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Abstract

We consider the problem of unbiased estimation of a finite population mean
(or proportion) related to a sensitive character under a randomized response
model and present results on the comparisons of some with and without re-
placement sampling strategies based on equal and unequal probability sam-
pling designs paralleling those for a direct survey.
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1 Introduction

Consider a finite population of labeled units and suppose that the prob-
lem is to estimate certain population parameters on surveying a random
sample of units. In an open set-up it is assumed that an exact response can
be obtained from each sampled unit through a direct survey. However, if
the character of interest is sensitive or stigmatizing such as drinking alcohol
or gambling habit, drug addiction, tax evasion, history of induced abortions
etc., a direct survey is likely to yield unreliable responses and an alternative
technique, introduced by Warner (1965), is to obtain responses through a
randomized response (RR) survey wherein every sampled unit is asked to
give a response through an RR device as per instructions from the investi-
gator. We refer to Chaudhuri and Mukerjee (1988), Chaudhuri (2011) and
Chaudhuri and Christofides (2013) for a comprehensive review of such RR
procedures.

Several researchers compared different linear unbiased sampling strate-
gies for estimating a finite population mean (or proportion) based on with
replacement (WR) sampling designs with equal and unequal selection proba-
bilities in an open set-up with some comparable sampling strategies based on
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without replacement (WOR) sampling designs. It was found that most often
the WOR sampling strategies are better than the WR sampling strategies in
the sense of having smaller variances. In this paper it is shown that all these
results relating to comparisons of with and without replacement sampling
strategies in an open set-up also remain true under an RR model covering
various RR plans when the WR strategies are based on a single randomized
response obtained from every sampled unit even if selected more than once
in the sample. However, for with replacement sampling, a population unit
may be selected more than once in the sample and independent randomized
responses may be obtained from it as many times as it is selected. In fact,
as shown in Arnab (1999) and Sengupta (2015), any linear unbiased estima-
tor for estimating the population mean (or proportion) for an WR sampling
design based on a single randomized response can be improved upon by an
unbiased estimator based on independent multiple responses. It is demon-
strated that the results on the comparisons of with and without replacement
sampling strategies in the open set-up are not, however, generally true un-
der the RR model when the WR strategies are based on such independent
multiple responses although some of the results still remain true under the
general RR model while some other hold good for a special case of the model.

2 Notations and Preliminaries

Let U = {1, 2, . . . , i, . . . , N} be a finite population of N labeled units
and Y be a real variable with unknown value yi for the population unit
i, 1 ≤ i ≤ N. For a dichotomous population, Y is considered to be an
indicator variable where yi is 1 or 0 according as the unit i does or does not
possess a certain attribute. The problem of interest is to estimate unbiasedly

the unknown population mean (or proportion) θ = 1
N

N∑
i=1

yi on surveying a

sample (a sequence of units of U with or without repetitions) s selected
from a set of samples S with a given probability p(s)(> 0) i.e. according
to a given sampling design p. It is assumed that p(s) is independent of
y = (y1, y2, . . . , yN ). Any p is said to be an WOR sampling design if fsi = 1
for each i ∈ s and for each s and an WR sampling design otherwise, where
fsi is the number of times the population unit i is selected in s.

For a given p, an estimator e(s, y) of θ is called a linear unbiased estimator
(lue) if it is of the form

e(s, y) =
∑
i∈s

bsiyi,
∑
s⊃i

bsip(s) = 1/N∀i (2.1)
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for known coefficients bsi’s, where {i : i ∈ s} is the set of distinct population
units in s. The variance of an lue is given by

Vp(e(s, y)) =

N∑
i=1

y2i
∑
s⊃i

b2sip(s) +
∑
i�=

N∑
j=1

yiyj
∑
s⊃i,j

bsibsjp(s)− θ2 (2.2)

where the suffix p on E(or V ) is used to denote the expectation (or vari-
ance) with respect to p. A sampling design p together with an lue e(s, y) is
called a linear unbiased sampling strategy for estimating θ and is denoted
by (p, e(s, y)).

