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Abstract The concept of “signature” is a useful tool to study the reliability
properties of a coherent system. In this paper, we consider a coherent system
consisting of n components and assume that the system is not working at time
t. Mixture representations of the inactivity times (IT) of the system and IT of
the components of the system are obtained under different scenarios on the
signatures of the system. Some stochastic comparisons are made on IT of the
coherent systems with same type and different type of components and some
aging properties of the IT of the system and its components are investigated.
It is proved, under some conditions on the vector of signatures of the system,
that when the components of the system have decreasing reversed hazard rate,
the mean of the IT (MIT) of the system and the MIT of the components of the
system are increasing in time. Several examples and illustrative graphs are also
provided.

Keywords k-out-of-n systems · Reversed hazard rate · Mean inactivity time ·
Order statistics · Reliability · Signature · Conditional lifetime

1 Introduction

Samaniego (1985) introduced a useful concept, called “signature” of a coherent
system, which enables one to write the lifetime distribution function of a coher-
ent system as a mixture of the distribution function of the ordered lifetimes of
its components. Recall that a system of n components is said to be a coherent
system if there is no irrelevant component in the system (a component is said to

S. Goliforushani · M. Asadi (B)
Department of Statistics, University of Isfahan, Isfahan, 81744, Iran
e-mail: m.asadi@stat.ui.ac.ir



242 Sankhya B (November 2011) 73:241–262

be irrelevant if its performance does not effect the performance of the system)
and the system is nondecreasing in each vector argument. Consider a coherent
system consists of n components with independent identically distributed
(i.i.d.) lifetimes X1, X2, ..., Xn which are distributed according to a common
continuous distribution F. Let T = T(X1, X2, ..., Xn) be the system’s lifetime.
Samaniego (1985) defined the signature of the system to be the probability
vector s = (s1, s2, ..., sn) such that

si = P {T = Xi:n} , i = 1, 2, ..., n,

where Xi:n denotes the ith ordered lifetime of the components. It can be shown
that si = ni

n! , in which ni is the number of ways that distinct X1, X2, . . . , Xn

can be ordered such that T(x1, x2, ..., xn) = xi:n, i = 1, ..., n, where xi:n is the
value of Xi:n. As the vector s is a probability vector and does not depend
on the common distribution function of Xi’s, the distribution function of T
is a mixture of the distribution functions of X1:n, X2:n, . . . , Xn:n with weights
s1, s2, ..., sn. That is

F̄T(t) =
n∑

i=1

si P (Xi:n > t) , (1)

where F̄T(t) = P(T > t) is the survival function of the system. Navarro et al.
(2008) have shown that this result is true even when the assumption that the
random variables are independent is replaced with the assumption that the
random variables are exchangeable. In recent years, researchers have shown
intensified interest in the study of the reliability properties of a coherent
system based on the properties of its signature. Kochar et al. (1999) gave
some applications of the signatures for comparing the coherent systems in
the case of i.i.d. components. Navarro et al. (2005, 2007, 2008) used the
concept of signature to compare coherent systems when the components are
not necessarily independent. Zhang (2010) obtained some stochastic ordering
results in coherent systems with exchangeable components.

Among other directions of the research on the properties of coherent
systems, investigation on the stochastic properties of residual lifetimes of k-
out-of-n systems (as special case of coherent systems) have been of particular
interest between the authors. Bairamov et al. (2002) and Asadi and Bairamov
(2005) studied the properties of the mean residual life function of parallel
systems. Asadi and Bairamov (2006) investigated the mean residual life func-
tion of k-out-of-n systems. Most of the results on the stochastic properties
of the coherent systems use the concept of signature. Some of the research
papers that use the concept of signature are as follows. Navarro and Shaked
(2006) studied the limiting behavior of the hazard rate of the coherent systems.
Khaledi and Shaked (2007) made some stochastic comparisons between the
residual lifetime of the coherent systems under some conditions on the vector
of signatures. Asadi and Goliforushani (2008) studied the mean residual life
function of the coherent systems, under the condition that some of the compo-
nents in the system have failed, and explored that when the components have
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increasing failure rate then the mean residual life of the system is decreasing.
Li and Zhang (2008) investigated some stochastic ordering results on residual
lifetime of coherent systems. Navarro and Hernandez (2008) investigated the
mean residual life functions of finite mixtures and systems. Samaniego et al.
(2009) introduced a concept of dynamic signature and used it to compare the
reliability of new and used systems.

In a recent paper, Navarro et al. (2008) gave a mixture representation of the
residual lifetime of the coherent system. In other words, they have shown that

P (T − t > x|T > t) =
n∑

i=1

si(t)P (Xi:n − t > x|Xi:n > t) , (2)

where si(t),is defined as follows

si(t) = P (T = Xi:n|T > t) .

