1(Yi), for each i = 1, . . . , n
in Eq. 3.1. For one- and two-dimensional integrals, this can be done
fast and accurately with quadrature; the higher-dimensional case is
discussed in Section 7. Therefore, for such mixtures, PR’s computa-
tional complexity is O(n) compared to the fully Bayesian methods that
require processing the entire data sequence in every MCMC iteration.
PR’s low computational cost is what allows for averaging over multiple
data permutations in just a matter of seconds. And it is also possible
to further reduce PR’s computation time by processing the different
permutations in parallel.

3.2. Illustrations
3.2.1. Poisson Mixture. Example 1.2 in Böhning (2000) presents data

Y1, . . . , Yn on the number of illness spells for n = 602 pre-school children in
Thailand over a two-week period. The relatively large number of children—
120 in total—with no illness spells makes these data zero-inflated and, there-
fore, a Poisson model is not appropriate. This suggests a Poisson mixture
model and here I will fit such a model, nonparametrically, using PR.

In the mixture model formulation, k(y | u) denotes a Poisson mass func-
tion with rate u, and Ui represents, say, a latent “healthiness” index for the
ith child. Panel a in Fig. 1 shows the PR estimate of this density based on
a Unif(0, 25) initial guess, weights as described above with γ = 0.67, and 25
random permutations of the data sequence. This calculation took just over
1 second on my laptop computer running R without parallelization. The
relatively high concentration near 0 is consistent with the zero-inflation seen
in the data. Also shown in this panel is the nonparametric MLE, a discrete
distribution, as presented in Wang (2007, Table 1). Note that the bump in
the PR estimate around y = 3 is consistent with the large mass assigned
near u = 3 by the nonparametric MLE. But while the estimated mixing
distributions are dramatically different, the two corresponding mixture dis-
tributions in Panel (b) look very similar and both provide a good fit to the
data, even the zero-inflation. Interestingly, the likelihood ratio of PR versus
the nonparametric MLE is 0.98, very close to 1. Therefore, within the class
of mixing densities, there is little room to improve upon the PR estimator
in terms of its quality of fit to the data; see, also, Chae et al. (2018) and
Section 6.2 below.

3.2.2. Gaussian Mixture. Gaussian mixture models, where k(y | u) is a
normal density with mean u and variance either fixed or estimated from data,
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Figure 1: Plots of the estimated mixing and mixture distributions—based
on PR and nonparametric maximum likelihood—for the Poisson mixture
example in Section 3.2.1

are widely used models for density estimation, clustering, etc. Following
Roeder (1990) and many others, I will consider data on the velocities (in
thousands of km/sec) of n = 82 galaxies moving away from Earth.

Figure 2 shows the data histogram along with the PR estimates of the
mixing and mixture distributions, in Panels a and b, respectively. Here the
PR algorithm uses a kernel with standard deviation set at σ = 1; the initial
guess is Unif(5, 40) and the weights and permutation averaging is as in the
previous example. The mixing density identifies four well-separated modes,
but these are arguably not separated enough since the mixture appears to
be a bit too smooth. This is likely due to fixing the kernel scale parameter
at σ = 1. The PR formulation can be extended naturally to semiparametric
mixtures—see Section 4—and, here, I use this generalization to simultane-
ously estimate p and the scale parameter σ. The estimate in this case is
σ̂ = 0.82 and, as expected, the estimated mixing density has sharper peaks,
leading to a less smooth and arguably better estimate of the mixture density.

3.2.3. Binomial Mixture and Empirical Bayes. In basketball, shots made
from long distance count for 50% more points than those from shorter dis-
tance. These three-point shots can have a substantial effect on the outcome
of a game, so three-point shooting performance strongly influences teams’
offensive and defensive strategies. I downloaded data from www.nba.com
that lists the three-point shots made, Yi, and attempted, Ni, for all n = 427
NBA players in the last 10 games of the 2017–2018 season. To study three-
point shooting performance, I take Yi ∼ Bin(Ni, Ui), independent, where
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Figure 2: Plots of the estimated mixing and mixture distributions—based
on PR and its semiparametric extension, PRML, described in Section 4—for
the Gaussian mixture example in Section 3.2.2

Ni is treated like a fixed covariate and Ui represents the latent three-point
shooting ability of player i = 1, . . . , n during that crucial series of games at
season’s end. Here I want to estimate the latent ability density, p, as part
of an “empirical Bayesketball” analysis like in Brown (2008) and elsewhere
for hitting in baseball.