We consider the character Y to be sensitive and suppose that some RR
device R is employed to produce a randomized response zi on the population
unit i when included in s. We assume that under R, zi’s are independently
distributed with

ER(zi) = ayi + b and VR(zi) = φ(yi), say, 1 ≤ i ≤ N (2.3)

for some known constants a( �= 0) and b and for some known function φ.
The suffixes R and both p and R on E(or V ) will be used to denote the
expectations (or variances) with respect to R and both p and R. The model
(2.3) can be equivalently written as

ER(ri) = yi and VR(ri) =
φ(yi)

a2
= ψ(yi), say, 1 ≤ i ≤ N (2.4)

in terms of transformed randomized response ri = (zi − b)/a. The model
(2.4) holds for the RR device due to Warner (1965) for estimating a pop-
ulation proportion which consists of asking a population unit i to report
yi or 1 − yi with probability q or 1 − q(0 < q < 1, q �= 1

2) known to
the investigator. The RR device due to Eriksson (1973) for estimating
population proportions is also a special case of (2.4) in which a popula-
tion unit i is asked to report yi, 1 or 0 with given probabilities q0, q1 or
1−q0−q1(q0, q1 > 0, q0+q1 < 1). As illustrated in Chaudhuri and Christofides
(2013, Chapter 4), the model (2.4) is also true for several other RR plans for
a qualitative character suggested in the literature e.g. for those suggested
in Boruch (1972), Kuk (1990), Mangat and Singh (1990), Mangat (1994)
and Christofides (2003). The model (2.4) holds for several RR plans for a
quantitative character as well (see Chaudhuri and Christofides 2013, Chap-
ter 5). As for example, this is true for a scrambled RR plan discussed in
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Pollock and Bek (1976) and Eichhorn and Hayre (1983) wherein a popula-
tion unit i is asked to report Ayi +B, where A and B are two independent
random variables with known probability distributions with E(A) �= 0. The
special case of the model (2.4) for which the function ψ(yi) is a constant
independent of yi, say ψ0, will be denoted by R0. This special model holds
e.g. for the RR devices due to Warner (1965), Mangat and Singh (1990) and
Christofides (2003) and is also true for the scrambled RR plan when the prob-
ability distribution of A is degenerate (see Chaudhuri and Christofides 2013,
Chapters 4, 5).

If a single response is obtained from each distinct population unit in s,
one obtains the data {ri : i ∈ s} and for a given p under an RR plan R, an
lue e(s, r) of θ is defined as

e(s, r) =
∑
i∈s

bsiri,
∑
s⊃i

bsip(s) = 1/N∀i (2.5)

for known coefficients bsi’s, where r = (r1, r2, . . . , rN ). It can be readily
verified from (2.4) that for an lue e(s, r), the estimator e(s,y) obtained by
replacing ri by yi is an lue in the open set-up and vice versa. We shall
call e(s, r) to be the derived lue from e(s,y) and the linear unbiased strat-
egy (p, e(s, r)) to be the derived strategy from (p, e(s,y)) in the open set-
up. The variance of a derived linear unbiased strategy (p, e(s, r)) is given
by

VpR(e(s, r))=VpER(e(s, r))+EpVR(e(s, r))=Vp(e(s,y))+

N∑
i=1

ψ(yi)
∑
s⊃i

b2sip(s)

= Vp(e(s,y)) +
N∑
i=1

ψ(yi)[Vpi(e(s,y)) +N−2] (2.6)

where Vpi(e(s,y)) is Vp(e(s,y)) at an y with yi = 1 and yj = 0∀j( �= i).
If, for an WR sampling design, independent randomized responses are

obtained from each population unit as many times as it is selected in the
sample, one obtains the data {rij , j = 1, . . . , fsi, i ∈ s}, where rij is the
transformed response from unit i in its jth selection. As shown in Arnab
(1999) and Sengupta (2015), a derived lue e(s, r) for an WR sampling design
p based on a single response can then be improved upon by the unbiased
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estimator e∗(s, r), where e∗(s, r) =
∑
i∈s

bsi
fsi

fsi∑
j=1

rij . Also since ER(e
∗(s, r)) =

ER(e(s, r)), we have

VpR(e
∗(s, r))=Vp(e(s,y))+EpVR(e

∗(s, r))=Vp(e(s,y))+
N∑
i=1

ψ(yi)
∑
s⊃i

b2si
fsi

p(s).

(2.7)
The unbiased estimator e∗(s, r) obtained from an lue e(s,y) based on an

WR sampling design p in the open set-up will be called a derived estimator
and the strategy (p, e∗(s, r)) a derived strategy based on multiple responses.

The theorem stated below follows readily from (2.6).

Theorem 2.1. Let for a given R satisfying (2.4), (p, e(s, r)) and (p′, e′(s, r))
be two derived linear unbiased strategies based on single response. Then
Vp(e(s,y)) ≤ Vp′(e

′(s,y))∀y implies VpR(e(s, r)) ≤ Vp′R(e
′(s, r))∀y.

