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Abstract

In this work the analysis of interval-censored data, with Weibull distribution
as the underlying lifetime distribution has been considered. It is assumed
that censoring mechanism is independent and non-informative. As expected,
the maximum likelihood estimators cannot be obtained in closed form. In
our simulation experiments it is observed that the Newton-Raphson method
may not converge many times. An expectation maximization algorithm has
been suggested to compute the maximum likelihood estimators, and it con-
verges almost all the times. The Bayes estimates of the unknown parameters
under gamma priors are considered. If the shape parameter is known, the
Bayes estimate of the scale parameter can be obtained in explicit form. When
both the parameters are unknown, the Bayes estimators cannot be obtained
in explicit form. Lindley’s approximation, importance sampling procedures
and Metropolis Hastings algorithm are used to compute the Bayes estimates.
Highest posterior density credible intervals of the unknown parameter are ob-
tained using importance sampling technique. Small simulation experiments
are conducted to investigate the finite sample performance of the proposed
estimators, and the analysis of two data sets; one simulated and one real life,
have been provided for illustrative purposes.

AMS (2000) subject classification. Primary 62F10, 62F15; Secondary 62N02.
Keywords and phrases. EM algorithm, Gibbs sampling, HPD credible inter-
val, Lindley’s approximation, importance sampling.

1 Introduction

Lifetime data analysis is used in various fields for analyzing data in-
volving the duration between two events. It is also known as event history
analysis, survival data analysis, reliability analysis or time to event analysis
etc. In lifetime data analysis often the data are censored. The event time
is right censored, when follow-up is curtailed without observing the event.
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Left censoring arises when the event occurs at some unknown time prior to
a known specified time point. The event time is considered to be interval
censored when an event occurs within some interval of time, but the exact
time of the event is unknown, see Kalbfleish and Prentice (2002) and the
survey article by Gomez, Calle and Oller (2004) and the references therein.
Jammalamadaka and Mangalam (2003) termed it as middle censoring, see
also Jammalamadaka and Iyer (2004) and Iyer, Jammalamadaka and Kundu
(2009) in this respect.

The interval censoring scheme can be described as follows. Suppose n
identical items are put on a life test and let T1, . . . , Tn be the lifetime of
these items. For the i-th item, there is a random censoring interval (Li, Ri),
which follows some unknown bivariate distribution. Here Li and Ri denote
the left and right random end point, respectively, of the censoring interval.
The life time of the i-th item, Ti, is observable only if Ti /∈ [Li, Ri], otherwise
it is not observable. Define δi = I(Ti /∈ [Li, Ri]), then δi = 1 implies the
observation is not censored. In that case the actual value of Ti is observed.
When δi = 0, only, the censoring interval [Li, Ri] is observed. For all the n
items, the observe data is of the form (yi, δi), i = 1, . . . , n, where

(yi, δi) =

⎧
⎨

⎩

(Ti, 1) if Ti /∈ [Li, Ri]

([Li, Ri], 0) otherwise,
(1.1)

see for example Sparling, Younes and Lachin (2006) or Jammalamadaka
and Mangalam (2003). Note that the interval censoring is a generalization
of the existing left censoring and right censoring. Examples of interval cen-
sored data arise in diverse fields, such as biology, demography, economics,
engineering, epidemiology, medicine, and in public health. Several exam-
ples where interval-censored data can arise have been cited by Gomez et al.
(2004), Jammalamadaka and Mangalam (2003) also provided a nice example
in the sociological context.

Recently, Iyer et al. (2009) considered the analysis of interval/middle
censored data when Ti’s are exponentially distributed. Although, exponen-
tial distribution has been used quite extensively in analyzing lifetime data,
but it can have only constant hazard function, and also the PDF is always a
decreasing function. While analyzing one interval censored data (Example
5.2), it is observed that the exponential distribution may not provide a good
fit to that data set.

In this work, it is assumed that T1, . . . , Tn are independent identically
distributed (i.i.d.) Weibull random variables with the probability density
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function

f(t;α, λ) =

⎧
⎨

⎩

αλtα−1e−λtα if t > 0

0 if t ≤ 0,
(1.2)

here α > 0, λ > 0 are the shape and scale parameters respectively. From now
on, the Weibull distribution with the PDF defined as (1.2) will be denoted as
WE(α, λ). Also it is assumed that the random censoring times Li and Ri are
independent of Ti, and it does not have any information regarding the pop-
ulation parameters α and λ. The assumption that the censoring mechanism
is non-informative is not very uncommon in the survival or in the reliability
analysis, and it happens quite naturally in many real life applications, see
for example Gomez et al. (2004).

First we consider the maximum likelihood estimation (MLE) of α and
λ. It is observed that the maximum likelihood estimators (MLEs) do not
exist in closed form, and they have to be obtained by solving two non-
linear equations. Moreover, the standard Newton-Raphson algorithm may
not even converge sometimes. Due to this reason, we have proposed to use
the expectation maximization (EM) algorithm. It is observed that at each
‘E’ step of the EM algorithm, the corresponding ‘M’ step can be performed
by solving a one dimensional optimization process, and we have provided
a simple fixed point type algorithm to perform that. It is observed in our
simulation experiment that EM algorithm converges almost all the times.

