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Abstract

Generalized exponential distribution has received some attention in the last
few years. Recently, Kundu and Gupta (Advances in Statistical Analysis, 95,
169–185, 2011) and Shoaee and Khorram (Journal of Statistical Planning and
Inference, 142, 2203–2220, 2012) introduced an absolute continuous bivariate
generalized exponential distribution. In this paper, we propose an absolute
coinuous multivariate generalized exponential distribution. The proposed
distribution is very flexible, and the joint probability density functions can
take different shapes. We provide several properties of this model. Fur-
ther, it is observed that the multivariate generalized exponential model can
be obtained using multivariate Clayton copula. The maximum likelihood
estimators are quite difficult to compute in practice. Due to this reason, we
propose two step estimation procedure using the copula approach, which are
quite easy to implement. Simulation experiments are performed to compare
the performances of the two different estimators, and the performances are
quite similar in nature particularly for large sample sizes. One multivariate
bone mineral density data set has been analyzed for illustrative purposes,
and it is observed that the proposed model provides a very good fit to the
data set.
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1 Introduction

The generalized exponential (GE) distribution proposed by Gupta and
Kundu (1999) has received some attention in the past few years. The
two-parameter GE distribution has been used quite successfully to analyze
lifetime data in place of two-parameter gamma or two-parameter Weibull
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distributions. The cumulative distribution function (CDF) of a two-parameter
GE distribution has the following form;

F (x;α, λ) =
(
1− e−λx

)α
; x > 0, (1.1)

and 0, otherwise. The corresponding probability density function (PDF)
becomes

f(x;α, λ) = αλe−λx(1− e−λx)α−1; x > 0, (1.2)

and 0, otherwise. Here α > 0, and λ > 0, are the shape and scale parameters,
respectively. From now on it will be denoted by GE(α, λ). An extensive
survey on the GE distribution can be obtained in Nadarajah (2011), see also
Gupta and Kundu (2007).

Using the concept similar to Marshall and Olkin (1967), Kundu and
Gupta (2009) introduced a bivariate GE distribution, which has a singular
component. Following the approach of Block and Basu (1974), by removing
the singular component, Shoaee and Khorram (2012) proposed an absolute
continuous bivariate GE distribution, whose marginals are not the GE dis-
tributions. Using the one parameter bivariate exchangeable distribution of
Mardia (1962), Kundu and Gupta (2011) introduced an absolute continu-
ous bivariate generalized exponential distribution, whose marginals are the
GE distributions. It is not very simple to generalize Shoaee and Khoram’s
bivariate generalized exponential distribution to its multivariate version.
Kundu and Gupta’s absolute continuous bivariate generalized exponential
distribution can be obtained as a special case of the proposed multivariate
distribution.

The main aim of this paper is to introduce an absolute continuous multi-
variate GE distribution. Takahasi (1965) introduced multivariate Burr dis-
tribution by compounding independent Weibull distributions with a gamma
distribution, as a compounder. Using the same approach Crowder (1989) in-
troduced multivariate Weibull distribution. Surles and Padgett (2005), using
a suitable transformation of Takahasi (1965)’s multivariate Burr distribution
proposed multivariate scaled Burr type X distribution. In this paper we in-
troduce an absolute continuous multivariate GE (MVGE) distribution by
making a suitable transformation from Takahasi’s multivariate Burr distri-
bution. The MVGE distribution has the GE marginals. Generation from
the MVGE distribution has been addressed. We discuss several properties
of the proposed distribution.

Estimation of the unknown parameters is an important problem. The
maximum likelihood estimators (MLEs) cannot be obtained in closed form.
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The MLEs can be obtained by solving multidimensional optimization prob-
lem. We propose alternative estimators based on copula which can be ob-
tained quite conveniently. Monte Carlo simulations are performed to com-
pare the performances of the different estimators and it is observed that
the performance of the MLEs and the estimators based on copula are quite
similar. One data analysis has been performed to show how the proposed
model and the method work in a real life situation.

Rest of the paper is organized as follows. In Section 2, we provide the
necessary preliminaries. The MVGE has been introduced in Section 3. In
Section 4, we discuss several properties and in Section 5, we study inferential
issues. Monte Carlo simulation results and the analysis of a data set are
provided in Section 6. In Section 7, we conclude the paper.

2 Preliminaries

2.1. Dependence and Stochastic Order. Several notions of positive or
negative dependence for multivariate distributions for varying degree of
strengths are available in the literature, see for example Boland et al. (1996),
Colangelo et al. (2005, 2008), and the references therein. The notions of
positive dependence were introduced in the literature to model the fact that
large values of a component of multivariate random vector are probabilis-
tically associated with large values of the others. Similarly, the notion of
negative dependence captures the fact that large or small values of a com-
ponent of a random vector are probabilistically associated with small or
large values of the others. In this paper we will consider three such positive
dependence concepts.

A random vector X = (X1, . . . , Xp)
T , is said to be positively lower or-

thant dependent (PLOD) if FX (·), the joint cumulative distribution function
of X satisfies the following property:

FX (x1, . . . , xp) ≥
p∏

i=1

FXi(xi), ∀x = (x1, . . . , xp)
T , (2.1)

here FXi(·) is the marginal distribution function of Xi for i = 1, . . . , p.
Further, we will be using the following notations. For x ∈ R

p, a phrase
such that ‘non-decreasing’ in x means non-decreasing in each component xi,
for i = 1, . . . , p. If A is a subset of the set {1, . . . , p}, then XA denotes the
vector (Xi|i ∈ A), similarly, xA is also defined. The following definitions are
known in the statistical literature, see for example Joe (1997).
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A p-dimensional random vector X is said to be left tail decreasing (LTD)
if

P [XB ≤ xB|XA ≤ xA]

is non-increasing in xA for all xB. Here the sets A and B are disjoint
partition of the set {1, . . . , p}.

Another multivariate dependence notion is the multivariate left corner
set decreasing property. A random vector X is said to have left corner set
decreasing property, if

P [X1 ≤ x1, . . . , XP ≤ xp|X1 ≤ x′1, . . . , XP ≤ x′p] (2.2)

is non-increasing in x′, for every choice of x = (x1, · · · , xp)T . Equivalently,
(2.2) can be written as

FX (x ∧ x′)

FX (x′)
non-increases in x′,

where x′ = (x′1, . . . , x
′
p)

T and x ∧ x′ = (min{x1, x′1}, . . . ,min{xp, x′p})T .
Now we will define the following stochastic ordering for a multivariate

distribution. It is a natural generalization from a univariate distribution to a
multivariate distribution. Let us recall that for two random variables X and
Y , X is said to be stochastically smaller than Y (X ≤st Y ) if P (X ≥ a) ≤
P (Y ≥ a), for all a ∈ R. The concept can be generalized to p dimensional
random vectors also as follows.