Consequently, for any given R satisfying (2.4), all well-known results
on the comparisons of with and without replacement sampling strategies in
the open set-up get extended through the above theorem for the derived
strategies based on single response. Thus, for example, the results relating
to comparisons of strategies based on simple random sampling with and
without replacement and the comparison of Hansen and Hurwitz (1943)
strategy with Des Raj (1956) strategy, Murthy’s (1957) strategy, Rao et
al. (1962) strategy and Horvitz and Thompson (1952) strategies based on
inclusion probability proportional to size (IPPS) sampling designs in the
open set-up hold as well for the derived strategies when the WR strategies
are based on a single response from every sampled unit.

Theorem 2.1 is not, however, true for the derived strategies based on mul-
tiple responses. This may be demonstrated through the following example
in Sengupta (2015).

Example 2.1. Consider Warner’s (1965) RR plan with q = 0.4 and let p
be the SRSWR design involving n draws. Let e∗1(s, r) and e∗2(s, r) be the
derived estimators based on multiple responses from the sample means in the
open set-up based, respectively, on all n units and on v distinct population
units in the sample. It can be shown that for N = 4, n = 3, VpR(e

∗
1(s, r)) <

VpR(e
∗
2(s, r))∀y although Vp(e2(s,y)) ≤ Vp(e1(s,y))∀y (see Basu 1958; Raj

and Khamis 1958).

As such the results on the comparisons of with and without replacement
sampling strategies in the open set-up do not generally get extended for the
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derived strategies based on multiple responses (see Example 3.1). However,
in what follows we show that some of the results in the open set-up are still
true under the general RR model (2.4) while some other hold good for the
RR model R0.

3 Comparisons of RR Strategies

We consider the following unbiased RR strategies derived from some
well-known sampling strategies in an open set-up with equal and unequal
selection probabilities based on known normed size measure wi for unit i, 1 ≤

i ≤ N,wi > 0∀i,
N∑
i=1

wi = 1.

(p1n, e1n(s, r)) : p1n is the simple random sampling (SRS) WOR sampling

design of size n and e1n(s, r) = 1
n

∑
i∈s

ri is the derived estimator from the

sample mean in the open set-up.
(p2, e

∗
21(s, r)) and (p2, e

∗
22(s, r)) : p2 is the SRSWR sampling design involving

n draws and e∗21(s, r) = 1
n

∑
i∈s

fsi∑
j=1

rij and e∗22(s, r) = 1
v(s)

∑
i∈s

1
fsi

fsi∑
j=1

rij are,

respectively, the derived estimators based on multiple responses obtained
from the sample means in the open set-up based on all n units and v(s)
distinct population units in the sample.
(p3, e

∗
31(s, r)) and (p3, e

∗
32(s, r)) : p3 is the inverse SRSWR sampling de-

sign (see Raj and Khamis 1958) in which units are selected independently
WR with equal selection probabilities until a fixed number of v distinct

population units get selected and e∗31(s, r) = 1
n(s)

∑
i∈s

fsi∑
j=1

rij and e∗32(s, r) =

1
v

∑
i∈s

1
fsi

fsi∑
j=1

rij are, respectively, the derived estimators based on multiple re-

sponses obtained from the sample means in the open set-up based on all n(s)
units and v distinct population units in the sample.
(p4, e

∗
4(s, r)) : p4 is the probability proportional to size (PPS) WR sampling

design involving n draws and e∗4(s, r) =
1

nN

∑
i∈s

1
wi

fsi∑
j=1

rij is the derived esti-

mators based on multiple responses obtained from the Hansen and Hurwitz
(1943) estimator in the open set-up.



72 S. Sengupta

(p5, e5(s, r)) : p5 is an IPPS sampling design in which n units are selected
WOR such that the inclusion probability of the population unit i in the

sample is nwi and e5(s, r) = 1
nN

∑
i∈s

ri
wi

is the derived estimator from the

Horvitz and Thompson (1952) estimator in the open set-up.
(p6, e6(s, r)) : p6 is the (Rao et al., 1962) sampling design in which U is
divided at random into n groups Gt, t = 1, . . . , n each of size N/n (assumed
to be an integer) and one unit it is selected from Gt with probability wit/Wt

independently for each t, where Wt =
∑
i∈Gt

wi and e6(s, r) =
1
N

n∑
t=1

rit
Wt
wit

is the

derived estimator from the Rao et al. (1962) estimator in the open set-up.
(p7, e7(s, r)) : p7 is the PPSWOR sampling design of size n and e7(s, r) is
the derived estimator from Murthy’s (1957) estimator defined as e7(s, r) =∑
i∈s

rip7(s|i)

Np7(s)
where p7(s) is the probability of selecting an unordered sample

(sub-set of U) s and p7(s | i) is the conditional probability of selecting s
given that the first unit selected is the population unit i.