Next we compute the Bayes estimate of the unknown parameters un-
der the assumption of gamma priors for both the shape and scale parame-
ters. Note that the assumptions of gamma priors for the Weibull parameters
are not very uncommon, see for example Berger and Sun (1993) or Kundu
(2008). Non-informative priors also can be obtained as a special case of
the gamma priors. With respect to the gamma priors, it is not possible to
compute the Bayes estimates in explicit forms. They have to be obtained in
terms of integrations only. We suggest to use Lindley’s approximation and
importance sampling procedure to compute approximate Bayes estimates.
We also provide highest posterior density (HPD) credible interval for α and
λ using importance sampling procedure. We perform some simulation ex-
periments to see the performance of the different estimators, and analyze
two data sets for illustrative purposes.

Rest of the paper is organized as follows. We provide the MLEs in
Section 2. The Bayes estimation of the unknown parameters is discussed in
Section 3. Simulation results are presented in Section 4. Two data sets are
analyzed in Section 5. Finally we conclude the paper in Section 6.
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2 Maximum Likelihood Estimator

In this section we provide the MLEs of α and λ. It is assumed that the
observed data is as follows.

(T1, 1), . . . (Tn1 , 1), ([Ln1+1, Rn1+1], 0), . . . , ([Ln1+n2 , Rn1+n2], 0). (2.1)

Here n1 and n2, denote the number of uncensored and censored observations,
respectively, and n1+n2 = n. Based on the assumptions as described in the
previous section, the likelihood function can then be written as

L(α, λ|data) = cαn1λn1

n1∏

i=1

tα−1
i e−λ

�n1
i=1 t

α
i

n1+n2∏

i=n1+1

(e−λlαi − e−λrαi ). (2.2)

Here c is the normalizing constant independent of α and λ. The log-likelihood
function becomes

lnL(α, λ|data)= l(α, λ)=ln c+ n1 lnα+ n1 lnλ+(α−1)
n1∑

i=1

ln ti−λ

n1∑

i=1

tαi

+
n1+n2∑

i=n1+1

ln(e−λlαi − e−λrαi ).

The corresponding normal equations can be written as;

∂l(α,λ)
∂α

=
n1

α
+

n1∑

i=1

ln ti−λ

n1∑

i=1

tαi ln ti+λ

n1+n2∑

i=n1+1

rαi e
−λrαi ln ri−lαi e

−λlαi ln li
e−λlαi −e−λrαi

=0

(2.3)

∂l(α, λ)
∂λ

=
n1

λ
−

n1∑

i=1

tαi +
n1+n2∑

i=n1+1

rαi e
−λrαi − lαi e

−λlαi

e−λlαi − e−λrαi
= 0. (2.4)

The MLEs of α and λ are obtained by solving (2.3) and (2.4) simultaneously.
It is immediate that explicit solutions cannot be obtained from the above
equations. Moreover, they cannot be reduced further, like Type-I, Type-
II or progressive censoring cases. We need to apply a suitable numerical
technique to solve the two non-linear equations. One may use Newton-
Raphson or Gauss-Newton methods or their variants to solve these. The
observed information matrix is given by

I(α, λ) =
(

U V
V W

)

,
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where the explicit expressions of U , V and W are provided in the
Appendix. The observed information matrix may be used to construct the
asymptotic confidence intervals of the unknown parameters. We have per-
formed some simulation experiments to compute the MLEs using standard
Newton-Raphson algorithm with different model parameters (the details are
provided in the simulation section), and it is observed that the iteration
converges between 82% to 85% of the times. Due to this reason we have
proposed to use the following EM algorithm, and it is observed in our simu-
lation experiments that it has a convergence rate almost 100% of the times.

2.1. EM Algorithm. We propose to use the EM algorithm to compute
the MLEs of α and λ. In implementing the EM algorithm, we need to treat
this problem as a missing value problem. The EM algorithm has two steps.
The first step is the ‘E’-step, where the ‘pseudo-likelihood’ function is formed
from the likelihood function, by replacing the missing observations with their
corresponding expected values. The second step of the EM algorithm is the
‘M’-step, where the ‘pseudo-likelihood’ function is maximized to compute
the parameters for the next iteration.

E-step: Suppose the censored observations are denoted by {Zi; i = n1 +
1, . . . , n1 + n2}, then the pseudo likelihood function takes the form

Lc(α, λ) = αnλn
n1∏

i=1

tα−1
i

n1+n2∏

i=n1+1

zα−1
i × e

−λ(
�n1

i=1 t
α
i +
�n1+n2

i=n1+1 z
α
i ),

where for i = n1 + 1, · · · , n1 + n2,

zi = E(T |Li < T < Ri) =

∫ Ri

Li
αλxαe−λxα

dx

e−λLα
i − e−λRα

i
. (2.5)

The pseudo log-likelihood function becomes

lc(α, λ) = n lnα+ n lnλ+ (α− 1)

(
n1∑

i=1

ln ti +
n1+n2∑

i=n1+1

ln zi

)

− λ

(
n1∑

i=1

tαi +
n1+n2∑

i=n1+1

zαi

)

. (2.6)

M-step: It involves maximization of pseudo log-likelihood function (2.6)
with respect to α and λ to compute the next iterates. Let (α(k), λ(k)) be the
estimate of (α, λ) at the k-th stage of the EM algorithm, then (α(k+1), λ(k+1))
can be obtained by maximizing

l∗c (α, λ) = n lnα+ n lnλ+ (α− 1)

(
n1∑

i=1

ln ti +
n1+n2∑

i=n1+1

ln zi(α(k), λ(k))

)
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− λ

(
n1∑

i=1

tαi +
n1+n2∑

i=n1+1

zαi (α
(k), λ(k))

)

, (2.7)

with respect to α and λ, where zi(α(k), λ(k)) can be obtained from (2.5) by
replacing (α, λ) with (α(k), λ(k)). Note that for fixed α, the maximum of
l∗c (α, λ) with respect to λ occurs at λ(k+1)(α), where

λ(k+1)(α) =
n

∑n1
i=1 t

α
i +

∑n1+n2
i=n1+1 z

α
i (α, λ(k))

.