Let X and Y be two p-dimensional random vectors such that

P (X ∈ U) ≤ P (Y ∈ U) for all upper sets U ⊂ R
p,

then X is said to be smaller than Y in stochastic order, and it will be
denoted by X ≤st Y .

2.2. Copula. The dependence among the random variables X1, . . . , Xp,
is completely described by the joint distribution function FX (x1, . . . , xp).
The idea of separating FX (x1, . . . , xp) in two parts - the one which describes
the dependence structure, and the other one which describes the marginal
behavior, leads to the concept of copula. To every p-variate distribution func-
tion FX (·), with continuous marginals FX1 , . . . , FXp , corresponds a unique
function C : [0, 1]p → [0, 1], called a copula function such that

FX (x) = C
[
FX1(x1), . . . , FXp(xp)

]
; for x = (x1, . . . , xp)

T ∈ R
p.

We have the following relation between the joint PDF of X1, . . . , Xp, and
the copula density function;

fX (x) = c
[
FX1(x1), . . . , FXp(xp)

]
fX1(x1) . . . fXp(xp);
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for x = (x1, . . . , xp)
T ∈ R

p. (2.3)

Here fX (x) is the joint PDF of X1, . . . , Xp, fXj (xj) is the PDF of Xj , for
j = 1, . . . , p, and c(u1, . . . , up) is the copula density function of C(u1, . . . , up).
Moreover, from Sklar’s theorem (see Nelsen: 2006, page 18), it follows
that if FX (x) is a joint distribution function with continuous marginals
FX1(·), . . . , FXp(·), and if F−1

X1
(·), . . . , F−1

Xp
(·) are the inverse functions of

FX1 , . . . , FXp , respectively, then there exists a unique copula C in [0, 1]p,
such that

C(u1, . . . , up) = FX

(
F−1
X1

(u1), . . . , F
−1
Xp

(up)
)
for u = (u1, . . . , up)

T ∈ [0, 1]p.

It is well known that many dependence properties of a multivariate distribu-
tion are copula properties, and therefore, can be obtained by studying the
corresponding copula.

2.3. Burr Type Distribution. Burr (1942) introduced twelve different
distribution functions for modelling data. Among these twelve distribution
functions, Burr Type X and Burr Type XII received the maximum attention.
Thorough analysis of Burr Type XII distribution in Rodriguez (1977) (see
also Wingo, 1993). A random variable Z is said to have a Burr Type XII
distribution if the CDF of Z for δ > 0, θ > 0 and β > 0 is

FZ(z) = 1− 1

(1 + θzβ)
δ
; for z > 0, (2.4)

and 0 otherwise. The associated PDF becomes

fZ(z) =
βθzβ−1

(1 + θzβ)
δ+1

; for z > 0, (2.5)

and 0 otherwise.
The following connection between a Burr Type XII and a GE distribution

can be easily established, and it will be used later to construct a multivariate
GE distribution. Consider a random variable

X = − 1

λ
ln

(
1−
(
1 + θZβ

)−1/τ
)
, (2.6)

where Z is a non-negative random variable with the CDF given in (2.4) and
τ > 0. Then, X follows (∼) GE(α, λ) with α = δτ .
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3 Multivariate GE Distribution

Takahasi (1965) introduced multivariate Burr (Type XII) distribution
which can be described as follows. A p-variate random vector Z = (Z1, . . .,
Zp)

T is said to have a multivariate Burr (Type XII) distribution if it has the
joint PDF

fZ(z1, . . . , zp) =
Γ(θ + p)

Γ(θ)
×

∏p
i=1 βiθiz

βi−1
i(

1 +
∑p

i=1 θiz
βi
i

)θ+p
; for z1 > 0, . . . , zp > 0.

(3.1)
Here β1 > 0, . . . , βp > 0, θ1 > 0, . . . , θp > 0 and θ > 0. It has been shown by
Takahasi (1965) that if Z = (Z1, . . . , Zp)

T is a p-variate Burr distribution
then for any q < p, (Zi1 , . . . , Ziq), for 1 ≤ i1 < i2 < . . . < iq ≤ p, is a
q-variate Burr distribution. Now for the random vector (Z1, . . . , Zp)

T with
joint PDF (3.1), consider the following random vector X = (X1, . . . , Xp)

T ,
where for i = 1, . . . , p,

Xi = − 1

λi
ln

(
1−
(
1 + θiZ

βi
i

)−1/αi
)
, (3.2)

λ1 > 0, . . . , λp > 0, β1 > 0, . . . , βp > 0, α1 > 0, . . . , αp > 0. The joint PDF
of (X1, . . . , Xp)

T is

fX (x1, . . . , xp) =
ce−

∑p
i=1 λixi

∏p
i=1

(
1− e−λixi

)−αi−1

[∑p
i=1 (1− e−λixi)

−αi − (p− 1)
]θ+p

. (3.3)

Here the normalizing constant c =

p∏
i=1

αiλi(θ + i − 1). From now on a p-

variate random vector with the joint PDF (5.1) will be called a multivariate
generalized exponential (MVGE) distribution, and it will be denoted by the
MVGEp(α1, . . . , αp, β1, . . . , βp, θ).

The proposed MVGE can be obtained in many other ways also. Consider
the following one-parameter exchangeable p-variate distribution of Mardia
(1962) defined on (0,∞)p. Mardia (1962) defined the following p-variate
random vector V = (V1, . . . , Vp)

T , for θ > 0, with the joint PDF

fV (v1, . . . , vp) =
θ(θ + 1) . . . (θ + p− 1)

(1 + v1 + v2 + . . .+ vp)θ+p
, (3.4)

where v1 > 0, . . . , vp > 0. He showed that if V is a random vector with the
joint PDF (3.4), then the marginals, the joint CDF, and the joint survival
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function can be obtained in explicit forms. Now consider the following p-
variate random vector X = (X1, . . . , Xp)

T as follows

Vi =
(
1− e−λiXi

)−αi

− 1; i = 1, . . . , p. (3.5)

Then the random vector X has the joint PDF (3.3).
We show that the MVGE distribution can be obtained from the multi-

variate Clayton copula also. Consider the one-parameter (θ > 0), p-variate
Clayton copula (see for example Nelsen, 2006),

Cθ(u1, . . . , up) =
1(

u
−1/θ
1 + u

−1/θ
2 + . . .+ u

−1/θ
p − (p− 1)

)θ , (3.6)

for u1 > 0, . . . , up > 0. Now we construct a new multivariate CDF for
x1 > 0, . . . , xp > 0, using the Clayton copula (3.6) as follows;

FX (x1, . . . , xp) = Cθ(FX1(x1), . . . , FXp(xp)), (3.7)

where for i = 1, . . . , p,

FXi(xi) =
(
1− e−λixi

)αiθ
.