In the following theorem we present the results on some comparisons of
these RR strategies based on different with and without replacement sam-
pling designs.

Theorem 3.1. (a) For a given R satisfying (2.4),

(i) Vp
1nR (e1n(s, r)) ≤ VpR2

(e∗2k(s, r))∀y, k = 1, 2

(ii) Vp
1n∗R(e1n∗(s, r))≤ VpR3

(e∗3k(s, r))∀y, k =1, 2 where n∗=Ep3(n(s))

(assumed to be an integer)

(iii) VpR5
(e5(s, r)) ≤ VpR4

(e∗4(s, r))∀y if Vp5(e5(s,y)) ≤ Vp4(e4(s,y))∀y
for the IPPS sampling design p5 e.g. for those due to Sampford
(1967) and Brewer (1975) (see Gabler 1981, Sengupta
1986).

(b) For a given R following the RR model R0,

(i) VpR6
(e6(s, r)) ≤ VpR4

(e∗4(s, r))∀y

(ii) VpR7
(e7(s, r)) ≤ VpR4

(e∗4(s, r))∀y.
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Proof.

(a) It can be readily verified that for an R satisfying (2.4),

Ep1nVR(e1n(s, r)) = Ep2VR(e
∗
21(s, r)) =

1

nN

N∑
i=1

ψ(yi)

Ep2VR(e
∗
22(s, r)) = Ep2

(
1

v2(s)fsi

) N∑
i=1

ψ(yi)

Ep3VR(e
∗
31(s, r)) =

1

N
Ep3

(
1

n(s)

) N∑
i=1

ψ(yi)

Ep3VR(e
∗
32(s, r)) =

1

v2
Ep3

(
1

fsi

) N∑
i=1

ψ(yi)

Ep4VR(e
∗
4(s, r)) = Ep5VR(e5(s, r)) =

1

nN2

N∑
i=1

ψ(yi)

wi
.

Since Ep2

(
1

v2(s)fsi

)
≥

E2
p2

(
1

v(s)

)
Ep2(fsi)

=
NE2

p2

(
1

v(s)

)
n

≥ 1

nN
,

Ep3

(
1

n(s)

)
≥ 1

n∗ and
1

v2
Ep3

(
1

fsi

)
≥ 1

v2Ep3(fsi)
=

N

v2n∗ ≥ 1

n∗N
,

it follows that

Ep1nVR(e1n(s, r)) ≤ Ep2VR(e
∗
22(s, r))

Ep1n∗VR(e1n∗(s, r)) ≤ Ep3VR(e
∗
3k(s, r)), k = 1, 2.

Also it is well known that (see Basu 1958; Raj and Khamis 1958;
Chikkagoudar 1966)

Vp1n(e1n(s,y)) ≤ Vp2(e22(s,y)) ≤ Vp2(e21(s,y))∀y

Vp1n∗ (e1n∗(s,y)) ≤ Vp1v(e1v(s,y)) = Vp3(e32(s,y)) ≤ Vp3(e31(s,y))∀y.

Hence, the proof follows from (2.6) and (2.7).



74 S. Sengupta

(b) The variance of the Rao et al. (1962) strategy in the open set-up is
given by

Vp6(e6(s,y)) =
N − n

N − 1
Vp4(e4(s,y)) =

N − n

nN2(N − 1)

[
N∑
i=1

y2i
wi

−N2θ2

]

whence it can be seen using (2.6) that for an R following the RR model
R0,

VpR6
(e6(s, r)) =

N − n

N − 1
Vp4(e4(s,y))

+
ψ0

nN2(N − 1)

N∑
i=1

[
N − n

wi
+N(n− 1)

]

≤ Vp4(e4(s,y)) +
ψ0

nN2

N∑
i=1

1

wi
= Vp4(e4(s,y))

+Ep4VR(e
∗
4(s, r)) = VpR4

(e∗4(s, r))∀y

since

N∑
i=1

1
wi

≥ N2.