Clearly, for a given α, λ(k+1)(α) is unique and it maximizes (2.7). Then
α(k+1) can be obtained by maximizing l∗c (α, λ(k+1)(α)), the ‘pseudo-profile
log-likelihood function’, with respect to α. Using similar argument as in
Theorem 2 of Kundu (2008), it can be shown that l∗c(α, λ(k+1)(α)) is an
unimodal function of α, with an unique mode. Therefore, if α(k+1) maximizes
l∗c (α, λ(k+1)(α)), then α(k+1) is unique. If α(k+1) maximizes l∗c (α, λ(k+1)(α)),
then it is immediate that (α(k+1), λ(k+1)(α(k+1))) maximizes l∗c(α, λ), as

l∗c(α, λ) ≤ l∗c (α, λ
(k+1)(α)) < l∗c (α

(k+1), λ(k+1)(α(k+1)),

and (α(k+1), λ(k+1)(α(k+1)) is the unique maximum of (2.7). The maximiza-
tion of l∗c(α, λ(k+1)(α)) with respect to α can be performed by solving a fixed
point type equation

g(k)(α) = α, (2.8)

where

g(k)(α) = n

[∑n1
i=1 t

α
i ln ti +

∑n1+n2
i=n1+1 z

α
i (α

(k), λ(k)) ln zi(α(k), λ(k))
∑n1

i=1 t
α
i +

∑n1+n2
i=n1+1 z

α
i (α(k), λ(k))

−
(

n1∑

i=1

ln ti +
n1+n2∑

i=n1+1

ln zi(α(k), λ(k))

)]−1

.

Therefore, simple iterative process can be used to compute (α(k+1), λ(k+1))
from (α(k), λ(k)). At the k-th step, first solve (2.8), by using an iteration of
the type α[i+1] = g(k)(α[i]), the iteration continues until it converges. Once
α(k+1) is obtained, λ(k+1) is obtained as λ(k+1)(α(k+1)).

3 Bayes Estimation
In this section we consider the Bayesian inference of α and λ, when we

have the interval censored data as in (2.1). First we consider the Bayes
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estimation of the scale parameter λ when the shape parameter α is known
and then we consider the case when both are unknown. We also consider the
highest posterior density credible intervals of both the parameters. Before
progressing further, first we make the prior selection.

3.1. Prior Information. When α is known, it is well known that the
scale parameter has a conjugate gamma prior. Therefore, for known α,
gamma prior on λ is the most natural one. If the shape parameter is also
unknown, it is well known that the Weibull distribution does not have a
continuous conjugate priors, although there exists continuous-discrete joint
prior distributions, see Soland (1969). Here the continuous part corresponds
to the scale parameter, and the discrete part corresponds to the shape pa-
rameter. This method has been highly criticized due to its difficulty in
interpretations and applications, see Kaminskiy and Krivtsov (2005). Fol-
lowing the approaches of Berger and Sun (1993) and Kundu (2008), when
both the parameters are unknown, it is assumed that both α and λ have
gamma priors and they are independently distributed.

It is assumed that α and λ have the following independent gamma prior
distributions.

π1(α|a, b) = fGA(α; a, b), α > 0, (3.1)
π2(λ|c, d) = fGA(λ; c, d), λ > 0. (3.2)

Here for β > 0 and θ > 0,

fGA(x;β, θ) =
θβ

Γ(β)
xβ−1e−θx, x > 0,

and it will be denoted by gamma(β, θ). Here all the hyper parameters a, b, c
and d are assumed to be known.

3.2. Shape Parameter Known. Here we obtain the Bayes estimate of λ
when α is known. Based on the observed sample, the likelihood function is
given by

L(α, λ|data) = cαn1λn1

n1∏

i=1

tα−1
i e−λ

�n1
i=1 t

α
i

n1+n2∏

i=n1+1

(1− e−λvi)e−λ
�n1+n2

i=n1+1 l
α
i ,

(3.3)
where vi = rαi − lαi .

As in Iyer et al. (2009), by a slight abuse of notation, writing vi = vn1+i

and li = ln1+i we can write (3.3) as

L(α, λ|data) = cαn1λn1

n1∏

i=1

tα−1
i e−λ

�n1
i=1 t

α
i

n2∏

i=1

(1− e−λvi)e−λ
�n2

i=1 l
α
i ,



Interval-censored data with Weibull lifetime distribution 127

Based on the prior (3.2), the posterior distribution of λ is given by

π(λ|α, data) =
L(α, λ|data)π2(λ|c, d)∫ ∞

0 L(α, λ|data)π2(λ|c, d)dλ

=
λn1+c−1e−λ(d+

�n1
i=1 t

α
i +
�n2

i=1 l
α
i )

∏n2
i=1(1− e−λvi)

∫ ∞
0 λn1+c−1e−λ(d+

�n1
i=1 t

α
i +
�n2

i=1 l
α
i )

∏n2
i=1(1− e−λvi)dλ

.

