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Abstract

We consider the problem of unbiased estimation of a finite population pro-
portion related to a sensitive attribute under a randomized response model
when independent responses are obtained from each sampled individual as
many times as he/she is selected in the sample. We identify a minimal suf-
ficient statistic for the problem and obtain complete classes of unbiased and
linear unbiased estimators. We also prove the admissibility of two linear un-
biased estimators and the non-existence of a best unbiased or a best linear
unbiased estimator.
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1 Introduction

Consider a finite population of labeled units and suppose that the prob-
lem is to estimate certain population parameters on surveying a random
sample of units. In an open set-up it is assumed that an exact response can
be obtained from each sampled unit through a direct survey. However, if
the character of interest is sensitive or stigmatizing such as drinking alcohol
or gambling habit, drug addiction, tax evasion, history of induced abortions
etc., a direct survey is likely to yield unreliable responses and an alternative
technique, introduced by Warner (1965), is to obtain responses through a
randomized response (RR) survey wherein every sampled unit is asked to
give a response through an RR device as per instructions from the investi-
gator. We refer to Chaudhuri and Mukerjee (1988), Chaudhuri (2011) and
Chaudhuri and Christofides (2013) for a comprehensive review of such RR
procedures.

Sengupta and Kundu (1989) considered the problem of unbiased es-
timation of a finite population mean of a sensitive quantitative variable
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(or the proportion bearing a sensitive attribute) under an RR model and had
obtained certain non-existence, admissibility and optimality results parallel-
ing those based on direct responses assuming tacitly that a single randomized
response is obtained from every sampled unit even if selected more than once
in the sample. However, for with replacement sampling, a population unit
may be selected more than once and independent randomized responses may
be obtained from it as many times as it is selected in the sample. In fact,
for several RR devices suggested in the literature including that of Warner
(1965), an infinite population set-up (or equivalently simple random with
replacement sampling) had been assumed and the proposed estimators of
population parameters were based on independent repeated responses from
the sampled units. Estimators based on independent repeated responses in
the finite population set-up had also been discussed e.g. in Arnab (1999)
and Chaudhuri et al. (2011, a, b)

In this paper we consider the problem of estimation of the population
proportion related to a sensitive attribute based on such independent mul-
tiple randomized responses under an RR model. In Section 3 we identify
a minimal sufficient statistic for the problem and obtain complete classes
of unbiased and linear unbiased estimators. We prove the admissibility of
two linear unbiased estimators in Section 4 and the non-existence of a best
unbiased or a best linear unbiased estimator in Section 5.

2 Notations and Preliminaries

Let U = {1, 2, . . . , i, . . . , N} be a finite population of N labeled units and
Y be an indicator variable with unknown value yi for the population unit
i, 1 ≤ i ≤ N, where yi is 1 or 0 according as the unit i does or does not possess
a certain attribute. A sequence of units of U with or without repetitions is
considered as a sample s which is selected with a known probability p(s)(> 0)
from a set of possible samples. It is assumed that p(s) is independent of y =
(y1, y2, . . . , yN ). The collection of all such p(s) is called a sampling design p.
The problem of interest is to estimate unbiasedly the unknown population

proportion θ = 1
N

N
Σ
i=1

yi on surveying a sample of units selected according to a

given sampling design p. It is assumed that for p, the inclusion probability πi
of unit i in a sample, defined by Σ

s⊃i
p(s), is positive for every i = 1, . . . , N.Any

p is said to be a without replacement (WOR) sampling design if fsi = 1 for
each i ∈ s and for each s and a with replacement (WR) sampling design
otherwise, where fsi is the number of times the population unit i isselected
in s.
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We consider the attribute to be sensitive and suppose that some RR
device R is employed to produce a randomized response zi on the popula-
tion unit i when included in a sample. We assume that under R, zi’s are
independently distributed with

Pr[zi = 1] = a yi + b = φ(yi), say, Pr[zi = 0] = 1− φ(yi), 1 ≤ i ≤ N (2.1)

for some known constants a( �= 0) and b independent of i, 0 < a + b, b < 1.
The RR model (2.1) holds for many RR devices e.g. for that due to Warner
(1965) with a = 2q − 1, b = 1 − q which consists of asking a population
unit i when included in a sample to report yi or 1− yi with probability q or
1−q(0 < q < 1, q �= 1/2) which are known to the investigator. The RR device
due to Eriksson (1973) is also a special case of (2.1) with a = q0, b = q1 in
which a population unit i is asked to report yi, 1 or 0 with given probabilities
q0, q1 or 1− q0 − q1(q0, q1 > 0, q0 + q1 < 1). Writing ri = (zi − b)/a it follows
that under (2.1)

ER(ri) = yi, VR(ri) = c1 yi + c2, 1 ≤ i ≤ N (2.2)

for some known constants c1 and c2(c1 + c2, c2 > 0), where the suffixes p,
R and both on E (or V ) are used to denote the expectations (or variances)
with respect to p, R and both. As for example, for Warner (1965) device,
c1 = 0, c2 = q(1 − q)/(2q − 1)2, while for Eriksson (1973) device, c1 =
(1− q0 − 2q1)/q0, c2 = q1(1− q1)/q

2
0.