The solid black line in Fig. 3 shows the PR estimate of the prior density
p based on a Unif(0, 1) initial guess and weights and permutation averaging
as in the previous examples. This is unimodal, with mode 0.36, and concen-
trates about all its mass in the interval (0.2, 0.6). The other lines in the plot
show the corresponding empirical Bayes posterior densities for three selected
players, namely, LeBron James, Jarret Allen, and Nikola Vucevic, whose pro-
portion of three-point shots made for this series of games was 19/52, 2/3,
and 1/18, respectively. James’s proportion is very close to the estimated
prior mode and his number of attempts is high, so his estimated posterior
is a more-concentrated version of the prior. Allen’s proportion of makes is
high compared to the prior mode, but the number of attempts is low, hence
strong shrinkage towards the prior mode. Finally, Vucevic’s proportion is
very low but based on a moderate number of attempts, so only a moderate
amount of shrinkage towards the prior mode.

3.3. Theoretical Properties Since the PR output pn is neither a maxi-
mum likelihood nor a Bayesian estimator, its convergence properties do not
follow immediately from the standard asymptotic theory, so something dif-
ferent is needed. Ghosh and Tokdar (2006) gave the first rigorous results on
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Figure 3: Plot of the PR estimate of the prior and the corresponding pos-
terior for three selected NBA players in the three-point shooting example of
Section 3.2.3

PR convergence, using martingale techniques, which were later extended in
Tokdar et al. (2009) and again in Martin and Tokdar (2009).

As before, let Y1, . . . , Yn be iid samples from a density f�, but allow the
possibility that the posited mixture model is misspecified, that is, the com-
mon marginal density f� may not have a mixture representation as in Eq. 2.1.
In this misspecified case, since there may not be a “true” mixing density, it
is not entirely clear what it means for the PR estimator to converge. The
best one could hope for is that the PR estimate, fn, of the marginal density
would converge to the “best possible” mixture of the specified form Eq. 2.1.
More specifically, ifK denotes the Kullback–Leibler divergence, then, ideally,
K(f�, fn) would converge to inff K(f�, f), where the infimum is over the
set of mixtures in Eq. 2.1 for the given kernel, etc. Conditions under which
the infimum is attained for a mixture f † = fp† , with corresponding mixing
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density p†, are given in, e.g., Martin and Tokdar (2009, Lemma 3.1) and
Kleijn and van der Vaart (2006, Lemma 3.1); recall that I assume the mixture
model is identifiable, so this p† is unique. Of course, if the mixture model
is well-specified, then f † = f� and p† equals the true mixing density, p�.

Naturally, the PR convergence theorem requires some assumptions. There
are two sets of conditions, one on the posited mixture model and the other
on the PR algorithm’s inputs. I briefly summarize each in turn.

• For the mixture model, more general results are available, but here I
will assume that the mixing densities are all fully supported on a com-
pact set U. I will also assume that the kernel is such that u �→ k(y | u)
is bounded and continuous for almost all y. Finally, certain integrabil-
ity of density ratios is needed in the proof, so it will be assumed that

sup
u1,u2∈U

∫ {
k(y | u1)
k(y | u2)

}2

f�(y) dy < ∞. (3.2)

This is a strong condition, but, since U is assumed to be compact, it
holds if k(y | u) is an exponential family and f� has Gaussian-like tails.

• For the PR algorithm’s inputs, namely, the initial guess p0 and the
weight sequence (wi), the assumptions are quite mild. First, it is nec-
essary that the support of p0 contain that of p†. If the compact support
U is known, then this is trivially satisfied. Second, the weights must
satisfy

∞∑
i=1

wi = ∞ and
∞∑
i=1

w2
i < ∞. (3.3)

The suggested class of weights, wi = (c + i)−γ , for γ ∈ (12 , 1] satisfy
this.

The following theorem summarizes what is currently known about the
convergence properties of the PR estimators pn and fn. A version of the
consistency result below, in the well-specified case, is also presented in Sec-
tion 5.4 of Ghosal and van der Vaart (2017).

Theorem 1. Assume that Y1, Y2, . . . are iid samples from density f�

and that the aforementioned conditions are met. Set Kn = K(f�, fn) −
infpK(f�, fp).