(3.4)

To simplify (3.4), we use the expansion

n2∏

i=1

(1− e−λvi) =
∑

Pj

(−1)|Pj |e−λ(v.Pj ), (3.5)

where Pj is a vector of length n2 and each entry of Pj is either a 0 or a
1. Here |Pj | denotes the sum of elements of Pj and v = (v1, . . . , vn2). The
summation on the right-hand side of (3.5) is over 2n2 elements and (v.Pj)
denote the dot product between the two vectors of equal lengths. Using (3.5),
(3.4) can be written as (See Iyer et al., 2009)

π(λ|α, data)=
∑

Pj
(−1)|Pj |λn1+c−1e−λ(d+

�n1
i=1 t

α
i +
�n2

i=1 l
α
i +(v.Pj))

∑
Pj
(−1)|Pj |Γ(c+n1)/(d+

∑n1
i=1 t

α
i +

∑n2
i=1 l

α
i +(v.Pj))c+n1

.

(3.6)

Therefore, the Bayes estimate of λ under squared error loss function is

E(λ|data) =
∑

Pj
(−1)|Pj |/(d+

∑n1
i=1 t

α
i +

∑n2
i=1 l

α
i + (v.Pj))c+n1+1

∑
Pj
(−1)|Pj |/(d+

∑n1
i=1 t

α
i +

∑n2
i=1 l

α
i + (v.Pj))c+n1

. (3.7)

Although (3.7) can be evaluated easily for small n2, it is difficult to compute
numerically for large n2. In general we propose Gibbs sampling technique
to compute E(λ|data). It is easily seen that when n2 = 0, then

π(λ|α, data) ∼ Gamma(c+ n1, d+
n1∑

i=1

tαi ). (3.8)

So we can choose the initial value for the parameter by generating observa-
tion from the above distribution. Also, the conditional density of T , given
T ∈ (L,R), is

fT |T∈(L,R)(x|λ) =
αλtα−1e−λtα

e−λLα − e−λRα if L < x < R. (3.9)
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This conditional distribution can be used to update the value of λ in Gibbs
sampling scheme. Hence using (3.8) and (3.9), the algorithm for Gibbs
sampling procedure to generate λ from the posterior distribution is described
below.

Algorithm:

• Step 1: Generate λ1,1 from Gamma(c + n1, d+
∑n1

i=1 t
α
i ).

• Step 2: Generate tn1+i for i = 1, . . . , n2 from fT |T∈(ln1+i,rn1+i)(·|λ1,1).

• Step 3: Generate λ2,1 from Gamma(c+n1, d+
∑n1

i=1 t
α
i +

∑n1+n2
i=n1+1(t

(i))α).

• Step 4: Go back to Step 2, and replace λ1,1 by λ2,1 and repeat Steps
2 and 3 for N times.

The Bayes estimate of λ under squared error loss function is then given by

1
N −M

N∑

j=M+1

λ2,j,

where M is the burn-in sample. Hence HPD credible interval can also be
obtained using the method of Chen and Shao (1999).

3.3. Both Parameters Unknown. We compute the Bayes estimate of the
unknown parameters under squared error loss function using the priors in
(3.1) and (3.2). Using the likelihood function (2.2), the joint distribution of
data, α, and λ can be written as

L(α, λ|data)π1(α|a, b)π2(λ|c, d).
Then, the joint posterior density of α and λ given the data is

π(α, λ|data) = L(α, λ|data)π1(α|a, b)π2(λ|c, d)∫ ∞
0

∫ ∞
0 L(α, λ|data)π1(α|a, b)π2(λ|c, d)dαdλ

.

Let g(α, λ) be any function of α and λ. Then, the Bayes estimate of g(α, λ)
under squared error loss function is given by

ĝB(α, λ) = Eα,λ|data(g(α, λ))

=

∫ ∞
0

∫ ∞
0 g(α, λ)L(α, λ|data)π1(α|a, b)π2(λ|c, d)dαdλ

∫ ∞
0

∫ ∞
0 L(α, λ|data)π1(α|a, b)π2(λ|c, d)dαdλ

.

(3.10)

It is clear from the expression (3.10) that there is no closed form of the
estimators. We suggest Lindley’s approximation and Importance Sampling
procedure to compute the Bayes estimates.
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3.4. Lindley’s Approximation. Lindley’s approximation has been used
to approximate the ratio of two integrals in many occasion. Using Lindley’s
approximation, the Bayes estimates of α and λ are

α̂B = α̂+
1
2

(
l30τ

2
11 + l03τ21τ22 + 3l21τ11τ12 + l12(τ22τ11 + 2τ221)

)

+
(
a− 1
α̂

− b

)

τ11 +
(
c− 1

λ̂
− d

)

τ12 (3.11)

and

λ̂B = λ̂+
1
2

(
l30τ12τ11 + l03τ

2
22 + l21(τ11τ22 + 2τ212) + 3l12τ22τ21

)

+
(
a− 1
α̂

− b

)

τ21 +
(
c− 1

λ̂
− d

)

τ22. (3.12)

Here α̂ and λ̂ are the MLEs of α and λ respectively, and a, b, c, d are the
known hyper-parameters. The explicit expressions of τ11, τ12, τ21, τ22, τ30,
τ03, l21, l12 are provided in Appendix.