If a single response is obtained from each distinct population unit in
s, one obtains the data d = {zi : i ∈ s}, where {i : i ∈ s} is the set of
distinct population units in s. Let Au be the class of all unbiased estimators
e (d) based on d satisfying EpR(e(d)) = EpER(e(d)) = θ ∀ y and Lu be the
sub-class of all linear unbiased estimators of the form

e(d) = αs + Σ
i∈s

bsiri,Σ
s
αsp(s) = 0, Σ

s⊃i
bsip(s) = 1/N ∀ i. (2.3)

The sub-class of estimators of the form (2.3) with αs = 0 will be denoted
by L0u.

If, however, independent randomized responses are obtained from each
population unit as many times as it is selected in the sample, one obtains
the data d∗ = {zij , j = 1, . . . , fsi : i ∈ s}, where zij is the response from
unit i in its jth selection. Let A∗

u be the class of all unbiased estimators
e(d∗) based on d∗ satisfying EpR(e(d

∗)) = EpER(e(d
∗)) = θ ∀ y and L∗

u be
the sub-class of all linear unbiased estimators of the form

e(d∗) = αs + Σ
i∈s

fsi
Σ
j=1

bsijrij ,Σ
s
αsp(s) = 0, Σ

s⊃i
b′sip(s) = 1/N ∀ i (2.4)
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where rij = (zij − b)/a and b′si =
fsi
Σ
j=1

bsij . The sub-class of estimators of

the form (2.4) with αs = 0 will be denoted by L∗
0u. The classes Au,Lu and

L0u are, respectively, sub-classes of A∗
u,L

∗
u and L∗

0u since d is equivalent to

{zi1 : i ∈ s} Writing d∗0 = {z′i; i ∈ s} with z′i =
fsi
Σ
j=1

zij , we also denote by A∗∗
u

the sub- class of A∗
u consisting of all unbiased estimators e(d∗0) based on d∗0

and by L∗∗
u the sub-class of L∗

u consisting of estimators of the form

e(d∗0) = αs + Σ
i∈s

b′sir
′
i,Σ

s
αsp(s) = 0, Σ

s⊃i
b′sifsip(s) = 1/N ∀ i (2.5)

where r′i =
fsi
Σ
j=1

rij . The sub-class of L∗
0u consisting of estimators of the form

(2.5) with αs = 0 will be denoted by L∗∗
0u. For a WOR sampling design,

the classes Au,A
∗
u and A∗∗

u (or Lu,L
∗
u and L∗∗

u or L0u,L
∗
0u and L∗∗

0u) are all
identical.

An unbiased estimator e = e (d∗) is said to be better than an unbiased
estimator e′ = e′(d∗) if

VpR(e) = VpER(e) + EpVR(e) ≤ VpR(e
′) = VpER(e

′) + EpVR(e
′) ∀y

with strict inequality for at least one y. An estimator e ∈ a sub-class C of A∗
u

is said to be admissible in C if there does not exist any estimator e′ ∈ C better
than e and e is said to be uniformly best in C if VpR(e) ≤ VpR(e

′) ∀y ∀ e′ ∈
C.

3 Minimal Sufficient Statistic and Complete Classes of
Estimators

We first identify a minimal sufficient statistic for the problem in the
followingtheorem.

Theorem 3.1. For any given p,d∗0 is a minimal sufficient statistic.

Proof. Given the selection of s, ziji ∈ s, j = 1, . . . , fsi are independently
distributed with

Pry[zij = 1|s] = φ(yi), P ry[zij = 0|s] = 1− φ(yi).

Hence, the conditional likelihood function given the selection of s is

Py(d
∗|s) =

∏

iεs

{
[φ(yi)]

z′i [1− φ(yi)]
fsi−z′i

}
= py(d

∗
0), say
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and the unconditional likelihood is p(s)py(d
∗
0) whence the sufficiency of d∗0

follows by Factorization Theorem. Following the proof of Theorem 2.3 of
Cassel et al. (1977), it can be shown that d∗0 is, in fact, minimal sufficient.