Various properties of Eq. 2 are investigated by Navarro et al. (2008).
In reliability engineering the inactivity times (IT) of a component or system

are also considered by researchers. If X denotes the lifetime of an alive
organism and we assume that at time t, X < t, then the IT of the component
is defined to be t − X|X < t. The concept of IT is closely related to left
censored data. Navarro et al. (1997) have made some stochastic comparisons
between lifetime random variables based on IT and Asadi and Berred (2011)
investigated some properties of mean of IT (MIT). Some of the n-component
systems have the property that when r, (r ≤ n), components of the system fail,
the system still operate. For example, parallel structure is working if at least
one component out of n components is alive. Assume that an n-component
system with the property described above is put in operation at time t = 0
and suppose that the system is not monitored continuously. An interesting
problem is to get inference about the history of the system, e.g. when the
individual components have failed. These kind of problems are related to the
problem of analyzing the so-called autopsy data, i.e. information obtained by
examining the component states of a failed system. Motivated by this, Asadi
(2006) defined and investigated the concept of MIT of a parallel system at
the system level. Tavangar and Asadi (2009) have extended the Asadi’s (2006)
results to k-out-of-n structures. Khaledi and Shaked (2007) and Li and Zhang
(2008) obtained some stochastic ordering results on IT of coherent systems. Li
and Zhao (2008) studied some stochastic comparison on a general IT of k-out-
of-n systems.

This paper is a study on the stochastic and aging properties of IT of an n-
component coherent system under different scenarios. We present some re-
sults which stochastically compare the IT of coherent systems and components
of coherent systems, with the same type or with different types of components.
The paper is organized as follows: In Section 2, we use the concept of
signature to give a mixture representation of IT of a coherent system in terms
of IT of ordered lifetimes of its components. Some stochastic comparisons
are made between systems with i.i.d. components. It is shown that, under
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some conditions, the results can be extended to systems with exchangeable
components. Section 3 is an investigation on the MIT of coherent systems. It is
known that when a component has a decreasing reversed hazard rate, its MIT
is increasing in time. Using an example we show, in this section, that when the
components of a coherent system has decreasing reversed hazard rate, the MIT
of the system is not necessarily increasing in time. There are some coherent
systems with the vector of signature of the form s = (s1, s2, ..., si, 0, ..., 0), with
si > 0, i = 1, 2, . . . , n. We prove, for such systems, that when the common
reversed hazard rate of the components is decreasing in time, then the MIT
of the system is an increasing function of time. In Section 4, we introduce a
new concept of IT of the components of the system at the system level. There
are many coherent systems in reliability engineering for which the vector of
signatures is of the form s = (0, . . . , 0, si, si+1, ..., sn). For instance, it can be
shown that a 3-component system with structure max(X1, min(X2, X3)) has
the signature (0, 2

3 , 1
3 ). In this section, we obtain the MIT of the components

of the such systems under the assumption that the system has failed at time
t. Among other results, it is proved that when the components of the system
have decreasing reversed hazard rate, then the MIT of the failed components
are increasing functions of time. Several examples and illustrative plots are
also provided.

2 Mixture representation of the IT of systems

In this section we study some stochastic properties of the IT of a coherent
system. To this end, we obtain a mixture representation of the IT of a
coherent system in terms of IT of ordered lifetimes of its components. The
representation result is similar to that of Navarro et al. (2008) where they
have considered the residual lifetime of the system. Although, based on this
similarity, most of the results of Navarro et al. (2008) on residual lifetime of
the system can be translated to IT of the system but we only prove some of
them here.

Consider a coherent system consists of n components where the lifetimes
of the components are denoted by X1, X2, ..., Xn. Assume that Xi’s are
independent and identically distributed according to a common continuous
distribution F. Let T denote the lifetime of the system. Then from Eq. 1
we have

FT(t) =
n∑

i=1

si P (Xi:n < t) ,

where FT(t) = P(T < t), X1:n, X2:n, ..., Xn:n are representing the order statis-
tics obtained from X1, X2, ..., Xn and si = P(T = Xi:n), i = 1, 2, . . . , n, is ith
element of the signature vector s = (s1, s2, . . . , sn).
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Now we have for all x < t and t > 0,

P(t − T > x|T < t) = P(T < t − x)

P(T < t)

= 1
FT(t)

n∑

i=1

si P (Xi:n < t − x)

=
n∑

i=1

si P (Xi:n < t)
FT(t)

P (t − Xi:n > x|Xi:n < t)

=
n∑

i=1

pi(t)P (t − Xi:n > x|Xi:n < t) , (3)

where pi(t) = si P(Xi:n < t)/FT(t). Representation Eq. 3 shows that the distri-
bution function of IT of the system is a mixture of distribution function of
IT of the ordered lifetimes of its components. In the following we show that
pi(t) = P{T = Xi:n|T < t}. That is, pi(t) may be identified as the probability
that Xi:n causes the failure of the system given that the lifetime of the system
is less than t. We have

pi(t) = si P (Xi:n < t)
FT(t)

= P (T = Xi:n) P (Xi:n < t|T = Xi:n)
FT(t)

= P (T = Xi:n) P (T < t|T = Xi:n)
FT(t)

= P (T = Xi:n|T < t) , (4)

where the second equality follows from the fact that the events (T = Xi:n)
and (Xi:n < t) are independent (see, Navarro et al. 2008). Table 1 depicts the
vector p(t) = (p1(t), p2(t), ..., pn(t)) for coherent systems of order n = 3 (see
also, Navarro et al. 2008).

Note that from Eq. 4 we have, for i = 1, 2, . . . , n,

lim
t→∞ pi(t) = lim

t→∞
si P (Xi:n < t)

FT(t)
= si.