3.5. Importance Sampling. In this section, we apply importance sam-
pling procedure to compute Bayes estimates and HPD credible intervals.
The joint posterior density function of α and λ using the priors (3.1) and
(3.2) can be written as

π(α, λ|data) ∝ αa+n1−1e−αbλc+n1−1e−λ(d+
�n1

i=1 t
α
i )

n1∏

i=1

tα−1
i

×
n1+n2∏

i=n1+1

(e−λlαi − e−λrαi )

∝ fGA(α : a+ n1, b−
n1∑

i=1

ln ti)fGA(λ; c+n1, d+
n1∑

i=1

tαi +
n1+n2∑

i=n1+1

lαi )

× h(α, λ), (3.13)

where h(α, λ) =

∏n1+n2
i=n1+1(1− e−λ(rαi −lαi ))

(d+
∑n1

i=1 t
α
i +

∑n1+n2
i=n1+1 l

α
i )c+n1

.

Let us denote the right-hand side of (3.13) as πN (α, λ|data). Note that
π(α, λ|data) and πN (α, λ|data) differ only by the proportionality constant.
The Bayes estimate of g(α, λ) under squared error loss function is given by

ĝB(α, λ) =

∫ ∞
0

∫ ∞
0 g(α, λ)πN (α, λ|data)dαdλ

∫ ∞
0

∫ ∞
0 πN (α, λ|data)dαdλ . (3.14)
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It is clear from (3.14) that to approximate ĝB(α, λ), using the importance
sampling procedure one need not compute the normalizing constant. We use
the following procedure:

• Step 1: Generate

α1 ∼ gamma

(

a+ n1, b−
n1∑

i=1

ln ti

)

and

λ1|α1 ∼ gamma

(

c+ n1, d+
∑

tαi +
n1+n2∑

i=n1+1

lαi

)

.

• Step 2: Repeat this procedure to obtain (α1, λ1), . . . , (αN , λN ).

• Step 3: The approximate value of (3.14) can be obtained as
∑N

i=1 g(αi, λi)h(αi, λi)
∑N

i=1 h(αi, λi)
.

So the Bayes estimates of α and λ are

α̂IS =
∑N

i=1 αih(αi, λi)
∑N

i=1 h(αi, λi)
and λ̂IS =

∑N
i=1 λih(αi, λi)

∑N
i=1 h(αi, λi)

.

The corresponding posterior variances can be obtained as
∑N

i=1 α
2
i h(αi, λi)

∑N
i=1 h(αi, λi)

− α̂2
IS and

∑N
i=1 λ

2
i h(αi, λi)

∑N
i=1 h(αi, λi)

− λ̂2
IS.

Next we discuss how to obtain HPD credible intervals of α and λ. The ad-
vantage of importance sampling procedure is that the generated sample can
be used to construct the HPD credible intervals. We illustrate the procedure
for the parameter α, but it can be similarly obtained for any other functions
of the parameters also. Suppose ap is such that

P [α ≤ ap|data] = p.

Now consider the following function

g(α, λ) =

⎧
⎨

⎩

1 if α ≤ ap

0 if α > ap.
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Clearly,
E(g(α, λ)|data) = p.

Therefore, an approximate Bayes estimate of ap under the squared error loss
function can be obtained from the generated sample {(α1, λ1), . . . , (αN , λN )}
as follows. Let

wi =
h(αi, λi)

∑N
i=1 h(αi, λi)

; i = 1, . . . , N.

Rearrange {(α1, w1), . . . , (αN , wN )} as {(α(1), w(1)), . . . , (α(N), w(N))}, where
α(1) < . . . < α(N). Note that w(i)’s are not ordered, they are just associated
with α(i). Then an Bayes estimate of ap is

âp = α(Np),

where Np is the integer satisfying

Np∑

i=1

w(i) ≤ p <

Np+1∑

i=1

w(i).

Now using the above procedure a 100(1 − γ)% credible interval of α can be

obtained as (âδ, âδ+1−γ), for δ = w(1), w(1)+w(2), . . . ,

Nγ∑

i=1

w(i). Therefore,

an 100(1 − γ)% HPD credible interval of α becomes

(âδ∗ , âδ∗+1−γ),

where δ∗ is such that

âδ∗+1−γ − âδ∗ ≤ âδ+1−γ − âδ for all δ.

4 Simulation Study

We generate interval-censored observations from the Weibull distribution
with α = 1.5 and λ = 1 for different sample size. For the random censoring
intervals, consider Zi = Ri − Li, Li and Zi are independent exponential
random variables and they are independent of Ti. We generate observations
from Zi and Li and hence get Ri = Zi + Li. We assume that Li and Zi

have means 1/θ1 and 1/θ2, respectively. The simulation is carried out for
sample sizes n = 20, 30, 50 and 100, and for different choices of (θ1, θ2). We
choose (θ1, θ2) = (0.50, 0.75) (scheme 1), (1.25, 1.0) (scheme 2) and (1.50,
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0.25) (scheme 3) for the simulation study. These three schemes correspond
to different proportion of censored observation. Note that The proportion
of censored (PC) observation under an interval censoring scheme is given by

PC =
∫ ∞

0

∫ ∞

0
(e−λlα − e−λ(l+z)α)θ1θ2e−(θ1l+θ2z)dldz

= θ1

∫ ∞

0
e−λlαe−θ1ldl − θ1θ2

∫ ∞

0

∫ ∞

0
e−λ(l+z)αe−(θ1l+θ2z)dldz.

The above integrals are computed using R software (Ri386 3.0.0). The pro-
portion of censoring under different choices of θ1 and θ2 are given in Table 1.