Clearly, for i = 1, . . . , p, Xi ∼ GE(θαi, λi), and the joint CDF of X becomes

FX (x1, . . . , xp) =
1[∑p

i=1 (1− e−λixi)
−αi − (p− 1)

]θ . (3.8)

Now using the copula density function cθ(u1, . . . , up), where

cθ(u1, . . . , up) =
θ(θ+1) . . . (θ+p−1)

θp
×

∏p
j=1 u

−( 1
θ
+1)

j(
u
−1/θ
1 +. . .+u

−1/θ
p −(p− 1)

)(θ+p)
,

it is immediate that

∂p

∂x1 . . . ∂xp
FX (x1, . . . , xp) = fX (x1, . . . , xp).

Here fX (x1, . . . , xp) is same as defined in (3.3). Hence, if X ∼ MVGEp(α1,
. . . , αp, β1, . . . , βp, θ), then it has the CDF (3.8).

The following result will be useful to generate random samples from the
MVGE distribution.



182 D. Kundu et al.

Theorem 3.1. Suppose the p-variate random vector V = (V1, . . . , Vp)
T

has the joint PDF (3.4), then the marginal PDF of V1 and conditional PDFs
of

{V2|V1 = v1}, {V3|V1 = v1, V2 = v2}, . . . , {Vp|V1 = v1, . . . , Vp−1 = vp−1},

for v1 > 0, . . . , vp > 0, are, respectively,

fV1(v1) =
θ

(1 + v1)θ+1
;

fV2|V1=v1(v2) =
(θ + 1)(1 + v1)

θ+1

(1 + v1 + v2)θ+2
;

fV3|V1=v1,V2=v2(v3) =
(θ + 2)(1 + v1 + v2)

θ+2

(1 + v1 + v2 + v3)θ+3
;

...

fVp|V1=v1,...,Vp−1=vp−1
(vp) =

(θ + p− 1)(1 + v1 + . . .+ vp−1)
θ+p−1

(1 + v1 + . . .+ vp)θ+p
.

The corresponding CDFs are,

FV1(v1) = 1− 1

(1 + v1)θ
;

FV2|V1=v1(v2) = 1−
(

1 + v1
1 + v1 + v2

)θ+1

;

FV3|V1=v1,V2=v2(v3) = 1−
(

1 + v1 + v2
1 + v1 + v2 + v3

)θ+2

;

...

FVp|V1=v1,...,Vp−1=vp−1
(vp) = 1−

(
1 + v1 + . . .+ vp−1

1 + v1 + . . .+ vp

)θ+p−1

,

respectively.

Proof. The proof of Theorem 3.1 can be obtained in a routine manner,
and it is avoided.

Using Theorem 3.1, a random vector V = (V1, . . . , Vp)
T can be easily

generated, sequentially. First generate V1 using the inverse transformation,
then V2 and so on. Once Vi’s are generated, Xi’s can be easily obtained
using the transformation (3.5).
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4 Properties

In this section we provide several properties of the MVGE distribution.
First we provide the distribution functions of the marginals, conditionals,
and the extreme order statistics of the MVGE distribution.

Theorem 4.1. If X = (X1, . . . , XP )
T ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp,

θ), then

(a) X1 ∼ GE(α1θ, λ1), . . ., Xp ∼ GE(αpθ, λp).

(b) For any non-empty subset Iq = (i1, . . . , iq) ⊂ (1, . . . , p), the
q-dimensional marginal XIq = (Xi1 , . . . , Xiq)

T ∼ MVGEq(αi1 , . . . , αiq ,
λi1 , . . . , λiq , θ).

(c) The conditional distribution function of (Xiq |XI−Iq ≤ xI−Iq), where
the set I − Iq = {i ∈ I, i �= i1, . . . , iq}, is

P (X iq ≤ xIq |XI−Iq ≤ xI−Iq) =

[∑
i∈I−Iq

(1− e−λixi)−αi − (p− q − 1)∑
i∈I(1− e−λixi)−αi − (p− 1)

]θ
.

(4.1)

(d) The survival function of X = (X1, . . . , Xp)
T is

SX (x) = 1−
p∑

i=1

(1− e−λixi)θαi

+
∑

1≤i<j≤p

1[
(1− e−λixi)−αi + (1− e−λjxj )−αj − 1

]θ

+ . . .+ (−1)p+1 1

[
∑p

i=1(1− e−λixi)−αi − (p− 1)]
θ
. (4.2)

Proof. The proofs of (a), (b) and (c) can be obtained using (3.8). The
proof of (d) can be obtained using the following relation:

P (X > x) = 1− P ((X > x)c)

= 1− P ({X1 ≤ x1} ∪ {X2 ≤ x2} ∪ . . . ∪ {Xp ≤ xp})

= 1−
p∑

i=1

P (Xi ≤ xi) +
∑

1≤i<j≤p

P (Xi ≤ xi, Xj ≤ xj)

+ . . .+ . . . (−1)p+1P

(
p∏

i=1

Xi ≤ xi

)
.
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It is clear that if X(1) = min{X1, . . . , Xp} and X(p) = max{X1, . . . , Xp},
then their distributions can be easily obtained from the expressions (4.2)
and (3.8), respectively.

Theorem 4.2. If X = (X1, . . . , XP )
T ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp,

θ), then X is

(a) PLOD, positively lower orthant dependent.

(b) LTD, left tail decreasing.

(c) LCSD, left corner set decreasing.

Proof.

(a) Note that a random vector X is PLOD if and only if it satisfies (2.1).
Since, PLOD property is a copula property, Nelsen (2006), note that
to prove (2.1) in case of the MVGE, it is equivalent to show

Cθ(u1, . . . , up) =
1(

u
−1/θ
1 + u

−1/θ
2 + . . .+ u

−1/θ
p − (p− 1)

)θ ≥ u1 . . . up,

(4.3)
for all 0 < u1, . . . , up < 1. Make the following transformation v1 =

u
1/θ1
1 , . . . , vp = u

1/θp
p . Hence proving (4.3) is equivalent to prove

0 ≤ v1v2 . . . vp

[
1

v1
+ . . .+

1

vp
− (p− 1)

]
≤ 1, (4.4)

for all 0 < v1, . . . , vp < 1. Now we will prove (4.4) by induction on p.
Clearly the result is true for p = 1. It is assumed that the result is
true for p = k, and we will prove that the result is true for p = k + 1.
For 0 ≤ v1, . . . , vk+1 ≤ 1, let us write

D = v1v2 . . . vk+1

[
1

v1
+ . . .+

1

vk+1
− k

]
= A+B.