It now follows, by Rao - Blackwell Theorem, that given any estimator
e(d∗) ∈ A∗

u but /∈ A∗∗
u ∃ an estimator e∗(d∗0) = E(e(d∗)|d∗0) ∈ A∗∗

u which is
better than e (d∗). For e(d∗) given by (2.4),

e∗(d∗0) = E(e(d∗) | d∗0) = αs + Σ
i∈s

b′si
fsi

r′i, b
′
si =

fsi
Σ
j=1

bsij

since Pr[zij = 1|z′i, s] = z′i/fsi, P r[zij = 0|z′i, s] = 1 − z′i/fsi implying that
E[zij |d∗0] = z′i/fsi, i ∈ s, j = 1, . . . , fsi.

We thus obtain the following theorem.

Theorem 3.1. For any given p, the class of estimators A∗∗
u (orL∗∗

u orL∗∗
0u)

is complete in A∗
u (or in L∗

u or in L∗
0u).

Remark 3.1. Arnab (1999) had shown that for a WR sampling design, any
estimator of the form (2.3) can be improved upon by an estimator given by
(2.5) with b′si = bsi/fsi. This now follows as a corollary to Theorem 3.2 and
more generally, for a WR sampling design, any unbiased estimator based on
d can be improved upon by an unbiased estimator based on d∗0.

4 Admissible Linear Unbiased Estimators

In this section we prove the admissibility of two linear unbiased estima-
tors viz.

e1 = Σ
i∈s

b′ir
′
i, b

′
i =

1

NEp(fsi)
=

1

N Σ
s⊃i

fsip(s)
and

e2=Σ
i∈s

b∗sir
′
i, b

∗
si =

1

Nfsi

(
1 + c1+Nc2

fsi

)−1

Ep

(
1 + c1+Nc2

fsi

)−1 =
1

Nfsi

(
1 + c1+Nc2

fsi

)−1

Σ
s⊃i

p(s)
(
1 + c1+Nc2

fsi

)−1 .

The results are given in the following theorem.

Theorem 4.1. For a given p,

(i) e1 is admissible in L∗∗
u (and hence in L∗

u).

(ii) e2 is admissible in L∗∗
0u (and hence in L∗

0u).
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Proof. (i) Consider an estimator e of the form (2.5). Then for θ = 0
i.e. y = (0, . . . 0),

VpR(e) = VpER(e) + EpVR(e) ≥ EpVR(e)

= c2
N
Σ
i=1

∑

s⊃i

p(s)b′2sifsi ≥
c2
N2

N
Σ
i=1

1

Ep(fsi)

on using Cauchy - Schwartrz inequality and the condition of unbiasdness
with equality holding if and only if αs = 0 ∀ s and b′si = b′i ∀ s ⊃ i ∀ i. Thus
for θ = 0, VpR(e) is uniquely minimized for e = e1 and, hence, there can not
exist any e ∈ L∗∗

u better than e1.

(ii) Consider an e of the form (2.5) with αs = 0 ∀ s and let Vi(e) be VpR(e)
for any with yi = 1 and yj = 0 ∀ j( �= i). Then, as in the proof of (i),

N∑

i=1

Vi(e) =
N∑

i=1

∑

s⊃i

p(s)b′2sif
2
si

(
1 +

c1 +Nc2
fsi

)

− 1

N
≥ 1

N2

N∑

i=1

1

Ep

(
1 + c1+Nc2

fsi

)−1 − 1

N

and equality holds if and only if b′si = b∗si ∀ s ⊃ i ∀ i. Thus
N
Σ
i=1

Vi(e) is uniquely

minimized for e = e2 and, hence, there can not exist any e ∈ L∗∗
0u better than

e2.
For a WOR sampling design, both the estimators e1 and e2 reduce to

Horvitz and Thompson (1952) type estimator eHT = 1
N Σ

i∈s
ri
πi
. However, for

a WR sampling design, the two estimators are different unless for each i =
1, . . . , N, fsi = fi ∀ s ⊃ i.

For simple random sampling with replacement (SRSWR) involving n
draws, the estimator e1 reduces to Warner (1965) type estimator

eW =
1

n
Σ
i∈s

r′i

For SRSWR involving n draws, Chaudhuri et al. (2011, a) had considered
two other linear unbiased estimators

e3 =
1

ν
Σ
i∈s

r′i
fsi

and e4 =
1

Nπ
Σ
i∈s

r′i
fsi

where ν = ν(s) is the number of distinct population units in s and π =
1−(1−1/N)n is the inclusion probability of each unit in a sample. These two
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estimators may, however, be inadmissible in L∗∗
0u which may be demonstrated

through the following example.

Example 4.1. Consider Warner (1965) RR device with q = 0.4. By the
results in Chaudhuri et al. (2011, a)

VpR(eW )− VpR(e3) = k1θ(1− θ)− 6k2 ≤
k1
4

− 6k2 ∀y (4.1)

and

VpR(eW )− VpR(e4) =
k3θ − k4θ

2

Nnπ2
− 6k5 ≤

k23
4Nnπ2k4

− 6k5 ∀y (4.2)

with k1 = 1
n − N

N−1

{
Ep

(
1
ν

)
− 1

N

}
, k2 = Ep

(
1
ν2 Σ

i∈s
1
fsi

)
− 1

n , k3 = Nπ2 −

n(π − π∗), k4 = N{π2 − n(π2 − π∗)} and k5 = 1
N2π2Ep

(
Σ
i∈s

1
fsi

)
− 1

n , where

π∗ = 1− 2(1− 1/N)n + (1− 2/N)n is the joint inclusion probability of each
pair of population units in a sample.