For each set of the simulated data, we generate observations of the form
(1.1) and calculate different estimates of α and λ. In each case, the MLEs are
obtained by EM algorithm. We replicate the process 1000 times. We have
computed the MLEs in all these cases by using standard Newton-Raphson
algorithm and also by using the EM algorithm. Newton-Raphson algorithm
converges between 82%–85% of the times, where as the EM algorithm con-
verges all the times, except only two cases ((i) Scheme 1, n = 50 and (ii)
Scheme 2, n = 50). We report the results based on the EM algorithm ignor-
ing those two cases. We report the average bias (AB) and means squared
error (MSE) in Table 1. From the simulation study, it is clear that as sample

Table 1: The average bias (AB) and mean squared error (MSE) in parenthe-
ses corresponding to MLEs of α and λ corresponding to different proportion
of censoring (PC).
(θ1, θ2) PC n α λ

(0.50, 0.75) 0.22 20 0.2367 (0.2195) 0.0597 (0.1068)
(Scheme 1) 30 0.1634 (0.1013) 0.0307 (0.0575)

50 0.1299 (0.0607) 0.0163 (0.0308)
100 0.1029 (0.0305) 0.0035 (0.0148)

(1.25, 0.75) 0.37 20 0.2954 (0.2798) 0.0626 (0.1134)
(Scheme 2) 30 0.2157 (0.1329) 0.0363 (0.0657)

50 0.1653 (0.0754) 0.0138 (0.0341)
100 0.1417 (0.0436) 0.0014 (0.0160)

(1.50, 0.25) 0.54 20 0.7537 (1.1394) 0.4026 (1.3749)
(Scheme 3) 30 0.6047 (0.6253) 0.2274 (0.3383)

50 0.5036 (0.3666) 0.1459 (0.1303)
100 0.4564 (0.2610) 0.0991 (0.0489)
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size increases the biases and MSEs decrease, as expected. The performances
of the estimators are better when the proportion censored observation is less.

5 Applications

Here we illustrate our methodology with two examples. The first example
deals with a simulated data set and the second one is based on real life data.

Example 5.1. In this example we consider a simulated data set for n =
30. Interval censored data were generated by taking α = 1.5, λ = 1 and
(θ1, θ2) = (0.50, 0.75). In the generated data set, we have 24 complete
observations and 6 censoring intervals. The complete observations are

0.8820 1.1739 0.4123 0.4565 1.9935 1.0662 1.3516 0.3130
1.3364 1.6493 0.3000 0.8187 0.0253 0.6841 0.2672 1.1791
0.3460 0.8371 0.9184 0.8331 0.5123 0.1045 0.2159 0.0992

and the censoring intervals are [0.7286, 2.7756], [0.4465, 1.7119], [0.0204,
2.7927], [0.6566, 1.9712], [1.5674, 2.4757], [0.1700, 2.3342].

The maximum likelihood estimate of the parameters with standard er-
ror in parentheses are α̂ = 1.4945 (0.2300) and λ̂ = 1.1864 (0.2338). The
asymptotic variance-covariance matrix based on observed information ma-
trix is given by

I−1(α̂, λ̂) =
[
0.0530 −0.0091
−0.0091 0.0547

]

.

The asymptotic 95% confidence intervals of α and λ are (1.0437, 1.9453) and
(0.7281, 1.6447), respectively. Next we compute the Bayes estimates of α
and λ. In the absence of any prior information, we compute Bayes estimates
under non-informative prior. The Bayes estimate of α and λ by Lindley’s
approximation method are α̂B = 1.4944 and λ̂B = 1.1845. We also compute
Bayes estimate based on 1000 importance sample under non-informative
prior. The estimates are α̂IS = 1.4374 (0.2216) and λ̂IS = 1.1745 (0.2281).
The 95% HPD credible intervals of α and λ are [1.0103, 1.8921] and [0.7705,
1.6334], respectively.

Example 5.2. Here we consider a real life data set (Finkelstein, 1986;
Lindsey and Ryan, 1998) from a retrospective study of patients with breast
cancer. The study was designed to compare radiation therapy alone versus
in combination with chemotherapy with respect to the time to cosmetic de-
terioration. This example has been analyzed by several authors to illustrate
various methods for interval censored data. For illustration, we analyze the
data set corresponding to combined radiotherapy and chemotherapy group.
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Patients were seen initially every 4 to 6 months, with decreasing frequency
over time. If deterioration was seen, it was known only to have occurred
between two visits. Deterioration was not observed in all patients during
the course of the trial, so some data were right-censored. The data set is,
available in Lawless (2003, pp. 143), provided below for convenience.

(8, 12], (0, 22], (24, 31], (17, 27], (17, 23], (24, 30], (16, 24], (13, ∞), (11,
13], (16, 20], (18, 25], (17, 26], (32, ∞), (23, ∞), (44, 48], (10, 35], (0, 5], (5,
8], (12, 20], (11, ∞), (33, 40], (31, ∞), (13, 39], (19, 32], (34, ∞), (13, ∞),
(16, 24], (35, ∞), (15, 22], (11, 17], (22, 32], (48, ∞), (30, 34], (13, ∞), (10,
17], (8, 21], (4, 9], (11, ∞), (14, 19], (4, 8], (34, ∞), (30, 36], (18, 24], (16,
60], (35, 39], (21, ∞), (11, 20].