That is,

lim
t→∞ p(t) = s.
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Table 1 Vectors of coefficients in Eq. 3 with n = 3 for coherent systems with 1–3 i.i.d. components

System T = T(X1, X2, X3) p(t)

1 X1:1 = X1

(
1 − F(t) + 1

3
F2(t), F(t) − 2

3
F2(t),

1
3

F3(t)
)

2 X1:3 = min(X1, X2, X3) (1, 0, 0)

3 X2:3(2-out-of-3) (0, 1, 0)

4 X3:3 = max(X1, X2, X3) (0, 0, 1)

5 min(X1, max(X2, X3))

(
3 − 3F(t) + F2(t)
3 + 3F(t) − 3F2(t)

,
6F(t) − 4F2(t)

3 + 3F(t) − 3F2(t)
, 0

)

6 max(X1, min(X2, X3))

(
0,

6 − 4F(t)
6 − 3F(t)

,
F(t)

6 − 3F(t)

)

7 X1:2 = min(X1, X2)

(
6 − 6F(t) + 2F2(t)

6 − 3F(t)
,

3F(t) − 2F2(t)
6 − 3F(t)

, 0
)

8 X2:2 = max(X1, X2)

(
0, 1 − 2

3
F(t),

2
3

F(t)
)

Theorem 2.1 Let T be a coherent system having signature s =
(0, ..., 0, sn−i+1, sn−i+2, ..., sn), where sn−i+1 > 0 for an integer i ∈ {1, 2, ..., n},
then

lim
t→0

p(t) =
⎛

⎜⎝ 0, 0..., 0︸ ︷︷ ︸
n−i times

, 1, 0, 0..., 0︸ ︷︷ ︸
i−1 times

⎞

⎟⎠ .

Proof From Eq. 4, we have

lim
t→0

pk(t) = sk lim
t→0

P (Xk:n ≤ t)
n∑

r=n−i+1
sr P (Xr:n ≤ t)

.

Since

P (Xr:n ≤ t) =
n∑

j=r

(−1) j−r
(

j − 1
r − 1

)(
n
j

)
F j(t),

(see David and Nagaraja 2003) we can write

lim
t→0

P (Xr:n ≤ t)
P (Xk:n ≤ t)

= lim
t→0

Fr(t)
Fk(t)

wr + wr+1 F1(t) + · · · + wn Fn−r(t)
wk + wk+1 F1(t) + · · · + wn Fn−k(t)

= lim
t→0

Fr−k(t) =
⎧
⎨

⎩

∞ if r < k
1 if r = k
0 if r > k,
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where wr = (−1) j−r
( j−1

r−1

)(n
j

)
. Hence

lim
t→0

pk(t) = sk lim
t→0

P (Xk:n ≤ t)
n∑

r=n−i+1
sr P (Xr:n ≤ t)

=
{

0 if k �= n − i + 1
1 if k = n − i + 1.

This completes the proof. ��

Before giving next results, we recall that for two non-negative random
variables X and Y having distribution functions F and G and probability
density functions f and g, respectively:

• X is said to be less than Y in stochastic order, denoted by X ≤st Y, if
F̄(x) ≤ Ḡ(x), x > 0, where F̄ = 1 − F and Ḡ = 1 − G.

• X is said to be less than Y in reversed hazard order, denoted by X ≤rh Y, if
F(x)

G(x)
is a decreasing function of x. If the densities of X and Y exist, X ≤rh Y

is equivalent to say that rF(t) ≤ rG(t), where rF(t) = f (t)
F(t) and rG(t) = g(t)

G(t)
denote the reversed hazard rates of X and Y, respectively.

• X is said to be less than Y in likelihood ratio order, denoted by X ≤lr Y, if
f (x)

g(x)
is a decreasing function of x.

The following theorem gives a comparison between p(t1) and p(t2) when
t1 < t2.

Theorem 2.2 Let p(t) be a vector of coef f icients in Eq. 3 of a mixed system
with n i.i.d. components. Then, p(t1) ≤st p(t2) for all 0 ≤ t1 ≤ t2 and p(t) ≤st s for
all t ≥ 0.

Proof To prove the required result we need show that for all j ≥ 1

n∑
k= j

sk Fk (t1)

FT (t1)
≤

n∑
k= j

sk Fk (t2)

FT (t2)

or equivalently

n∑

i=1

n∑

k= j

sisk (Fi (t2) Fk (t1) − Fi (t1) Fk (t2)) ≤ 0.
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Note that

n∑

i=1

n∑

k= j

sisk (Fi (t2) Fk (t1) − Fi (t1) Fk (t2))

=
j−1∑

i=1

n∑

k= j

sisk (Fi (t2) Fk (t1) − Fi (t1) Fk (t2))

+
n∑

i= j

n∑

k= j

sisk (Fi (t2) Fk (t1) − Fi (t1) Fk (t2)) (5)

=
j−1∑

i=1

n∑

k= j

sisk (Fi (t2) Fk (t1) − Fi (t1) Fk (t2)) , (6)

where the equality in Eq. 6 follows based on the fact that in the second
summation in Eq. 5 the difference in summand is a symmetric function and
both summations are from j to n. Using the fact that order statistics from i.i.d.
random variables are rh-ordered, that is, Xi:n ≤rh Xk:n for i ≤ k, we have for
all t1 ≤ t2 and i ≤ k

Fi (t2) Fk (t1) − Fi (t1) Fk (t2) ≤ 0,

which implies that Eq. 6 is non-positive. This completes the proof. ��

Now we are ready to prove the following theorem.