Here, due to induction hypothesis

A = v1v2 . . . vk

[
1

v1
+ . . .+

1

vk
− (k − 1)

]
vk+1 ≤ vk+1

and

B = v1v2 . . . vkvk+1

[
1

vk+1
− 1

]
= v1v2 . . . vk(1− vk+1) ≤ (1− vk+1).

Hence D = A+B ≤ vk+1 + (1− vk+1) = 1.
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(b) To prove (b), without loss of generality, let us take A = {1, . . . , q} and
B = {q + 1, . . . , p}. If x = (x1, . . . , xp)

T , xi ≥ 0, for i = 1, . . . , p, then

P (XB ≤ xB|XA ≤ xA) =

[∑q
i=1(1− e−λixi)−αi − (q − 1)∑p
i=1(1− e−λixi)−αi − (p− 1)

]θ
. (4.5)

The right hand side of (4.5) can be written as

[
1

1 + [
∑p

i=q+1(1− e−λixi)−αi−(p− q)][
∑q

i=1(1−e−λixi)−αi − (q − 1)]−1

]θ
.

(4.6)
Since for fixed xq+1, . . . , xp, the function defined in (4.6), is a non-
increasing function of x1, . . . , xq, the result follows.

(c) In order to prove the part (c), let us consider

FX (x ∧ x′)

FX (x′)
=

[ ∑p
i=1(1− e−λix

′
i)−αi − (p− 1)∑p

i=1(1− e−λi min{xi,x′
i})−αi − (p− 1)

]θ
. (4.7)

We will show that the function defined in (4.7) is a non-increasing
function of x′1, when x′2, . . . , x

′
p are kept fixed, and that will prove the

result. Consider two cases separately. Suppose x′1 ≤ x1, in this case
the right hand side of (4.7) as a function of x′1, can be written as[
g(x′1)

]θ
, where

g(x′1) =
u(x′1) + c1
u(x′1) + c2

,

u(x′1) = (1− e−λ1x′
1)−α1 ,

c1 =

p∑
i=2

(1−e−λix
′
i)−αi−(p−1) and c2 =

p∑
i=2

(1−e−λi min{xi,x
′
i})−αi−(p−1).

Clearly, c2 ≥ c1 ≥ 0. Since u(x′1) is a non-decreasing function of x′1, it

follows that g(x′1), hence
[
g(x′1)

]θ
, is a non-increasing function of x′1.

Now for x′1 > x1, the right hand side of (4.7) as a function of x′1, can
be written as c(u(x′1) + c1) for c > 0. Here, c1 is same as before, and

c =

[
p∑

i=1

(1− e−λi min{xi,x
′
i})−αi − (p− 1)

]−θ

.

Since u(x′1) is a non-decreasing function of x′1, the result immediately
follows.
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Theorem 4.3. If X = (X1, . . . , XP )
T ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp,

θ), then X has a multivariate total positivity of order two (MTP2) property.

Proof. Recall that FX (x) has the MTP2 property, if and only if

FX (x)FY (y)

FX (x ∨ y)FY (x ∧ y)
≤ 1. (4.8)

Here x = (x1, . . . , xp)
T , y = (y1, . . . , yp)

T , x ∨ y = (x1 ∨ y1, . . . , xp ∨ yp)
T ,

x∧y = (x1∧y1, . . . , xp∧yp)
T , where c∨d = max{c, d} and c∧d = min{c, d}.

We will use the following notations for i = 1, . . . , p;

ai = (1− e−λixi)−αi and bi = (1− e−λiyi)−αi .

Therefore, proving (4.8) is equivalent to proving
(

p∑
i=1

min{ai, bi} − (p− 1)

)(
p∑

i=1

max{ai, bi} − (p− 1)

)

≤
(

p∑
i=1

ai − (p− 1)

)(
p∑

i=1

bi − (p− 1)

)
. (4.9)

Here ai ≥ 1 and bi ≥ 1 for i = 1, . . . , p. Note that (4.9) can be established if
we can show for ci ≥ 0 and di ≥ 0,

(
p∑

i=1

min{ci, di}
)(

p∑
i=1

max{ci, di}
)

≤
(

p∑
i=1

ci

)(
p∑

i=1

di

)
. (4.10)

If ci ≥ di or ci ≤ di for i = 1, . . . , p, (4.10) easily follows. Suppose there
exists a 1 < q < p, and without loss of generality we assume that c1 ≤
d1, . . . , cq ≤ dq, cq+1 > dq+1, . . . , cp > dp. Therefore

(
p∑

i=1

ci

)(
p∑

i=1

di

)
−
(

p∑
i=1

min{ci, di}
)(

p∑
i=1

max{ci, di}
)

=

⎛
⎝

p∑
i=q+1

(ci − di)

⎞
⎠
(

q∑
i=1

(di − ci)

)
≥ 0.

Theorem 4.4. Suppose X and Y are p-variate random vectors, such
that

X ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp, θ) and Y ∼ MVGEp(β1, . . . , βp, λ1, . . . , λp, θ).
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If αi ≤ βi for i = 1, . . . , p, then X ≤st Y .
Proof: Since αi ≤ βi, it follows Xi ≤st Yi, for i = 1, . . . , p. since X

and Y have same copula, the result follows using the Theorem 6.B.1 of Joe
(1997).

Theorem 4.5. Suppose X and Y are p-variate random vectors, such
that

X ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp, θ), Y ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp, δ),

and they are independently distributed. Then

P (Y ≤ X) = P (Y1 ≤ X1, . . . , Yp ≤ Xp) =

p∏
i=1

θ + i− 1

θ + δ + i− 1
.

Proof. For c =

p∏
i=1

αiλi(θ + i− 1),

P (Y ≤ X) = P (Y1 ≤ X1, . . . , Yp ≤ Xp)

=

∫ ∞

0
. . .

∫ ∞

0
fX (x1, . . . , xp)FY (x1, . . . , xp)dx1 . . . dxp

=

∫ ∞

0
· · ·
∫ ∞

0

ce−
∑p

i=1 λixi
∏p

i=1

(
1− e−λixi

)−αi−1

[∑p
i=1 (1− e−λixi)

−αi − (p− 1)
]θ+δ+p

dx1 . . . dxp

=

p∏
i=1

θ + i− 1

θ + δ + i− 1
.