Computations give k1 = 1/24, k2 = 3/128 and the RHS of (4.1) < 0 for
N = 4, n = 3 and k3 = 7/27, k4 = 11/27, k5 = 1/25 and the RHS of (4.2)
< 0 for N = 3, n = 2. Thus eW is better than e3 and e4 for these two sets of
values of N and n, respectively.

Chaudhuri et al. (2011, b) had discussed another WR sampling scheme
(see also Raj and Khamis 1958), known as inverse SRSWR , in which units
are selected by SRSWR until a fixed number of distinct population units,
ν say, are included in s. It can be readily verified that for this sampling
scheme, Ep(fsi) = N−1Ep(n(s)) for each i so that e1 takes the form

e1l =
1

Ep(n(s))
Σ
i∈s

r′i

where n(s) is the total number of units (including repetitions) in s. For
inverse SRSWR, Chaudhuri et al. (2011, b) considered two other linear un-
biased estimators

e3l =
1

ν
Σ
i∈s

r′i
fsi

and e4l =
1

n(s)
Σ
i∈s

r′i.

From the results of Chaudhuri et al. (2011, b), it follows that, for Warner
(1965) RR device, VpR(e4l)− VpR(e3l) = k1θ(1− θ)− c2k2 for some k1(> 0)

and k2 =
1
ν2
Ep

(
Σ
i∈s

1
fsi

)
−Ep

(
1

n(s)

)
. It may similarly be seen that VpR(e1l)−
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VpR(e4l) = k3θ − k4θ
2 − c2k5 for some k3, k4 and k5 = Ep

(
1

n(s)

)
− 1

Ep(n(s))
.

Since k2, k5 > 0, examples can be obtained as in Example 4.1 to show that
VpR(e1l) < VpR(e4l) < VpR(e3l) ∀y for certain values of q, N and ν. Thus
both e3l and e4l may be inadmissible in L∗∗

0u.

5 Non-existence of Best Estimators

Sengupta and Kundu (1989) had proved that for a given p, there does
not exist a uniformly best estimator in Au or in Lu unless p is a census i.e.
every s includes all the population units and there exists a uniformly best
estimator in L0u if and only if p is a unicluster sapling design (UCSD) i. e.
any two samples either include the same set of distinct population units or
do not include any common population unit. Following the proof of Theorem
2.1 of Sengupta and Kundu (1989), it can be easily shown that there does
not exist a uniformly best estimator in A∗∗

u or in L∗∗
u (and hence in A∗

u or
in L∗

u) for any non-census p. In the following theorem we prove that there
also generally does not exist a uniformly best estimator in L∗∗

0u (and hence
in L∗

0u).

Theorem 5.1. For a given sampling design p, there exists a uniformly best
estimator in L∗∗

0u if and only if p is a UCSD with fsi = fi ∀ s ⊃ i ∀ i.

Proof. Let p be such that for at least one unit i and for two samples
s1 and s2 containing i, fs1i �= fs2i. Then e1 and e2, defined in the earlier
section, are two different estimators both of which are admissible in L∗∗

0u.
Hence, there can not exist a uniformly best estimator in L∗∗

0u.

Consider now a sampling design p for which fsi = fi ∀ s ⊃ i ∀ i. Since
e1 = 1

N Σ
i∈s

r′i
fiπi

is admissible in L∗∗
0u, a uniformly best estimator in L∗∗

0u, if

exists, must be e1 and, hence, by Rao (1952) Theorem

EpR(e1h) = 0 ∀y (5.1)

for any h = h(d∗0) = Σ
i∈s

csir
′
i, Σ

s⊃i
csip(s) = 0 ∀ i. It is easy to verify that

(5.1) holds if and only if

Ep[ER(e1)h
∗] = Ep

[
1

N
Σ
i∈s

yi
πi
h∗

]
= 0 ∀y

for any h∗ = Σ
i∈s

csiyi, Σ
s⊃i

csip(s) = 0 ∀ i i.e. the Horvitz and Thompson (1952)

estimator 1
N Σ

i∈s
yi
πi

is the best homogeneous linear unbiased estimator of θ
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based on direct responses which can be true if and only if p is a UCSD
see (Godambe, 1955; Hanurav, 1966). Hence, there exists a uniformly best
estimator in L∗∗

0u if and only if p is a UCSD.
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