Theorem 2.3 Let p1(t) and p2(t) be the vectors of coef f icients in representation
Eq. 3, for a f ixed t > 0, of two coherent systems of order n, both based on com-
ponents with i.i.d. lifetimes distributed as the common continuous distribution
function F. Denote by T1 and T2 the respective lifetimes of the systems.

(a) If p1(t) ≤st p2(t), then (t − T1|T1 < t) ≥st (t − T2|T2 < t).
(b) If p1(t) ≤rh p2(t), then (t − T1|T1 < t) ≥hr (t − T2|T2 < t).
(c) If p1(t) ≤lr p2(t), then (t − T1|T1 < t) ≥lr (t − T2|T2 < t), under the as-

sumption that F is absolutely continuous.

Proof

Part (a) It can be shown that, for i.i.d. random variables, the order statistics
are likelihood ratio ordered . That is Xi:n ≤lr Xi+1:n for i = 1, ..., n −
1. Then it can be shown that

(t − Xi:n|Xi:n < t) ≥lr (t − Xi+1:n|Xi+1:n < t), for i = 1, ..., n − 1,

(7)
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(see, Shaked and Shanthikumar (2007), Theorems 1.C.8 and 1.C.6).
Therefore, based on implications between the lr, rh and st orders, the
IT in Eq. 7 are also hr and st ordered. Since p1(t) ≤st p2(t), we have
from Theorem 1.A.6 Shaked and Shanthikumar (2007)

P (t − T1 > x|T1 < t) =
n∑

i=1

p1,i(t)P (t − Xi:n > x|Xi:n < t)

≥
n∑

i=1

p2,i(t)P (t − Xi:n > x|Xi:n < t)

= P (t − T2 > x|T2 < t) .

This completes the proof of Part (a).
Part (b) Now assume that Tt,i = (t − Ti|Ti < t), and define H̄t,i(x) = P(Tt,i >

x), i = 1, 2. In order to prove that Tt,1 ≥hr Tt,2 we should prove that
H̄t,1(x)

H̄t,2(x)
is an increasing function of x. This is equivalent to show that

for x1 < x2,

n∑
i=1

p2,i(t)P (t−Xi:n > x2|Xi:n < t)

n∑
i=1

p2,i(t)P (t−Xi:n > x1|Xi:n < t)
≤

n∑
i=1

p1,i(t)P (t−Xi:n > x2|Xi:n < t)

n∑
i=1

p1,i(t)P (t−Xi:n > x1|Xi:n < t)
.

(8)

Now using Theorem 1.B.50 of Shaked and Shanthikumar (2007)
one can easily see that, under the assumptions of the theorem,
inequality 8 holds. This completes the proof of Part (b).

Part (c) For j = 1, 2, denote the density function of the survival function
H̄t,i(x) by ht, j(x). That is

ht, j(x) =
n∑

i=1

pj,i(t) ft,i(x),

where ft,i denotes the density function of IT of ordered lifetimes.
Now, under the assumptions of the theorem, by using Theorem
1.C.17 of Shaked and Shanthikumar (2007) we can show that ht,1(x)

ht2(x)

is an increasing function. This completes the proof. ��

Example 2.4 It is easy to see that for t ≥ 0

(
0, 1 − 2

3
F(t),

2
3

F(t)
)

≥lr

(
0,

6 − 4F(t)
6 − 3F(t)

,
F (t)

6 − 3F (t)

)
.
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Hence, from Table 1 and above theorem, if F is absolutely continuous,
we have

(t − X2:2|X2:2 < t) ≤lr (t − T|T > t) , for all t ≥ 0,

where T = max(X1, min (X2, X3)).

Example 2.5 Consider the systems X2:2 and T = max(X2:3, X4) with corre-
sponding signatures of order 4 as s2:2 = (0, 1

6 , 1
3 , 1

2 ) and s = (0, 0, 3
4 , 1

4 ) (for
more details on the list of systems with signatures of order 4 see Navarro
et al. (2008)). One can easily shown that X2:2 and T are not st-ordered. The
corresponding vectors of coefficients p(t) are

p2:2(t) =
(

0, 1 − 8F(t) − 3F2(t)
6

,
4F(t) − 3F2(t)

3
,

F2(t)
2

)

and

p(t) =
(

0, 0,
12 − 9F(t)
12 − 8F(t)

,
F(t)

12 − 8F(t)

)
.

It can be shown that p2:2(t) ≤st p(t) whenever

F(t) ≥ 3 − √
5

4
.

Hence, if t1 = sup{t ≥ 0 : F(t) = (3 − √
5)/4} then p1:2(t) ≤st p(t) for all t ≥ t1.

Then, from Theorem 2.3 we have (t − X2:2|X2:2 < t) ≥st (t − T|T < t) for all
t ≥ t1. Note that these vectors are not st-ordered for 0 ≤ t < t1 and that

lim
t→0

p2:2(t) = (0, 1, 0, 0) ≤st lim
t→0

p(t) = (0, 0, 1, 0).