Interestingly P (Y ≤ X) does not depend on αi’s and λi’s, it just depends
on the copula parameters.

5 Different Estimators

5.1. Maximum Likelihood Estimators. Suppose {(xi1, . . . , xip); i = 1,
. . . , n} is a random sample of size n from a MVGE(Θ), where Θ = (α1, . . .,
αp, λ1, . . . , λp, θ), and consider the maximum likelihood estimation of the
2p + 1 unknown parameters of Θ. The likelihood function of the unknown
parameters can be written as

L(Θ) =

(
p∏

i=1

αiλi(θ + i− 1)

)n
e−

∑n
i=1

∑p
j=1 λjxij

∏n
i=1

∏p
j=1

(
1− e−λjxij

)−αj−1

∏n
i=1

[∑p
j=1 (1− e−λjxij )

−αj − (p− 1)
]θ+p

.
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Hence, the log-likelihood function becomes

l(Θ) = n

p∑
j=1

lnαj + n

p∑
j=1

lnλj −
p∑

j=1

λj

n∑
i=1

xij

−
p∑

j=1

(αj + 1)
n∑

i=1

ln(1− e−λjxij ) + n

p∑
j=1

ln(θ − j + 1)

−
p∑

j=1

n∑
i=1

(θ + p) ln

⎧
⎨
⎩

p∑
j=1

(1− e−λjxij )−αj − (p− 1)

⎫
⎬
⎭ . (5.1)

The MLEs of the unknown parameters can be obtained by maximizing the
log-likelihood function (5.1) with respect to 2p + 1 unknown parameters.
The explicit solutions are not available, hence we need to obtain numerical
solutions. It involves solving simultaneously 2p + 1 non-linear equations.
Newton-Raphson method may be used to solve the 2p + 1 non-linear equa-
tions, but for large p, it is quite difficult to implement.

Due to this reason, we propose to use the MBP (maximization by parts)
method proposed by Song et al. (2005). The MBP method can be used quite
effectively to compute the MLEs in this case, and it involves solving only
p + 1 non-linear equations separately, in each iteration. Implementation of
the proposed algorithm is quite simple, and it can be used quite effectively
for large p also. Moreover, in this case it can be proved that it produces
consistent estimates of the unknown parameters at each iteration. We make
the following one to one transformation of the parameters:

(α1, . . . , αp, λ1, . . . , λp, θ) ⇔ (β1, . . . , βp, λ1, . . . , λp, θ),

where βi = αiθ, for i = 1, . . . , p. For convenience we denote Θ = (β1, . . .,
βp, λ1, . . . , λp, θ). We re-write the log-likelihood function (5.1) , in terms of
the copula density as follows:

l(Θ) = l1(Θ1) + l2(Θ1, θ), (5.2)

where Θ1 = (β1, . . . , βp, λ1, . . . , λp), l1(Θ1) =

p∑
j=1

l1j(βj , λj),

l1j(βj , λj) = n lnβj + n lnλj −
n∑

i=1

λjxij +

n∑
i=1

(βj − 1) ln(1− e−λjxij ), (5.3)
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and for uij(βj , λj) = (1− e−λjxij )βj , i = 1, . . . , n, j = 1, . . . , p,

l2(Θ1, θ) = −np ln θ + n

p∑
j=1

ln(θ + j − 1)−
(
1

θ
+ 1

) n∑
i=1

p∑
j=1

lnuij(βj , λj)

−(θ + p)

n∑
i=1

ln
(
(ui1(β1, λ1))

−1/θ + . . .+ (uip(βp, λp))
−1/θ

−(p− 1)
)
. (5.4)

Now we propose the following MBP algorithm to compute the MLEs of Θ.
We use the following notations:

l̇1(Θ1) =
∂

∂Θ1
l1(Θ1), l̇21(Θ1, θ) =

∂

∂Θ1
l2(Θ1, θ), l̇22 =

∂

∂θ
l2(Θ1, θ)

Algorithm 1.

Step 1: Find Θ
(1)
1 by solving l̇1(Θ1) = 0.

Step 2: Find θ(1), by solving l̇22(Θ
(1)
1 , θ) = 0.

Step 3: At the k-th iteration, for k > 0, find Θ
(k+1)
1 , by solving l̇1(Θ1) =

−l̇21(Θ
(k)
1 , θ(k)).

Step 4: Find θ(k+1), by solving l̇22(Θ
(k+1), θ) = 0.

The implementation details are provided in Appendix A.

Since the MVGE satisfies all the conditions for the consistency and
asymptotic normality of the MLEs to hold, we have the following result.
If Θ̂ is the MLE of Θ, then

√
n(Θ̂−Θ) → N2p+1(0, I

−1). (5.5)

Here I is the expected Fisher information matrix. Note that it is not difficult
to compute the expected Fisher information matrix which can be expressed
in p dimensional integration. The observed information matrix can be used in
construction of asymptotic confidence intervals of the unknown parameters.
The observed Fisher information matrix can be obtained by taking second
derivatives of the log-likelihood function. They are provided in Appendix B
for easy reference.
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5.2. Two Stage Copula Estimators. Since the MVGE has a very conve-
nient copula structure, the method of Joe (2005) can be immediately used
to provide two stage copula estimators of the unknown parameters. In this
case the estimators can be obtained by solving p + 1 non-linear equations
separately, hence computationally two-stage copula estimators can be ob-
tained more conveniently than the MLEs. The two-stage copula estimators
can be obtained very easily using the structure of the log-likelihood function
(5.2). The following algorithm can be used for that purpose:

Algorithm 2.

Step 1: Maximize l1(Θ1) with respect to Θ1 to compute the estimate of
Θ1, say Θ̃1.

Step 2: Maximize l2(Θ̃1, θ) with respect to θ, to get an estimate of θ, say
θ̃.

Since Step 1 can be obtained by solving p non-linear equations separately,
it is immediate that Θ̃ can be obtained by solving p+1 non-linear equations
separately. We have the following result. If Θ̃ is the two-stage estimator of
Θ, then √

n(Θ̃−Θ) → N2p+1(0,W ). (5.6)

The exact expressions of the different elements of W can be obtained using
the method provided by Joe (2005) and they are provided in Appendix C.