The observations with L = 0 are left censored and with R = ∞ are
right censored. Let n1 be the number of left censored observation, n2 the
number of right censored observations and n3 the number of interval censored
observations. There are total 47 observations with n1 = 2, n2 = 13 and
n3 = 32. Note that there is no complete observation. The likelihood function
can then be written as

L(α, λ|data) =
n1∏

i=1

(1− e−λrαi )
n1+n2∏

i=n1+1

e−λlαi

n1+n2+n3∏

i=n1+n2+1

(e−λlαi − e−λrαi ), (5.1)

Note that the likelihood (5.1) is a special case of (2.2). The maximum like-
lihood estimate of α and λ are α̂ = 2.0234 and λ̂ = 0.0012. The asymptotic
variance-covariance matrix is given by

I−1(α̂, λ̂) =
[
0.08432 −0.00033
−0.00033 1.3175 × 10−7

]

.

The 95% asymptotic confidence intervals of α and λ are (1.8666, 2.1802)
and (0.0005, 0.0019), respectively. Therefore, it is clear that the exponential
distribution cannot be used to analyze this data set.

Next we obtain the Bayes estimate of the unknown parameters. The
posterior distribution under gamma priors of α and λ is given by

π(α, λ|data) =
n1∏

i=1

(1− e−λrαi )
n1+n2∏

i=n1+1

e−λlαi

n1+n2+n3∏

i=n1+n2+1

(e−λlαi − e−λrαi )

×αa−1e−bαλc−1e−dλ.

Since we do not have any prior information we consider only non-informative
priors to obtain Bayes estimates. We obtain Bayes estimates both by Lind-
ley’s approximation and MCMC technique. The estimates by Lindley’s ap-
proximation method are α̂B = 1.9642 and λ̂B = 0.0019.
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In this case the importance sampling technique can not be applied be-
cause it is not possible to generate importance sample. We obtain the Bayes
estimates under squared error loss function using Metropolis-Hastings (M-
H) algorithm. Let θ = (α, λ). We consider symmetric proposal density of
type q(θ′|θ) = q(θ|θ′). In particular, we take bivariate normal distribution
as the proposal density. That is, we take

q(θ′|θ) ≡ N2(θ, Sθ),

where Sθ is the variance-covariance matrix. It may be noted that if we
generate observation from bivariate normal distribution, we may get negative
observations which are not acceptable as the parameters under consideration
are positive valued. Keeping this in mind, the M-H algorithm steps are given
below.

1. Set initial values θ(0).

2. For t = 1, . . . , T repeat the following steps.

• Set θ= θ(t−1)

• Generate new candidate parameter values δ from N2(log(θ), Sθ).

• Set θ′ = exp(δ)

• Calculate α = min
(

1,
π(θ′|x)θ′1θ′2
π(θ|x)θ1θ2

)

• d. Update θ(t)= θ′ with probability α; otherwise set θ(t)= θ.

The MLE of θ is considered as initial value for θ. The choice of covariance
matrix Sθ is an important issue, see Natzoufras (2009) for details. One choice
for Sθ is the asymptotic variance-covariance matrix I−1(α̂, λ̂). We generate
M-H samples with Sθ = I−1(α̂, λ̂), but the acceptance rate for this choice
of Sθ is about 10%. By acceptance rate, we mean the proportion of times a
new sample is generated as the sampling proceeds. When acceptance rate is
low, a good strategy is to run a small pilot run using diagonal Sθ to roughly
estimate the correlation structure of the target posterior distribution (see
Natzoufras, 2009) and then rerun the algorithm using the corresponding
estimated variance-covariance matrix Σ̃θ. Gelmen et al. (1995, pp. 334–
335) suggested that the proposal variance-covariance matrix can be taken
as Sθ = c2Σ̃θ with c2 ≈ 5.8/d, where d is the number of parameters. Here
we first carry out a pilot run for N = 2000 with diagonal Sθ and obtain Σ̃θ

using these 2000 samples. Then we rerun the algorithm taking Sθ = 2.9Σ̃θ for
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10000 times. The acceptance rate is 25.6%. We discard the initial 1000 burn-
in sample and calculate the estimates based on the remaining observations.
The estimates of the parameters are α̂MH = 2.1910 and λ̂MH = 0.0011. The
95% HPD credible intervals for α and λ are [1.8092, 2.2460] and [0.0010,
0.0033], respectively.

6 Conclusions

In this work we have considered both classical and Bayesian analysis of
the interval censored data, when the lifetime of the items follows Weibull
distribution. The MLEs do not have explicit forms. EM algorithm has been
used to compute the MLEs and it works quite well. The Bayes estimates
under the squared error loss function also do not exist in explicit form. We
have proposed to use importance sampling technique to compute the Bayes
estimates when the shape and scale parameters have independent gamma
priors. Although we have considered gamma prior on the shape parameter,
but a more general prior, namely a prior which has the log-concave PDF
may be used, and the method can be easily incorporated in that case. We
have not considered any covariates in this paper. But in practice often
the covariates may be present. It will be interesting to develop statistical
inference of the unknown parameters in presence of covariates. More work
is needed in that direction.
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Appendix

Note that we have two parameters α and λ. Let π0(α, λ) be the joint prior distribution
of α and λ. Using the notation (λ1, λ2) = (α, λ), the Lindley’s approximation can be
written as

�g = g(�λ1, �λ2) +
1

2
(A+ l30B12 + l03B21 + l21C12 + l12C21) + p1A12 + p2A21,

where

A =
2�

i=1

2�
j=1

wijτij , lij =
∂i+jl(λ1, λ2)

∂λi
iλ

j
2

, i, j = 0, 1, 2, 3, and

i+ j = 3, pi =
∂p

∂λi
, wi =

∂g

∂λi
,

wij =
∂2g

∂λi∂λj
, p = ln π0(λ1, λ2), Aij = wiτii + wjτji, Bij = (wiτii + wjτij)τii,

cij = 3wiτiiτij + wj(τiiτjj + 2τ 2
ij).