Remark 2.6 It can be shown that the mixture representation Eq. 3 is also true
for the system having dependent exchangeable components with an absolutely
continuous joint distribution. Navarro and Rychlik (2007) showed that if X =
(X1, ..., Xn) is a random vector with an absolutely continuous exchangeable
joint distribution and T = T(X1, ..., Xn) is the lifetime of a coherent system,
then Eq. 1 holds. Using this result we can easily see that for x < t and t > 0,

P(t − T > x|T < t) =
n∑

i=1

pi(t)P (t − Xi:n > x|Xi:n < t) , (9)

where Xi:n denotes the ith ordered lifetime i = 1, 2, ..., n and similar to the
independent components, we have pi(t) = P(T = Xi:n|T < t).

The following theorem can be proved for the system having exchangeable
components. The proof is similar to Theorem 2.3 and hence is omitted.
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Theorem 2.7 Let p1(t) and p2(t) be the vectors of coef f icients in representation
Eq. 9, for a f ixed t > 0, of two mixed systems of order n, both based on
exchangeable components. Let T1 and T2 be their respective lifetimes.

(a) If (t − Xi:n|Xi:n < t) ≥st (t − Xi+1:n|Xi+1:n < t), for i = 1, ..., n − 1 and
p1(t) ≤st p2(t), then (t − T1|T1 < t) ≥st (t − T2|T2 < t) .

(b) If (t − Xi:n|Xi:n < t) ≥hr (t − Xi+1:n|Xi+1:n < t), for i = 1, ..., n − 1 and
p1(t) ≤rh p2(t), then (t − T1|T1 < t) ≥hr (t − T2|T2 < t) .

(c) If Xi:n ≤lr Xi+1:n, for i = 1, ..., n − 1 and p1(t) ≤lr p2(t), then
(t − T1|T1 < t) ≥lr (t − T2|T2 < t), under the assumption that the
underlying distribution is absolutely continuous.

3 The MIT of the coherent systems

In this section, we obtain some results on the MIT of the coherent systems. We
consider a coherent system of order n where the components are assumed to be
i.i.d. with lifetimes X1, X2, ..., Xn. We assume that the lifetimes are distributed
according to a common continuous distribution F and denote by T the lifetime
of the system. First we assume that at time t the system has failed, i.e. it is
known that T < t. If MT(t) denotes the MIT of the system, then

MT(t) = E(t − T|T < t).

Based on representation Eq. 3, we can write

MT(t) =
n∑

i=1

pi(t)mi:n(t),

where

mi:n(t) = E (t − Xi:n|Xi:n < t) , i = 1, 2, ..., n.

It is easily seen that MT(t) is bounded as follows.

mn:n(t) ≤ MT(t) ≤ m1:n(t).

The result follows from the fact that reversed hazard rates of Xi:n’s, denoted
by ri:n(t), i = 1, 2..., n, are ordered in terms of i. That is

r1:n(t) ≤ r2:n(t) ≤ · · · ≤ rn:n(t).

It is also well known that the reversed hazard rate ordering implies the MIT
ordering (see, for example, Finkelstein (2002)). That is,

m1:n(t) ≥ m2:n(t) ≥ · · · ≥ mn:n(t).
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Hence

MT(t) =
n∑

i=1

pi(t)mi:n(t)

≤
n∑

i=1

pi(t)m1:n(t)

= m1:n(t).

Similarly, it can be shown that mn:n(t) ≤ MT(t).
It is well known that if the reversed hazard rate of a random variable X

is decreasing in time, then the MIT of X is an increasing function of time.
Now the question is what can we say about the behavior of MIT of a coherent
system if the common reversed hazard rate of the components of the system
is decreasing. The following example shows that the MIT of the system is not
necessarily an increasing function of time in this case.

Example 3.1 Let X1, X2, X3 denote the lifetimes of three independent com-
ponents which are connected to a system with structure min(X1, max(X2, X3)).
Assume that the components have a common distribution function

F(x) = ex − 1
e20 − 1

, 0 < x < 20.

Fig. 1 The plot of reversed
hazard rate in Example 3.1
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Then, it can be shown that the reversed hazard rate corresponding to F is

r(t) = et

et − 1
, 0 < t < 20,

which is a decreasing function of time. A plot of r(t) is given in Fig. 1. Figure 2
represents the plots of the MITs m1(t), MT(t), m2(t) and m3(t) from top,
respectively. It is seen from the plots that although m1(t), m2(t) and m3(t)
are increasing functions but MT(t) first increases for a period of time then it
decreases for a period of time and eventually increases.

Now consider a coherent system consists of n i.i.d. components having the
signature of the form

s = (s1, ..., si, 0, ..., 0). (10)

A list of systems with such vectors of signature is given in Table 2.
It can be shown that the survival function of the IT of a coherent system

with signature of the form Eq. 10 with i.i.d.components, under the condition
that Xr:n < t, (r ≥ i), is (see Khaledi and Shaked 2007)

P(t − T > x|Xr:n < t) =
i∑

k=1

sk P (t − Xk:n > x|Xr:n < t) .