6 Simulations and Data Analysis

6.1. Simulations. In this section we present some simulation results
mainly to compare the performances of the MLEs and the two-stage esti-
mators. We have taken different p (p = 3 and 5) values, different sample
sizes (n = 20, 40, 60, 80 and 100) and different θ (θ = 1 and 2) values. The
samples have been generated using the method proposed in Section 3. For
each data set, we have calculated the estimators of the unknown parame-
ters using two-stage estimators, and also based on MLEs. In calculating the
MLEs we have used the two-stage estimators as initial guesses. We report
the average estimates and the square root of the mean squared errors based
on 1000 replications. The results are reported in Tables 1, 2, 3, 4, 5, 6, 7
and 8. In each box the upper figures indicate the average estimate and the
associated square root of the mean squared errors (MSE) is reported below.

It is clear from the simulation results that as the sample size increases,
as expected, the biases and the MSEs decrease in both cases. Both methods
perform quite satisfactorily. The performance of the MLEs are slightly better
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Table 1: The average estimates based on two-stage copula method and the
associated square root mean squared errors (reported below) for different
parameters when α1 = λ1 = α2 = λ2 = α3 = λ3 = 1 and θ = 1.0
n α1 λ1 α2 λ2 α3 λ3 θ

20 1.1216 1.1459 1.0900 1.1112 1.1060 1.1375 1.2021
0.4505 0.3775 0.4136 0.3518 0.4596 0.3864 0.6974

40 1.0542 1.0694 1.0391 1.0501 1.0429 1.0597 1.0874
0.2751 0.2407 0.2617 0.2341 0.2716 0.2375 0.3745

60 1.0391 1.0383 1.0341 1.0303 1.0324 1.0303 1.0467
0.2146 0.1808 0.2132 0.1823 0.2148 0.1743 0.2746

80 1.0314 1.0285 1.0262 1.0227 1.0228 1.0205 1.0327
0.1905 0.1538 0.1824 0.1553 0.1824 0.1522 0.2295

100 1.0264 1.0223 1.0188 1.0144 1.0160 1.0118 1.0239
0.1647 0.1377 0.1568 0.1345 0.1592 0.1305 0.2006

Table 2: The average estimates and the associated square root mean squared
errors (reported below) of the MLEs for different parameters when α1 = λ1 =
α2 = λ2 = α3 = λ3 = 1 and θ = 1.0
n α1 λ1 α2 λ2 α3 λ3 θ

20 1.1142 1.1301 1.0698 1.1096 1.0978 1.1167 1.1723
0.4221 0.3552 0.4013 0.3498 0.4327 0.3689 0.6767

40 1.0481 1.0456 1.0227 1.0448 1.0352 1.0448 1.0765
0.2522 0.2317 0.2445 0.2289 0.2598 0.2267 0.3592

60 1.0267 1.0228 1.0167 1.0234 1.0291 1.0299 1.0401
0.2089 0.1756 0.2078 0.1778 0.2098 0.1705 0.2611

80 1.0229 1.0199 1.0198 1.0202 1.0177 1.0196 1.0298
0.1889 0.1501 0.1801 0.1498 0.1801 0.1503 0.2109

100 1.0199 1.0201 1.0187 1.0098 1.0098 1.0101 1.0178
0.1589 0.1354 0.1498 0.1311 0.1497 0.1298 0.1996
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Table 3: The average estimates based on two-stage copula method and the
associated square root mean squared errors (reported below) for different
parameters when α1 = λ1 = α2 = λ2 = α3 = λ3 = 1 and θ = 2.0
n α1 λ1 α2 λ2 α3 λ3 θ

20 1.2628 1.1172 1.2132 1.0873 1.2401 1.1071 2.4206
0.7666 0.3108 0.7771 0.2929 0.7872 0.3164 1.3776

40 1.1098 1.0553 1.0864 1.0388 1.0939 1.0462 2.2607
0.4405 0.2001 0.4119 0.1972 0.4367 0.1984 1.0397

60 1.0701 1.0299 1.0651 1.0250 1.0652 1.0258 2.1613
0.3341 0.1522 0.3314 0.1554 0.3387 0.1500 0.8182

80 1.0570 1.0223 1.0529 1.0197 1.0479 1.0168 2.1182
0.2935 0.1295 0.2856 0.1357 0.2902 0.1289 0.7127

100 1.0542 1.0176 1.0418 1.0123 1.0378 1.0094 2.0806
0.2547 0.1171 0.2470 0.1154 0.2529 0.1104 0.6089

Table 4: The average estimates and the associated square root mean squared
errors (reported below) of the MLEs for different parameters when α1 = λ1 =
α2 = λ2 = α3 = λ3 = 1 and θ = 2.0
n α1 λ1 α2 λ2 α3 λ3 θ

20 1.2427 1.0988 1.1943 1.0678 1.1756 1.0896 2.3452
0.7332 0.2934 0.7215 0.2786 0.7567 0.2998 1.3561

40 1.0799 1.0336 1.0643 1.0265 1.0653 1.0227 2.2225
0.4228 0.1889 0.3991 0.1801 0.4118 0.1768 1.0222

60 1.0565 1.0111 1.0338 1.0114 1.0399 1.0234 2.1556
0.3139 0.1447 0.3098 0.1410 0.3089 0.1392 0.7789

80 1.0338 1.0210 1.0234 1.0102 1.0198 1.0119 2.0798
0.2815 0.1198 0.2789 0.1210 0.2817 0.1219 0.7070

100 1.0220 1.0165 1.0228 1.0011 1.0229 1.0057 2.0182
0.2489 0.1143 0.2389 0.1099 0.2498 0.1101 0.5988
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than the estimators based on two-stage methods in terms of lower MSEs and
biases particularly for small sample sizes. For large sample sizes both the
methods behave quite similarly in terms of biases and MSEs. Although
both methods perform quite satisfactorily, computationally the two-stage
estimators are much easier to obtain than the MLEs.

6.2. Data Analysis. In this section we present the analysis of a data set
for illustrative purposes mainly to show how the proposed model and the
estimators work in practice. We analyze a multivariate data set obtained
from Johnson and Wichern (1999, page 34), representing the bone mineral
density (BMD) measured in g/cm2 for 25 individuals. The data are presented
in Table 9.