1. Then Kn → 0 almost surely.

2. If
∑

n anw
2
n < ∞, where an =

∑n
i=1wi, then anKn → 0 almost surely.
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3. If the kernel is tight in the sense of Martin and Tokdar (2009, Condi-
tion A6) then pn converges weakly to p† almost surely.

An interesting by-product of the proof of Theorem 1 creates an asymp-
totic link between PR and the nonparametric MLE. That is, the PR estima-
tor, pn, is converging to a solution P †, which may or may not have a density,
such that ∫

k(y | u)
fP †(y)

f�(y) dy = 1 forP †-almost allu.

But according to Lindsay (1995, p. 115), the nonparametric maximum like-
lihood estimator P̂ is characterized as a solution to

1

n

n∑
i=1

k(Yi | u)
fP̂ (Yi)

= 1 forP̂ -almost allu.

When n is large, the above average is approximately equal to the expectation
with respect to f�, hence a link between the PR algorithm’s target and the
nonparametric MLE.

The first and third claims in Theorem 1 establish consistency of the PR
estimates. The compactness condition eluded to in the third claim holds for
all the standard kernels so it imposes no practical constraints.

The second claim in Theorem 1 gives a bound on the PR rate of conver-
gence. That condition is satisfied for wi = (c+i)−γ for γ ∈ (23 , 1], and gives a

corresponding Kullback–Leibler convergence rate for fn of about n−1/3. Un-
fortunately, this leaves something to be desired. For example, Ghosal and
van der Vaart (2001) showed that, with a Gaussian kernel and a Dirichlet
process prior on the mixing distribution, the Bayes posterior concentrates
around a true Gaussian mixture at nearly a n−1 rate in Kullback–Leibler
divergence. But the PR rate above makes no assumptions about the true
density f� so it is interesting to understand the nature of that rate. Martin
and Tokdar (2009) showed that PR’s n−1/3 rate is “minimax” in the sense
that it is the rate PR attains when f�(y) = k(y | u�) for some fixed u� value,
the “most extreme” kind of mixture where “p�” is a point mass at u�.

4 Semiparametric Mixture Extension

So far, I have assumed that the kernel k in the mixture model is fixed.
However, there are cases in which it would make sense to allow the kernel
to depend on some other parameters, say, θ, that do not get mixed over.
The standard example would be to allow a Gaussian kernel to depend on
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some scale parameter while being mixed over the mean; see below. That is,
here I am concerned with a semiparametric mixture model where the goal
is to simultaneously estimate both the mixing density p and the non-mixing
structural parameter θ. For this, it turns out that the asymptotic theory for
PR under model misspecification plays an important role.

Write the θ-dependent kernel as kθ(y | u), and let pi,θ denote the PR
estimate of the mixing density based on Y1, . . . , Yi, with kernel kθ fixed
throughout. Also write fi,θ(y) =

∫
kθ(y | u) pi,θ(u) ν(du) for the correspond-

ing mixture. Next, define a sort of “likelihood function” based on the PR
output, that is,

Ln(θ) =
n∏

i=1

fi−1,θ(Yi). (4.1)

Martin and Tokdar (2011) motivated this choice of likelihood by showing that
Ln(θ) had features resembling that of the marginal likelihood for θ under a
fully Bayesian Dirichlet process mixture model. I will refer to Eq. 4.1 as the
PR marginal likelihood, and I proceed to estimate the structural parameter
by maximizing this function.

For a quick example, consider a kernel kθ(y | u) = N(y | u, θ2). The
likelihood function in Eq. 4.1 can be readily evaluated and maximized nu-
merically to simultaneously estimate p and θ. This approach was carried
out in the galaxy data example of Section 3.2.2 and the additional flexibility
of being able to estimate the kernel scale parameter via PR marginal likeli-
hood optimization resulted in an estimated mixture density that fit the data
histogram better compared to that from the original PR.

Maximizing Ln(θ) is equivalent to minimizing n−1
∑n

i=1 log{f�(Yi)/fi−1,θ

(Yi)}, and it follows from Theorem 1 that this latter function converges
pointwise, as n → ∞, to infpK(f�, fp,θ), where the infimum is over all
mixing densities. Therefore, at least intuitively, one would expect that

θ̂ → argmin
θ

{
inf
p
K(f�, fp,θ)

}
, n → ∞. (4.2)

It turns out, however, that this consistency property is quite difficult to
demonstrate in general; see Section 7. But numerical results in Martin and
Tokdar (2011) and elsewhere suggest that Eq. 4.2 does hold and, moreover,
so does asymptotic normality.