Fig. 2 The plots of the MITs
in Example 3.1
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Table 2 Coherent systems of order n = 4 with the vector of signatures of form Eq. 10

System T = T(X1, X2, X3, X4) Signature

1 X1:4 = min(X1, X2, X3, X4) (series) (1, 0, 0, 0)

2 max(min(X1, X2, X3), min(X2, X3, X4)) (consecutive 3-out-of-4:G)

(
1
2
,

1
2
, 0, 0

)

3 min(X2:3, X4)

(
1
4
,

3
4
, 0, 0

)

4 X1:3 = min(X1, X2, X3) (3 − series)
(

3
4
,

1
4
, 0, 0

)

5 X1:2 = min(X1, X2) (2 − series)
(

1
2
,

1
3
,

1
6
, 0

)

6 min(X2, max(X1, X3)) (consecutive 2-out-of-3:G)

(
1
4
,

5
12

,
1
3
, 0

)

7 min(X1, max(X2, X3), max(X3, X4))

(
1
4
,

7
12

,
1
6
, 0

)

8 min(X1, max(X2, X3, X4))

(
1
4
,

1
4
,

1
2
, 0

)

Therefore the MIT of the system, which we denote by M∗
T , under the condition

that Xr:n < t, is

M∗
T(t) = E (t − T|Xr:n < t) =

i∑

k=1

skmk,r
n (t),

where

mk,r
n (t) = E (t − Xk:n|Xr:n ≤ t)

=
t∫

0

P (t − Xk:n > x|Xr:n ≤ t) dx.

It can be shown that

mk,r
n (t) =

n∑

j=r

τ j(t)Hk
j (t)

where

Hk
j (t) = E

(
t − Xk: j|X j: j ≤ t

)
,

is the MIT of a parallel system with j components (see Asadi 2006) and

τ j(t) =
(n

j

)
φ j(t)

n∑
m=r

(n
m

)
φm(t)

,

in which φ(t) = F(t)/F̄(t) (see also Tavangar and Asadi 2009).
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Let r(t) denote the reversed hazard rate function of F. Asadi (2006) showed
that when r(t) is decreasing in t then Hk

j (t) is an increasing function of t.
Tavangar and Asadi (2009) proved that the latter result is also true for mk,r

n (t).
That is, they showed that if r(t) is a decreasing function of time then the MIT
mk,r

n (t) is an increasing function of time. The following theorem shows, as
conclusion of above discussion, the MIT M∗

T(t) is also increasing function of
time when r(t) is decreasing in t.

Theorem 3.2 Let be X1, ..., Xn the i.i.d. lifetimes of n components which are
connected in a coherent system. Suppose that, for some i ≤ n, the signature of T
is s = (s1, ..., si, 0, ..., 0). If the common reversed hazard rate of the components
is decreasing then the MIT M∗

T(t) is increasing in time.

4 The MIT of the components of the system at the system level

In this section we introduce a new concept of MIT for the components of
the system at the system level and study some of aging properties of that.
We assume that a coherent system with lifetime T has the property that, with
probability 1, it is alive as long as at least n − i + 1 components of the system
are alive. There are several type of such systems in reliability engineering.
Table 3 displays examples of these kind of systems. For the system described
above the vector of the signature s is of the form

s = (0, 0, ..., 0, si, si+1, ..., sn) , . (11)

That is,

P (T = Xr:n) = 0, r = 1, .., i − 1,

where X1:n, X2:n, ..., X3:n denote the ordered lifetimes of the components. In
other words, for a system with the signature of the form Eq. 11, the components
with lifetime Xr:n, r = 1, ..., i − 1, never cause the failure of the system.

Now if we assume that, at time t, the system is not working, i.e. T < t then
we can make sure that the components with lifetime Xr:n, r = 1, ..., i − 1 had
already been failed in the system. As the systems often are not monitored
continuously, one might be interested in getting inference about the history of
the system, e.g. when the components with lifetime Xr:n, r = 1, ..., i − 1 have
failed. We consider the following conditional probability

P (t − Xr:n > x|T < t) = P (t − Xr:n > x, T < t)
P(T < t)

,

where r ≤ i. This is the probability of the IT of Xr:n under the condition that the
system has failed at time t. We call this the IT of the components at the system
level. To derive the form of this probability let, for 1 ≤ k ≤ n, Ak be the set of
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Table 3 Coherent systems with four components and signatures of form Eq. 11

System T = T(X1, X2, X3, X4) Signature

1 X2:2 = max(X1, X2) (2 − parallel)
(

0,
1
6
,

1
3
,

1
2

)

2 max(X2, min(X1, X3)) (consecutive 2-out-of-3:F)

(
0,

1
3
,

5
12

,
1
4

)

3 max(X1, min(X2, X3, X4))

(
0,

1
2
,

1
4
,

1
4

)

4 max(X1, min(X2, X3), min(X3, X4))

(
0,

1
6
,

7
12

,
1
4

)

5 X3:3 = max(X1, X2, X3) (3 − parallel)
(

0, 0,
1
4
,

3
4

)

6 max(X2:3, X4)

(
0, 0,

3
4
,

1
4

)

7 min(max(X1, X2, X3), max(X2, X3, X4)) (consecutive 3-out-4:F)

(
0, 0,

1
2
,

1
2

)

8 X4:4 = max(X1, X2, X3, X4) (parallel) (0, 0, 0, 1)

all the permutation π = (π1, π2, ..., πn) of (1, 2, ..., n) such that if Xπ1 < Xπ2 <