Now when g(α,λ) = α, we have w1 = 1, w2 = 0, wij = 0, i, j = 1, 2, then

A=0, B12 = τ 2
11, B21 = τ21τ22, C12 = 3τ11τ12, C21 = (τ22τ11+2τ 2

21)A12 = τ11, A21 = τ12.

Now (3.11) follows by using

p1 =

�
a− 1�α − b

�
and p2 =

�
c− 1�λ − d

�
.
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For (3.12), note that g(α, λ) = λ; then

w1 = 0, w2 = 1, wij = 0, i, j = 1, 2;

and

A=0, B12 = τ12τ11, B21 = τ 2
22, C12 = τ11τ22+2τ 2

12, C21 =3τ22τ21 A12 = τ21, A21 = τ22.

Here we have

l(α, λ) = ln c+ n1 lnα+ n1 lnλ+ (α− 1)

n1�
i=1

ln ti − λ

n1�
i=1

tαi

+

n1+n2�
i=n1+1

ln(e−λlαi − e−λrαi ),

τ11 =
W

UW − V 2
, τ12 = − V

UW − V 2
, and τ22 =

U

UW − V 2

where

U = −∂2l(α, λ)

∂α2
=

n1

α2
+ λ

n1�
i=1

tαi (ln ti)
2 −

n1+n2�
n1+1

ξiξ
′
αi − ξ2αi

ξ2i
,

V = −∂2l(α, λ)

∂α∂λ
=

n1�
i=1

tαi ln ti −
n1+n2�
n1+1

ξiξαλi − ξαiξλi
ξ2i

,

W = −∂2l(α, λ)

∂λ2
=

n1

λ2
−

n1+n2�
n1+1

ξiξ
′
λi − ξ2λi
ξ2i

,

l30 =
∂3l(α, λ)

∂α3
=

2n1

α3
− λ

n1�
i=1

tαi (ln ti)
3 +

n1+n2�
n1+1

2ξ3αi − 3ξiξαiξ
′
αi + ξ2i ξ

′′
αi

ξ3i
,

l03 =
∂3l(α, λ)

∂λ3
=

2n1

λ3
+

n1+n2�
n1+1

2ξ3λi − 3ξiξλiξ
′
λi + ξ2i ξ

′′
λi

ξ3i
,

l12 =
∂3l(α, λ)

∂α∂λ2
=

n1+n2�
n1+1

ξi(ξiξ
′
αλi − ξαiξ

′
λi)− 2ξλi(ξiξαλi − ξαiξλi)

ξ3i
,

l21 = −
n1�
i=1

tαi (ln ti)
2 +

n1+n2�
n1+1

ξi(ξ
′
αiξλi + ξiξ

′′
αλi − 2ξαiξαλi)− 2ξλi(ξiξ

′
αi − ξ2αi)

ξ3i
,

ξi = e−λlαi − e−λrαi ,

ξαi =
∂

∂α
ξi = −λlαi e

−λlαi ln li + λrαi e
−λrαi ln ri,

ξ
′
αi =

∂

∂α
ξαi = −λ(ln li)

2(lαi − λl2αi )e−λlαi + λ(ln ri)
2(rαi − λr2αi )e−λrαi ,

ξ
′′
αi =

∂

∂α
ξ
′
αi = −λ(ln li)

3(lαi − 3λl2αi + λ2l3αi )e−λlαi + λ(ln ri)
3(rαi − 3λr2αi + λ2r3αi )e−λrαi ,
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ξαλi =
∂

∂λ
ξαi = −lαi ln lie

−λlαi (1− λlαi ) + rαi ln rie
−λrαi (1− λrαi ),

ξ
′
αλi =

∂

∂λ
ξαλi = −lαi ln lie

−λlαi (λl2αi − 2lαi ) + rαi ln rie
−λrαi (λr2αi − 2rαi ),

ξ
′′
αλi =

∂

∂λ
ξ′αi = −(ln li)

2[lαi − 3λl2αi + λ2l3αi ]e−λlαi + (ln ri)
2[rαi − 3λr2αi + λ2r3αi ]e−λrαi ,

ξλi =
∂

∂λ
ξi = −lαi e

−λlαi + rαi e
−λrαi ,

ξ
′
λi =

∂

∂λ
ξλi = l2αi e−λlαi − r2αi e−λrαi ,

ξ
′′
λi =

∂

∂λ
ξ
′
λi = −l3αi e−λlαi + r3αi e−λrαi .

Biswabrata Pradhan

SQC & OR Unit

Indian Statistical Institute

203 B.T. Road

Kolkata 700108, India

Debasis Kundu

Department of Mathematics and Statistics

Indian Institute of Technology

Kanpur 208016, India

E-mail: kundu@iitk.ac.in

Paper received: 26 October 2012; revised: 23 October 2013.


	Analysis of Interval-Censored Data with Weibull Lifetime Distribution
	Abstract
	Introduction
	Maximum Likelihood Estimator
	EM Algorithm

	Bayes Estimation
	Prior Information
	Shape Parameter Known
	Both Parameters Unknown
	Lindley's Approximation
	Importance Sampling

	Simulation Study
	Applications
	Conclusions
	References