5 Applications

There are a number of applications of the PR algorithm and its semipara-
metric extension in the literature. See Tao et al. (1999), Newton and Zhang
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(1999), the example in Newton (2002) based on the genetics application
in Newton et al. (2001), Todem and Williams (2009), and the very recent
work by Woody and Scott (2018) on valid Bayesian post-selection inference.
Here I only highlight two specific applications, one in large-scale significance
testing, an area in which JKG worked, and one in robust regression.

5.1. Large-Scale Significance Testing In the hierarchical model formu-
lation at the end of Section 2, consider a large collection U1, . . . , Un of latent
variables where case i is said to be “null” if Ui = 0 and “non-null” otherwise.
An example is DNA microarray experiments where the cases correspond to
genes and “null” means that the gene is not differentially expressed. Of
course, only noisy measurements Y1, . . . , Yn of U1, . . . , Un are available, so the
goal is to test the sequence of hypotheses, H0i : Ui = 0 versus H1i : Ui 
= 0,
i = 1, . . . , n. What makes this an interesting statistical problem is that n is
large and most of the cases are null, e.g., most genes are not associated with
a particular phenotype, so it is beneficial to share information across cases.
Brad Efron wrote extensively on empirical Bayes solutions this problem in
the early 2000s (e.g., Efron, 2010), and here I will summarize a PR-based
implementation of Efron’s approach presented in Martin and Tokdar (2012).
Recent extensions of this proposal to handle covariates and certain spatial
dependence are presented in Scott et al. (2015) and Tansey et al. (2018),
respectively.

Efron (2008) describes the two-groups model where Y1, . . . , Yn are as-
sumed to have a common density function of the form

f(y) = π f (0)(y) + (1− π) f (1)(y), (5.1)

where f (0) and f (1) correspond to the densities under null and non-null
settings, respectively, and π represents the proportion of null cases. He
argues that, basically without generality, one can take f (0)(y) = N(y | μ, σ2),
but perhaps with parameters (μ, σ2) that need to be estimated, i.e., an
empirical null (Efron, 2004). Assuming, for the moment, that all the pieces
in Eq. 5.1 are known, one can show that the Bayes test of H0i would reject
if fdr(Yi) ≤ c, for c = 0.1, say, where fdr—the local false discovery rate—is
given by

fdr(y) = πf (0)(y)/f(y). (5.2)

Efron’s insight was that, since n is large, nonparametric estimation of the
marginal density is straightforward and, likewise, since most of the cases are
null, (π, μ, σ2) could also be estimated. Plugging these estimates into the
expression Eq. 5.2 and carrying out the sequence of tests with the corre-
sponding estimate of fdr is Efron’s empirical Bayes solution. Details can be
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found in, Efron (2004), and alternative strategies are given in Jin and Cai
(2007), Muralidharan (2010), Jin et al. (2010), and Jeng et al. (2018).

An advantage of Efron’s approach is that it is apparently not necessary
to directly model the possibly complicated non-null density f (1). However,
it is possible that the independent estimates of f and f (0) are incompatible
in the sense that, e.g., π̂f̂ (0)(y) > f̂(y) for some y. To avoid such issues, a
model for all the ingredients in Eq. 5.1—one that is sufficiently flexible in
f (1)—is needed. Toward this, Martin and Tokdar (2012) embed Eq. 5.1 into
the general mixture formulation Eq. 2.1 by taking the dominating measure

ν(du) = δ0(du) + λ[−1,1](du),

a point-mass at 0 plus Lebesgue measure on [−1, 1], and kernel

kθ(y | u) = N(y | μ+ τσu, σ2), θ = (μ, τ, σ).

With these choices, the mixture in Eq. 2.1 takes the form

f(y) = πN(y | μ, σ2) + (1− π)

∫ 1

−1
N(y | μ+ τσu, σ2) p(u) du, (5.3)

which can immediately be identified as a model-based version of Eq. 5.1.
Intuitively, the non-null cases, which correspond to “signals,” should tend
to be larger magnitude, so it makes sense that f (1) have heavier tails than
f (0). The normal location mixture in Eq. 5.3 can achieve this, and the
parameter τ controls roughly how much heavier the normal the tails need
to be. Since the PR algorithm respects the specified dominating measure,
the combined discrete-continuous form of the mixing distribution can be
handled easily, and (a minor modification of) the semiparametric extension
of PR in Section 4 can be applied to fit the model in Eq. 5.3 and define
the corresponding empirical Bayes testing procedure based on the plug-in
estimate of fdr.