... < Xπn then T = Xπk . In other words, Ak is the set of all the permutation
π = (π1, π2, ..., πn) such that if Xπ1 < Xπ2 < ... < Xπn then T = Xk:n. Hence
for r ≤ i, we have

P (t − Xr:n > x, T < t) =
n∑

k=i

P (t − Xr:n > x, T < t, T = Xk:n)

=
n∑

k=i

∑

π∈Ak

P
(
Xπr < t − x, Xπk < t, Xπ1 < Xπ2 <...< Xπn

)

=
n∑

k=i

∑

π∈Ak

P (Xr < t − x, Xk < t, X1 < X2 < ... < Xn)

=
n∑

k=i

n!sk P (Xr < t − x, Xk < t, X1 < X2 < ... < Xn)

=
n∑

k=i

sk P (Xr:n < t − x, Xk:n < t) .

This implies that

P (t − Xr:n > x|T < t) =
n∑

k=i

sk P (Xk:n < t)
FT(t)

P (Xr:n < t − x, Xk:n < t)
P (Xk:n < t)

=
n∑

k=i

pk(t)P (t − Xr:n > x|Xk:n < t) ,
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where FT(t) is the distribution function T and pi(t) = P(T = Xi:n|T < t). In
the sequel, we focus on the MIT of the component Xr:n, denoted by Mr

n(t), at
the system level. That is, we study the properties of

Mr
n(t) = E (t − Xr:n|T < t)

=
n∑

k=i

pk(t)Mr,k
n (t),

where Mr,k
n (t) = E(t − Xr:n|Xk:n < t). This shows that Mr

n(t) is a linear com-
bination of Mr,k

n (t) (for some properties of Mr,k
n (t) see Tavangar and Asadi

(2009)). It is easily seen that Mr
n(t) is decreasing in r, r = 1, ..., i. This is true

because

Mr
n(t) − Mr+1

n (t) = E (Xr+1:n − Xr:n|T < t) ≥ 0.

Now we prove the following theorems.

Theorem 4.1 Consider two coherent systems of order n and assume that p1(t)
and p2(t) are the corresponding vectors of signatures, for a f ixed t > 0 where we
assume that the vector of the signatures are of the form Eq. 11. Further assume
that the components of the systems are i.i.d. distributed according to the common
continuous distribution F and denote by T1 and T2 the lifetimes of the systems,
respectively. If

p1(t) ≤st p2(t),

then

Mr
1n(t) ≤ Mr

2n(t),

where Mr
1n(t) and Mr

2n(t) are the MITs corresponding to T1 and T2, respectively.

Proof Let Yv be a random variable over 1, 2, ..., n, with probability mass
function pv(t) = (0, 0, . . . , pvi(t), ..., pvn(t)), v = 1, 2. Then we can write

Mr
1n(t) = E

(
Mr,Y1

n

)

≤ E
(
Mr,Y2

n

)

= Mr
1n(t),

where the inequality follows from Shaked and Shanthikumar (2007, page 4,
relation (1.A.7)) and the fact that Mr,k

n (t) is an increasing function of k, k =
1, ..., n (see Tavangar and Asadi 2009). This completes the proof. ��

Tavangar and Asadi (2009) have shown that when the components of the
system have a decreasing reversed hazard rate then the MIT Mr,k

n (t) is an
increasing function of time. The following theorem extends their result.

Theorem 4.2 Consider a coherent system of order n with signature vector of the
form Eq. 11 in which sk > 0, k = i, i + 1, ..., n. Let the components of the system



258 Sankhya B (November 2011) 73:241–262

have i.i.d. lifetimes with a common absolutely continuous distribution function
F. Let also r(t), the reversed hazard rate of the components of the system, be
decreasing in t, t > 0. Then Mr

n(t) is an increasing function in t.

Proof Under the assumption that Mr
n(t) is differentiable, we have

d
dt

Mr
n(t) =

n∑

k=i

(
d
dt

pk(t)
)

Mr,k
n (t) +

n∑

k=i

pk(t)
(

d
dt

Mr,k
n (t)

)
. (12)

But the second term in the above equality is nonnegative by Theorem 3.1 of
Tavangar and Asadi (2009). Hence we just need to prove that the first term in
Eq. 12 is nonnegative. First note that pk(t) can be written as

pk(t) = sk P (Xk:n < t)
FT(t)

= sk
∑n

j=k

(n
j

)
φ j(t)

n∑
m=i

sm
∑n

j=m

(n
j

)
φ j(t)

,

where φ(t) = F(t)/F̄(t). Define

Wm(t) =
n∑

j=m

(
n
j

)
(φ(t)) j, m = 1, .., n.

Then

pk(t) = skWk(t)
n∑

m=i
smWm(t)

.