Table 9: The BMD data
Subject Dominant Radius Dominant Humerus Dominant Ulna
No. radius humerus ulna

1 1.103 1.052 2.139 2.238 0.873 0.872
2 0.842 0.859 1.873 1.741 0.590 0.744
3 0.925 0.873 1.887 1.809 0.767 0.713
4 0.857 0.744 1.739 1.547 0.706 0.674
5 0.795 0.809 1.734 1.715 0.549 0.654
6 0.787 0.779 1.509 1.474 0.782 0.571
7 0.933 0.880 1.695 1.656 0.737 0.803
8 0.799 0.851 1.740 1.777 0.618 0.682
9 0.945 0.876 1.811 1.759 0.853 0.777
10 0.921 0.906 1.954 2.009 0.823 0.765
11 0.792 0.825 1.624 1.657 0.686 0.668
12 0.815 0.751 2.204 1.846 0.678 0.546
13 0.755 0.724 1.508 1.458 0.662 0.595
14 0.880 0.866 1.786 1.811 0.810 0.819
15 0.900 0.838 1.902 1.606 0.723 0.677
16 0.764 0.757 1.743 1.794 0.586 0.541
17 0.733 0.748 1.863 1.869 0.672 0.752
18 0.932 0.898 2.028 2.032 0.836 0.805
19 0.856 0.786 1.390 1.324 0.578 0.610
20 0.890 0.950 2.187 2.087 0.758 0.718
21 0.688 0.532 1.650 1.378 0.533 0.482
22 0.940 0.850 2.334 2.225 0.757 0.731
23 0.493 0.616 1.037 1.268 0.546 0.615
24 0.835 0.752 1.509 1.422 0.618 0.664
25 0.915 0.936 1.971 1.869 0.869 0.868
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Preliminary data analysis suggests that marginals are coming from skewed
distributions and they have increasing hazard functions. Therefore, the GE
distribution can be used to fit the marginals. We have used the three-
parameter GE for fitting the marginals, i.e. it has the PDF

f(x;α, λ, μ) = αλe−λ(x−μ)(1− e−λ(x−μ))α−1,

and the location parameter μ is assumed to be known. We have fitted the
three-parameter GE distributions to the marginals. In this case we first
obtain the unbiased estimator of the location parameter using the method
proposed by Hall and Wang (2005), and then compute the MLEs of the shape
and scale parameters, and the results are presented in Table 10. We have
subtracted the estimates of the location parameters from the corresponding
marginals, and use this data set for fitting the model MVGE6(α1, . . . , α6, λ1,
. . . , λ6, θ).

We present below the two-stage copula estimators of the unknown pa-
rameters and the associated 95 % confidence interval in brackets based on
the asymptotic distribution of the two-stage estimators as provided in (5.6).

α̃1 = 23.8616(∓7.1513), λ̃1 = 7.5595(∓2.8776),

α̃2 = 32.3204(∓9.0118), λ̃2 = 8.7521(∓3.1234),

α̃3 = 10.8818(∓3.2567), λ̃3 = 3.4830(∓0.9117),

α̃4 = 16.5540(∓4.9987), λ̃4 = 4.5939(∓1.7876),

α̃5 = 33.7024(∓9.1165), λ̃5 = 11.0702(∓4.1113),

α̃6 = 31.5931(∓8.5467), λ̃6 = 10.7384(∓4.0112),

θ̃ = 2.0912(∓0.7511).

We use these estimates as the initial estimates to compute the MLEs of
the unknown parameters. The MLEs of the unknown parameters, and the

Table 10: Parameter estimates for marginal GE
Parameter Dominant Radius Dominant Humerus Dominant Ulna

radius humerus ulna

α 49.9006 67.5898 22.7566 36.6185 70.4800 66.0690
λ 7.5595 8.7521 3.4830 4.5939 11.0702 10.7384
μ 0.2578 0.2762 0.7159 0.8185 0.2636 0.2483
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associated 95% confidence intervals based on the Fisher information matrix
presented within brackets are as follows:

α̂1 = 23.3272(∓6.1217), λ̂1 = 7.6402(∓2.1521),

α̂2 = 31.3839(∓8.1176), λ̂2 = 8.5622(∓2.3654),

α̂3 = 10.7247(∓2.7664), λ̂3 = 3.2199(∓0.8675),

α̂4 = 15.3030(∓4.0145), λ̂4 = 4.3723(∓1.1657),

α̂5 = 32.9878(∓8.2525), λ̂5 = 10.7200(∓3.5641),

α̂6 = 30.9029(∓7.8876), λ̂6 = 10.4922(∓3.3176),

θ̂ = 2.2257(∓0.7223).

Now the natural question is how good the model fits the data. Although, we
have several satisfactory goodness of fit tests available for univariate data
set, the same is not true in case of multivariate data set. Therefore, we test
the marginals only. It is known that this is not sufficient, but necessary at
least. We computed the Kolmogorov-Smirnov (KS) distances between the
empirical marginals and the fitted marginals, and the associated p values
(reported within brackets) for the six marginals to be; 0.1989 (0.2754), 0.1565
(0.5728), 0.1174 (0.8807), 0.1045 (0.9474), 0.1123 (0.9106) 0.0944 (0.9790),
respectively. Since in all the cases the p values are quite high, it indicates
that the proposed MVGE is indeed a good model for this BMD multivariate
data set.

7 Conclusions

In this paper we have proposed a new multivariate absolute continuous
distribution whose marginals are the GE distributions. The proposed model
is a very flexible multivariate model, and it is observed that the proposed
model can be obtained in three different ways. We have developed various
properties of the model and discussed two different estimation procedures. It
is observed that the MLEs are computationally quite difficult to compute but
the two-stage estimators are very easy to implement in practice. Simulation
results suggest that the performances of the two estimators are quite similar
in nature mainly for large sample sizes. One multivariate bone mineral
density data has been analyzed using this model, and it is observed that the
proposed model provides a good fit to the above data set.

Acknowledgements. The authors would like to thank the associate editor
and two referees for their constructive suggestions which have helped to
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Appendix A

In Step 1, Θ(1) = (β
(1)
1 , . . . , β

(1)
p , λ

(1)
1 , . . . , λ

(1)
p ) can be obtained by solving

n

λj
−

n∑
i=1

xij + (βj − 1)
n∑

i=1

xije
−λjxij

1− e−λjxij
= 0, (7.1)

n

βj
+

n∑
i=1

ln(1− e−λjxij ) = 0. (7.2)

First obtain λ
(1)
j by solving

n

λj
−

n∑
i=1

xij + (β
(1)
j (λj)− 1)

n∑
i=1

xije
−λjxij

1− e−λjxij
= 0,

where
β
(1)
j (λj) = − n∑n

i=1 ln(1− e−λjxij )

and finally obtain

β
(1)
j = − n

∑n
i=1 ln(1− e−λ

(1)
j xij )