For illustration, I consider data from the study in van’t Wout et al. (2003)
that compares the genetic profiles of four healthy and four HIV-positive
patients. The goal is to determine which, if any, of the n = 7680 genes are
differentially expressed between the two groups. This example is described
in Efron (2010, Section 6.1D). Figure 4 shows the results of the PR model fit;
in particular, μ̂ = 0.07, σ̂ = 0.74, and π̂ = 0.88. The estimated f clearly fits
the data histogram, which is wide enough to leave room for the normal f (0)

and the heavier-tailed bimodal estimate of f (1). The inverted scale shows
the estimated fdr and the “f̂dr ≤ 0.1” cutoffs are also show. Finally, the plot
indicates that 121 genes are identified by the test as differentially expressed,
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Figure 4: Histogram of the z-scores for the HIV data in van’t Wout et al.
(2003), along with estimates of f , πf (0), and (1 − π)f (1) overlaid. The

inverted scale shows the estimated fdr and the f̂dr ≤ 0.1 cutoffs for the test

46 are up- and 75 are down-regulated. The conclusions here are similar to
those obtained by Efron, but this is not always the case; cf. Martin and
Tokdar (2012).

5.2. Robust Regression Consider a linear regression model where

yi = x�i β + εi, i = 1, . . . , n,

where yi is a real-valued response, xi is a d-vector of predictor variables,
β is a d-vector of regression coefficients, and εi are measurement errors,
assumed to be iid. Quantification of uncertainty about estimates or predic-
tions in this setting requires specification of a distribution for the errors. A
standard choice is to assume the errors are normal, leading to simple closed-
form expressions for the MLEs with straightforward sampling distribution
properties. However, if the normal error assumption is questionable, e.g., if
there are “outliers,” then the MLEs will suffer. Therefore, it is of interest

112



A survey of nonparametric mixing density...

to develop procedures that can handle different error distribution assump-
tions, especially those with heavier-than-normal tails. It is indeed possible
to introduce a heavy-tailed error distribution, such as Student-t with small
degrees of freedom, and work out the corresponding MLEs and their prop-
erties, but this is still an assumption that may not be appropriate for the
given problem. A more flexible, nonparametric choice of error distribution
would desirable. Motivated by the fact that scale mixtures of normals pro-
duce heavy-tailed distributions, Martin and Han (2016) introduce a mixture
model formulation and propose to estimate both the mixing density and β
using the semiparametric extension of PR described in Section 4. Here I
briefly summarize their approach.

With a slight abuse of my previous notation, let me write f for the
density function of the measurement errors, ε1, . . . , εn. Expressing f as the
mixture

f(ε) =

∫ ∞

0
N(ε | 0, u2) p(u) du,

for some unknown mixing density p, is one way to induce a flexible, heavy-
tailed distribution for the errors. For any fixed β, by writing εi = yi − x�i β,
the PR algorithm can be used to estimate the mixing and mixture densities,
p and f , respectively. Of course, those estimates would depend on β so,
like in Section 4, I could define a marginal likelihood in β to be maximized,
leading to a simultaneous estimate of β and p. Optimization of this marginal
likelihood is non-trivial, but Martin and Han (2016) propose a hybrid PR–
EM algorithm wherein they introduce latent variables Ui from the mixing
distribution to make the “complete-data” likelihood of a simple Gaussian
form. Details are in their paper and an R code implementation is available
at my website. Pastpipatkul et al. (2017) used a similar PR–EM strategy in
a time series application.