Therefore we have

n∑

k=i

(
d
dt

pk(t)
)

Mr,k
n (t) =

n∑
k=i

(
skW

′
k(t)

n∑
m=i

smWm(t)−skWk(t)
n∑

m=i
smW

′
m(t)

)
Mr,k

n (t)

(
n∑

m=i
smWm(t)

)2 .
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The numerator of the above expression can be written as

n∑

k=i

n∑

m=i

sksmW
′
k(t)Wm(t)Mr,k

n (t) −
n∑

k=i

n∑

m=i

sksmWk(t)W
′
m(t)Mr,k

n (t)

=
n∑

k=i

n∑

m=i

sksmW
′
k(t)Wm(t)

(
Mr,k

n (t) − Mr,m
n (t)

)

=
n∑

k=i

k∑

m=i

sksmW
′
k(t)Wm(t)

(
Mr,k

n (t) − Mr,m
n (t)

)

+
n∑

m=i

m∑

k=i

sksmW
′
k(t)Wm(t)

(
Mr,k

n (t) − Mr,m
n (t)

)

=
n∑

k=i

k∑

m=i

sksmW
′
k(t)Wm(t)

(
Mr,k

n (t) − Mr,m
n (t)

)

+
n∑

k=i

k∑

m=i

sksmWk(t)W
′
m(t)

(
Mr,m

n (t) − Mr,k
n (t)

)

=
n∑

k=i

k∑

m=i

sksm

(
W

′
k(t)Wm(t) − Wk(t)W

′
m(t)

) (
Mr,k

n (t) − Mr,m
n (t)

)
.

But Mr,k
n (t) − Mr,m

n (t) ≥ 0 since m ≤ k and Mr,k
n (t) is increasing in k, k = r, ..., n.

Now for m ≤ k we have

W
′
k(t)Wm(t) − Wk(t)W

′
m(t) = φ

′
(t)

n∑

j=k

n∑

l=m

(
n
j

)(
n
l

)
jφ j+l−1(t) − φ

′
(t)

×
n∑

j=k

n∑

l=m

(
n
j

)(
n
l

)
lφ j+l−1(t)

= φ
′
(t)

n∑

j=k

k−1∑

l=m

(
n
j

)(
n
l

)
jφ j+l−1(t) + φ

′
(t)

×
n∑

j=k

n∑

l=k

(
n
j

)(
n
l

)
jφ j+l−1(t)

− φ
′
(t)

n∑

j=k

k−1∑

l=m

(
n
j

)(
n
l

)
lφ j+l−1(t) − φ

′
(t)
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×
n∑

j=k

n∑

l=k

(
n
j

)(
n
l

)
lφ j+l−1(t)

= φ
′
(t)

n∑

j=k

k−1∑

l=m

(
n
j

)(
n
l

)
( j − l)φ j+l−1(t)

≥ 0.

This shows that the first part of Eq. 12 is also nonnegative and hence the
proof is complete. ��

In the following theorem we compare the MITs of two coherent systems in
terms of their reversed hazard rates.

Theorem 4.3 Let S1 and S1 be two coherent systems with n independent and
identical components that are distributed as F and G, respectively. If rF(t) ≥
rG(t), t > 0 and pS1(t) ≤st pS2(t), then

Mr
n,S1

(t) ≤ Mr
n,S2

(t).

Proof Following Khaledi and Shaked (2007) (see also, Tavangar and Asadi
2009) when rF(t) ≥ rG(t), t > 0, then

Mr,k
n,S1

(t) ≤ Mr,k
n,S2

(t), r = 1, ..., k. (13)

This implies that

Mr
n,S1

(t) =
n∑

k=1

pS1,k(t)Mr,k
n,S1

(t)

≤
n∑

k=1

pS1,k(t)Mr,k
n,S2

(t)

≤
n∑

k=i

pS2,k(t)Mr,k
n,S2

(t)

= Mr
n,S2

(t),

where the first inequality follows from Eq. 13 and the second inequality follows
from the result that Mr,k

n,S j
(t) is increasing in k, j = 1, 2 and pS1(t) ≤st pS2(t).

Hence the proof is complete. ��

Example 4.4 Let we have a coherent system with n components such that they
have lifetimes X1, ..., Xn that are i.i.d exponential random variables with mean
1 and the signature vector of the system is

s = (0, 0, ..., 0, si, si+1, ..., sn).
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Then for r ≤ i ≤ n we have

Mr
n(t) =

n∑

k=i

pk(t)Mr,k
n (t),

where

Mr,k
n (t) =

n∑
m=k

(
n
m

)
(et − 1)mSr

m(t)

n∑
m=k

(
n
m

)
(et − 1)m

and

Sr
m(t) =

m∑

j=r

(
m
j

) m− j∑

l=0

(−1)l
(

m − j
l

) 1 +
j+l∑

u=1
(−1)u

(
j + l

u

)
1
u (1 − e−ut)

(1 − e−t) j+l
.

Remark 4.5 We have to point out here that the results of Theorems 4.1,
4.2 and 4.3 can be strengthen. In other words, in Theorem 4.1 using the
same steps, it can be proved that if p1(t) ≤st p2(t) then (t − Xr:n|T1 < t) ≤st

(t − Xr:n|T2 < t) which in turn implies that Mr
1n(t) ≤ Mr

2n(t). In Theorem 4.2
under the assumption that r(t) is decreasing then, using the same argument
as used to prove the theorem, it can be verified that when 0 < t1 < t2 then
(t1 − Xr:n|T < t1) ≤st (t2 − Xr:n|T < t2) which implies that Mr

n(t) is increasing
in t. Also in Theorem 4.3 we can show under the assumption that rF(t) ≥ rG(t),
(t − Xr:n|T1 < t) ≤st (t − Xr:n|T2 < t).
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