In Step 2 and Step 4, θ(k) for k ≥ 1, can be obtained by solving the following
non-linear equation on θ:

n∑

i=1

p∑

j=1

ln(uij(β
(k)
j , λ

(k)
j )) =

p∑

j=1

nθ(j − 1)

θ + j − 1
+ θ

2
n∑

i=1

ln(vi(Θ
(k)
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+(θ + p)
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((
uij

(
β
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ln
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(k)
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))

vi

(
Θ

(k)
1 , θ

) ,

where

vi(Θ
(k)
1 , θ) =

p∑
j=1

uij(β
(k)
j , λ

(k)
j )−1/θ − (p− 1)

Step 3 can be performed as follows. Let us define the following notations for
j = 1, . . . , p.

c
(k)
1j = β

(k)
j

(
1

θ(k)
+ 1

) n∑
i=1

xije
−λ

(k)
j xij

(1− e−λ
(k)
j xij )
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c
(k)
2j =

(
1

θ(k)
+ 1

) n∑
i=1

ln(1− e−λ
(k)
j xij )

d1j = −
β
(k)
j (θ(k) + p)

θ(k)

n∑
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(1− e−λ
(k)
j xij )−1−β

(k)
j /θ(k)xije

−λ
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n∑
i=1

ln(1− e−λ
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(k)
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(k)
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(k)
1 , θ(k))

.

Therefore, λ
(k+1)
j can be obtained by solving the following non-linear equa-

tion on λj

n

λj
−

n∑
i=1

xij + (β
(k+1)
j (λj)− 1)

n∑
i=1

xije
−λjxij
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where

β
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i=1 ln(1− e−λjxij )− c1j − d1j

and finally obtain

β
(k+1)
j = β

(k+1)
j (λ

(k+1)
j )

Appendix B

In this section we provide the elements of the observed Fisher information
matrix. We will provide the following elements for j, k = 1, . . . , p, j �= k.

∂2l

∂β2
j

,
∂2l

∂λ2
j

,
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∂θ2
,
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.
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where
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(vi(Θ1, θ))2
× [uij(βj , λj)]

−1/θ ln(1− e−λjxij )

×[uik(βk, λk)]
−1/θ ln(1− e−λkxik).

∂2l

∂βj∂θ
=

1

θ2

n∑
i=1

p∑
j=1

ln(1− e−λjxij ) + p
n∑

i=1

Bi(Θ1, θ)

vi(Θ1, θ)

+θ(θ + p)
n∑

i=1

(
Bi(Θ1, θ)

vi(Θ1, θ)

)2

−
(p
θ
+ 1
) n∑

i=1

p∑
j=1

Bij(Θ1, θ) ln(1− e−λjxij )

vi(Θ1, θ)

∂2l

∂βj∂λj
= −1

θ

n∑
i=1

xije
−λjxij

1− e−λjxij
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−(θ + p)

n∑
i=1

Dij(βj , λj , θ)

(
1− βj

θ
ln(1− e−λjxij )

)

−β2
j (θ + p)

n∑
i=1

(Dij(βj , λj , θ))
2

∂2l

∂βk∂λj
= −βj(θ + p)

θ

n∑
i=1

Dij(βj , λj)×
1

vi(Θ1, θ)

×(uik(βk, λk))
−1/θ × ln(1− e−λkxik),

where

Dij(βj , λj , θ) =
(1− e−λjxij )−(βj/θ+1)xije

−λjxij

θvi(Θ1, θ)
.

∂2l

∂θ∂λj
=

1

θ2

n∑
i=1

βjxije
−λjxij

1− e−λjxij

+
βj
θ

n∑
i=1

Dij(βj , λj , θ)

(
p− βj(θ + p)

θ
ln(1− e−λjxij )

)

−βj(θ + p)

θ2

n∑
i=1

p∑
m=1

Dij(βj , λj , θ)×
1

vi(Θ1, θ)

×[uim(βm, λm)]−1/θ lnuim(βm, λm).

Appendix C

In this section we provide the elements of the matrix W , which is a
2p + 1 × 2p + 1 positive definite matrix. In the calculation of the different
elements of the matrix W , we need to compute the expected Fisher infor-
mation matrix also. They are not presented here, as these elements can
be easily obtained from the expressions provided in Appendix B, and after
performing required one or two dimensional integration numerically. We
will be using the following notations. The expected 2p + 1 × 2p + 1 Fisher
information matrix is denoted by

I =

⎡
⎢⎢⎢⎣

I11 . . . I1p I1d
...

. . .
...

...
Ip1 . . . Ipp Ipd

Id1 . . . Idp Idd

⎤
⎥⎥⎥⎦ .
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Here each Ijk, for 1 ≤ j, k ≤ p is a 2× 2 matrix, each Ijd, for 1 ≤ j ≤ p is a
2× 1, vector, Ijd = IT

dj , and Idd is a real number. From Joe (2005), we have

W =
(
−U−1

)
M
(
−U−1

)T
.

Here

−U =

⎡
⎢⎢⎢⎣

J11 . . . 0 0
...

. . .
...

...
0 . . . Jpp 0
Id1 . . . Idp Idd

⎤
⎥⎥⎥⎦ , and −M =

⎡
⎢⎢⎢⎣

J11 . . . J1p 0
...

. . .
...

...
Jp1 . . . Jpp 0
0 . . . 0 Idd

⎤
⎥⎥⎥⎦ .

Now we provide the elements of each of the 2×2 matrix J jk, for 1 ≤ j, k ≤ p.
If we denote for 1 ≤ j �= k ≤ p,

J jj =

[
aj11 aj12
aj21 aj22

]
and J jk =

[
bjk11 bjk12
bjk21 bjk22

]
,

then for (Xj , Xk) ∼ MVGE2(αj , αk, βj , βk, θ),

aj11 =
1

β2
, aj12 = aj21 = −E

[
Xje

−λjXj

1− e−λjXj

]
,

aj22 =
1

λ2
j

+ (βj − 1)E

[
X2

j e
−λjXj

(1− e−λjXj )2

]
,

bjk11 = cov
{
ln
(
1− e−λjXj

)
, ln
(
1− e−λkXk

)}

bjk12 = cov

{
ln
(
1− e−λjXj

)
, (βk − 1)

(
Xke

−λkXk

(1− e−λkXk)

)}

bjk21 = cov

{
(βj − 1)

(
Xje

−λjXj

(1− e−λjXj )

)
, ln
(
1− e−λkXk

)}

bjk22 = cov

{
(βj − 1)

(
Xje

−λjXj

(1− e−λjXj )

)
, (βk − 1)

(
Xke

−λkXk

(1− e−λkXk)

)}
.
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