As an example, I consider data on mathematics proficiency presented in
Table 11.4 of Kutner et al. (2005). The response variable, y, is the students’
average mathematics proficiency exam score for 37 U.S. states, the District
of Columbia, Guam, and the Virgin Islands; hence, n = 40. The predictor
variable, x, is the percentage of students in each state with at least three
types of reading materials at home. This is an interesting example because
D.C. and Virgin Islands are outliers in y and Guam is an outlier in both x
and y. The general trend suggests a quadratic model,

yi = β0 + β1xi + β2x
2
i + εi, i = 1, . . . , n,

and the plot in Fig. 5 shows the data and the results of three fits of the
above model, namely, ordinary least squares, Huber’s robust least squares,
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Figure 5: Scatter plot of the mathematics proficiency score data and the
three different quadratic model fits

and PR–EM. Here the former two methods are both more influenced by
the outliers than the PR–EM method, suggesting that the latter puts lesser
weight on those extremes in the model fit.

6 Recent Developments

6.1. PR for the Mixture The PR algorithm is designed for estimating
the mixing distribution but, of course, it is at least conceptually straight-
forward to produce a corresponding estimate for the mixture distribution.
However, the PR algorithm requires numerical integration at each iteration,
which itself requires that the mixing density support be known, compact,
and no more than two dimensions. If the sole purpose of the mixture model
was to facilitate density estimation, as is often the case, then the above re-
quirements are a hindrance. It is, therefore, natural to ask if it is possible to
formulate a numerical integration-free version of the PR algorithm directly
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on the mixture density. Hahn et al. (2018) happened upon an affirmative
answer to this question while investigating a seemingly unrelated updating
property of Bayesian predictive distributions.

Given a prior density p0(u) and a kernel k(y | u), let f0 be the prior
predictive density, with corresponding distribution function F0. For a se-
quence of data Y1, Y2, . . ., let fi denote the Bayesian posterior predictive
distribution for Yi+1, given Y1, . . . , Yi. Then Hahn et al. (2018) showed that
there exists a sequence of bivariate copula densities ci such that fi(y) =
ci(Fi−1(y), Fi−1(Yi))fi−1(y). That is, if this sequence of copula densities
were known, then one could recursively update the Bayesian predictive dis-
tribution without any posterior sampling, MCMC, etc. For simple Bayesian
models, the closed-form expressions for the copula densities can be derived,
but not in general.

Indeed, for a Dirichlet process mixture model, only the first in the se-
quence of copula densities can be derived in closed-form. This suggests
following Newton’s strategy, capitalizing on the one-step exactness of the
recursive update, to derive a new algorithm. The specific proposal in Hahn
et al. (2018) is the update

fn(y) = (1− wn)fn−1(y) + wngρ(Fn−1(y), Fn−1(Yn)) fn−1(y),

where gρ is the Gaussian copula density with correlation parameter ρ. Those
authors show that this algorithm is fast to compute and provides accurate es-
timate in finite-sample simulation experiments. They also prove consistency
under tail conditions on the true density. It would be interesting to inves-
tigate convergence rates and to extend this method to handle multivariate
and dependent data sequences.

6.2. A Variation on PR A potentially troubling feature of the PR al-
gorithm is its dependence on the order of the data sequence. Averaging over
permutations reduces this dependence, but is not a fully satisfactory fix.
Therefore, other similar algorithms might be of interest.

One that has made an appearance in numerous places across the liter-
ature, but has yet to be systematically studied, is as follows. Start by as-
suming that the mixture density f in Eq. 2.1 is known. Then the algorithm

pt(u) =

∫
k(y | u)f(y)∫

k(y | v) pt−1(v) dv
dy, t ≥ 1, (6.1)

will converge to a solution of the inverse problem defined in Eq. 2.1; see Chae
et al. (2019). In a statistical context, where f is unknown but data Y1, . . . , Yn
is available, there are a number of ways one can modify the above algorithm.
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One is to replace f in Eq. 6.1 with the empirical distribution of Y1, . . . , Yn.
This produces a smooth mixing density estimate at every finite t, but Chae
et al. (2018) show that it converges, as t → ∞, to the discrete nonparametric
MLE. It would be interesting to determine a stopping criterion such that the
corresponding estimator could be called a smooth nonparametric near-MLE.
Alternatively, one can pick any suitable density estimate f̂ and plug in to
Eq. 6.1. Numerical results indicate that this procedure will produce high-
quality estimates of the mixing density, but its theoretical properties are still
under investigation.