It similarly follows that for an R following the RR model R0,

VpR7
(e7(s, r)) = Vp7(e7(s,y)) +

ψ0

N2

N∑
i=1

∑
s⊃i

p27(s | i)
p7(s)

≤ Vp4(e4(s,y)) +
ψ0

nN2

N∑
i=1

1

wi
= Vp4(e4(s,y))

+Ep4VR(e
∗
4(s, r)) = VpR4

(e∗4(s, r))∀y

since it is well known that Vp7(e7(s,y)) ≤ Vp4(e4(s,y))∀y and as
proved in the Appendix,

N∑
i=1

[
1

nwi
−

∑
s⊃i

p27(s | i)
p7(s)

]
≥ 0 (3.1)
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We remark that (b) of Theorem 3.1 is not necessarily true under the general
RR model R if ψ(yi) is not independent of yi. This may be demonstrated
through the following example.

Example 3.1. Consider Eriksson’s (1973) RR plan for estimation of popu-
lation proportion for which ψ(yi) = c1yi+c2 with c1 = (1−q0−2q1)/q0, c2 =
q1(1− q1)/q

2
0. As in the proof of Theorem 3.1, it can be verified that

VpR4
(e∗4(s, r))− VpR6

(e6(s, r)) =
n− 1

N − 1
Vp4(e4(s,y))

+
n− 1

nN2(N − 1)

N∑
i=1

ψ(yi)

[
1

wi
−N

]

=
n− 1

nN2(N − 1)

{
N∑
i=1

y2i
wi

−N2θ2 +
N∑
i=1

ψ(yi)

[
1

wi
−N

]}
. (3.2)

For N = 4, n = 2, w1 = 0.4, w2 = w3 = w4 = 0.2, y1 = 1, y2 = y3 =
y4 = 0, the RHS of (3.2) is 1+c2−c1

64 which is negative if c1 − c2 > 1 e.g. for
q0 = 0.2, q1 = 0.05.

Similar example can be provided to demonstrate that (ii) of (b) is not
necessarily true under the general RR model (2.4).

Acknowledgments. We acknowledge with thanks some constructive sug-
gestions from the Associate Editor and the referee which helped a lot to
improve an earlier version of the paper.

Appendix

The proof of (3.1) is based on the following lemma.

Lemma A.1. If for i �= j ∈ s, wi ≥ wj ihen
(i) p7(s | i) ≤ p7(s | j) (ii)wip7(s | i) ≥ wjp7(s | j).
Proof. For i ∈ s, one can write (see Andreatta and Kaufman 1986)

p7(s | i) = (1−
∑
i∈s

wi)

∞∫
0

e−λ eλwi

eλwi − 1
Π
j∈s

{eλwj − 1}dλ

= (1−
∑
i∈s

wi)

1∫
0

1

1− twi
Π
j∈s

{t−wj − 1}dt.

It is easy to verify that for t ∈ (0, 1),
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1

1− tx
and

x

1− tx

are, respectively, decreasing and increasing in x ∈ (0, 1) and this proves the
lemma.

Now as p7(s) =
∑

i∈s

wip7(s | i),
∑

s⊃i

p7(s | i) = 1

∑

i=1

N
[

1

nwi

−
∑

s⊃i

p27(s | i)
p7(s)

] =
1

n

N∑

i=1

1

wi

∑

s⊃i

p7(s | i){p7(s) − nwip7(s | i)}
p7(s)

.

=
1

n

N∑

i=1

1

wi

∑

s⊃i

p7(s | i)
∑

j(  =i)∈s

{wjp7(s | j) − wip7(s | i)}

p7(s)
.

=
1

n

∑

s∈S

1

p7(s)

∑

i =

∑

j∈s

p7(s | i){wjp7(s | j) − wip7(s | i)}
wi

=
1

n

∑

s∈S

1

p7(s)

∑

i<

∑

j∈s

{
p7(s | i)

wi

−
p7(s | j)

wj

}{wjp7(s | j) − wip7(s | i)}

=
1

n

∑

s∈S

1

p7(s)

∑

i<

∑

j∈s

{wjp7(s | i) − wip7(s | j)}
wiwj

{wjp7(s | j) − wip7(s | i)}

=
1

n

∑

s∈S

1

p7(s)

∑

i<

∑

j∈s

[{wjp7(s | j) − wip7(s | i)}2 + (wi + wj){p7(s | i) − p7(s | j)}{wjp7(s | j) − wip7(| i)}]
wiwj

.

Hence, (3.1) follows by Lemma A.1.
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