7 Open Problems

Problem 1. This one goes all the way back to Newton’s original devel-
opment. What is PR doing? Is there any precise sense in which PR, or
its permutation-averaged version, gives an approximation to the Dirichlet
process mixture Bayes estimator? Newton et al. (1998) showed that the
connection is exact for n = 1 and they also investigated the case of n = 2.
In particular, for two observations, Y1 and Y2, they show that both PR and
the Dirichlet process mixture posterior mean take the form

a0p0(u) + a1p0(u | Y1) + a2p0(u | Y2) + a12p0(u | Y1, Y2),

where p0(u | Yi) ∝ k(Yi | u)p0(u) and

p0(u | Y1, Y2) ∝ k(Y1 | u)k(Y2 | u)p0(u),

the only difference being in the coefficients a1, a2, a12. It can also be shown
that the permutation-averaged PR estimator is of the same form, again with
different coefficients, but I will not list these here. For the general n case, if
one imagines averaging the PR expression in Proposition 12 of Ghosh and
Tokdar (2006) over different permutations of the data sequence, one can
vaguely see something reminiscent of the Dirichlet process mixture posterior
mean expression given in Lo (1984). So it seems like something interesting
could be there, but the details have eluded me so far.

Problem 2. Existing implementations of PR have used numerical in-
tegration to evaluate the normalizing constant at each iteration. So even
though the theory puts no restriction on the dimension of the latent variable
space, the reliance on quadrature methods makes it difficult to handle mix-
ture over more than one or two dimensions. Is it possible to use Monte Carlo
methods to compute this integral? A strategy that works with a fixed set of
particles with weights that are updated at each iteration seems particularly
promising, but these weights would need to be monitored carefully.
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Problem 3. A bound on the convergence rate of the PR estimator was
stated in Theorem 1, but I noted that this bound is conservative in the sense
that it seems to be attained when the mixing distribution is a point mass,
not a smooth density. So a relevant question is how one could incorporate
smoothness assumptions about the true density to improve upon this rate?

Problem 4. The PR algorithm is naturally sequential and would be ideal
in cases where the data ordering matters, e.g., dependent data problems.
However, currently nothing is known about PR in such cases; in fact, even
how to define the PR algorithm in such cases is not clear. A suggestion is
made in Ghosal and Roy (2009) but, to my knowledge, there are no results
in this direction currently available.

Problem 5. For the PR-based estimate of the structural parameter θ
described in Section 4, currently very little is known about its theoretical
properties. I indicated there that simulation experiments suggest an asymp-
totic normality result holds, but this has yet to be rigorously demonstrated.
In classical iid problems, the log-likelihood is additive and the central limit
theorem can be used after linearization. For the PR likelihood, however,
the ith term depends—in a complicated way—on all of Y1, . . . , Yi. Martin-
gale laws of large numbers and central limit theorems seem promising but,
unfortunately, no progress has been made along these lines yet.

Problem 6. I mentioned a few high-dimensional empirical Bayes ap-
plications here in this review and, for these problems, I always felt that
there should, at least in some cases, be a theoretical benefit to plugging in
a smooth estimate of the prior density compared to, say, a discrete estimate
like in Jiang and Zhang (2009). Unfortunately, I have not been able to
identify a theoretical benefit, but I still believe that one exists.

8 Conclusion

In this paper, I have reviewed the work on theory and applications
of the PR algorithm for estimating mixing distributions, along the way
highlighting some new developments and some open problems. This is
only one of the many areas that JKG had an impact so, naturally, my re-
view here made connections to a number of adjacent topics on which JKG
worked, including Bayesian nonparametrics, density estimation, and high-
dimensional inference. That these are still “hot topics” in statistics research
is surely no coincidence, it is a testament to JKG’s incredible foresight and
influence. I was so tremendously lucky to have had the opportunity to
know and to work with JKG, and it is an honor to dedicate this work to
him.
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Sankhyā Ser. A 64, 306–322.

newton, m.a. and zhang, y. (1999). A recursive algorithm for nonparametric analysis
with missing data. Biometrika 86, 15–26.

newton, m.a., quintana, f.a. and zhang, y. (1998). Nonparametric Bayes methods using
predictive updating. Springer, New York, dey, d., müller, p. and sinha, d. (eds.),
p. 45–61.

newton, m., kendziorski, c., richmond, c., blattner, f. and tsui, k. (2001). On
differential variability of expression ratios: Improving statistical inference about gene
expression changes from microarray data. J. Comput. Biology 8, 37–52.

pastpipatkul, p., yamaka, w. and sriboonchitta, s. (2017). Predictive recursion maxi-
mum likelihood of threshold autoregressive model. Springer, kreinovich, v., sriboon-
chitta, s. and huynh, v.-n. (eds.), p. 349–362.

richardson, s. and green, p.j. (1997). On Bayesian analysis of mixtures with an unknown
number of components. J. Roy. Statist. Soc. Ser. B 59, 731–792.

robbins, h. (1956). An empirical Bayes approach to statistics, I. University of California
Press, Berkeley, p. 157–163.

robbins, h. (1964). The empirical Bayes approach to statistical decision problems. Ann.
Math. Statist. 35, 1–20.

robbins, h. (1983). Some thoughts on empirical Bayes estimation. Ann. Statist. 11, 713–
723.

robbins, h. and monro, s. (1951). A stochastic approximation method. Ann. Math. Statis-
tics 22, 400–407.

roeder, k. (1990). Density estimation with confidence sets exemplified by superclusters
and voids in the galaxies. J. Amer. Statist. Assoc. 411, 617–624.

120



A survey of nonparametric mixing density...

san martin, e. and quintana, f. (2002). Consistency and identifiability revisited. Braz.
J. Probab. Stat. 16, 99–106.

scott, j.g., kelly, r.c., smith, m.a., zhou, p. and kass, r.e. (2015). False discovery rate
regression: An application to neural synchrony detection in primary visual cortex. J.
Amer. Statist. Assoc. 110, 459–471.

stefanski, l. and carroll, r.j. (1990). Deconvoluting kernel density estimators. Statis-
tics 21, 169–184.

tansey, w., oluwasanmi, k., poldrack, r.a. and scott, j.g. (2018). False discovery
rate smoothing. J. Amer. Statist. Assoc. 113, 1156–1171.

tao, h., palta, m., yandell, b.s. and newton, m.a. (1999). An estimation method for
the semiparametric mixed effects model. Biometrics 55, 102–110.

teicher, h. (1961). Identifiability of mixtures. Ann. Math. Statist. 32, 244–248.

teicher, h. (1963). Identifiability of finite mixtures. Ann. Math. Statist. 34, 1265–1269.

todem, d. and williams, k.p. (2009). A hierarchical model for binary data with depen-
dence between the design and outcome success probabilities. Stat. Med. 28, 2967–
2988.

tokdar, s.t., martin, r. and ghosh, j.k. (2009). Consistency of a recursive estimate of
mixing distributions. Ann. Statist. 37, 2502–2522.

van dyk, d.a. and meng, x.-l. (2001). The art of data augmentation. J. Comput. Graph.
Statist. 10, 1, 1–111. With discussions, and a rejoinder by the authors.

van’t wout, a., lehrma, g., mikheeva, s., o’keefe, g., katze, m., bumgarner, r.,
geiss, g. and mullins, j. (2003). Cellular gene expression upon human immunode-
ficiency virus type 1 injection of cd$+T-Cell lines. J. Virol. 77, 1392–1402.

wang, y. (2007). On fast computation of the non-parametric maximum likelihood estimate
of a mixing distribution. J. R. Stat. Soc. Ser. B 69, 185–198.

woody, s. and scott, j.g. (2018). Optimal post-selection inference for sparse signals:
a nonparametric empirical-Bayes approach. Unpublished manuscript, arXiv:1810.
11042.

zhang, c.-h. (1990). Fourier methods for estimating mixing densities and distributions.
Ann. Statist. 18, 806–831.

zhang, c.-h. (1995). On estimating mixing densities in discrete exponential family models.
Ann. Statist. 23, 929–945.

Publisher’s Note. Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Ryan Martin

Department of Statistics,

North Carolina State University,

Raleigh, NC, USA

E-mail: rgmarti3@ncsu.edu

121

http://arXiv.org/abs/1810.11042
http://arXiv.org/abs/1810.11042

	A Survey of Nonparametric Mixing Density Estimation via the Predictive Recursion Algorithm
	Introduction
	Background on Mixture Models
	Predictive Recursion
	Algorithm
	Illustrations
	Poisson Mixture.
	Gaussian Mixture.
	Binomial Mixture and Empirical Bayes.

	Theoretical Properties

	Semiparametric Mixture Extension
	Applications
	Large-Scale Significance Testing
	Robust Regression

	Recent Developments
	PR for the Mixture
	A Variation on PR

	Open Problems
	Conclusion


