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Abstract A new distribution is proposed for modeling lifetime data. It has
better hazard rate properties than the gamma, lognormal and the Weibull
distributions. A comprehensive account of the mathematical properties of the
new distribution including estimation and simulation issues is presented. A real
data example is discussed to illustrate its applicability.
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1 Introduction

There are many distributions for modeling lifetime data. Among the known
parametric models, the most popular are the gamma, lognormal and the
Weibull distributions. The Weibull distribution is more popular than the
gamma and lognormal distributions because the survival functions of the latter
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cannot be expressed in closed forms and one needs numerical integration. The
Weibull distribution has closed form survival and hazard rate functions. We
refer the readers to Murthy et al. (2004) for details about Weibull distributions.

Gupta and Kundu (1999) introduced the exponentiated exponential dis-
tribution as an alternative to the gamma distribution. The exponentiated
exponential distribution has many properties similar to those of the gamma
and yet has closed form survival and hazard rate functions. See Gupta and
Kundu (2007) for a review and some developments on the exponentiated
exponential distribution.

However, the above four distributions (gamma, lognormal, Weibull and
exponentiated exponential) suffer from a number of drawbacks. Firstly, none
of them exhibit bath tub shapes for their hazard rate functions. The four
distributions exhibit only monotonically increasing, monotonically decreasing
or constant hazard rates. This is a major weakness because most real-life
systems exhibit bath tub shapes for their hazard rate functions. Secondly, at
least three of the four distributions exhibit constant hazard rates. This is a
very unrealistic feature because there are hardly any real-life systems that have
constant hazard rates.

The aim of this paper is to introduce a two parameter alternative to the
gamma, lognormal, Weibull and the exponentiated exponential distributions
that overcomes these mentioned drawbacks. It is most conveniently specified
in terms of the cumulative distribution function:

F(x) =
[

1 − 1 + λ + λx
1 + λ

exp(−λx)

]α

(1)

for x > 0, λ > 0 and α > 0. The corresponding probability density function is:

f (x) = αλ2

1 + λ
(1 + x)

[
1 − 1 + λ + λx

1 + λ
exp(−λx)

]α−1

exp(−λx). (2)

The corresponding hazard rate function is

h(x) = αλ2

1 + λ
(1 + x)

[
1 − 1 + λ + λx

1 + λ
exp(−λx)

]α−1

exp(−λx) {1 − Vα(x)}−1
,

(3)

where

V(x) = 1 − 1 + λ + λx
1 + λ

exp(−λx). (4)

Note that Eq. 2 has two parameters, α and λ, just like the gamma, lognormal,
Weibull and exponentiated exponential distributions. Note also that Eq. 2
has closed form survival functions and hazard rate functions just like the
Weibull and exponentiated exponential distributions. For α = 1, Eq. 2 reduces
to the Lindley distribution (Lindley 1958). As we shall see later, Eq. 2 has
the attractive feature of allowing for monotonically decreasing, monotonically
increasing and bath tub shaped hazard rate functions while not allowing for
constant hazard rate functions.
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Another motivation for the new distribution in Eq. 1 can be described
as follows. Consider the one parameter Lindley distribution (Lindley 1958)
specified by the cumulative distribution function:

FL(x) = 1 − 1 + λ + λx
1 + λ

exp(−λx) (5)

for x > 0 and λ > 0. This distribution is becoming increasing popular for mod-
eling lifetime data, see Ghitany et al. (2008a, b) and Ghitany and Al-Mutairi
(2009). Suppose X1, X2, . . . , Xα are independent random variables distributed
according to Eq. 5 and represent the failure times of the components of a series
system, assumed to be independent. Then the probability that the system will
fail before time x is given by

Pr (max (X1, X2, . . . , Xα) ≤ x) = Pr (X1 ≤ x) Pr (X2 ≤ x) · · · Pr (Xα ≤ x)

= FL (x) FL (x) · · · FL (x)

=
[

1 − 1 + λ + λx
1 + λ

exp(−λx)

]α

.

So, Eq. 1 gives the distribution of the failure of a series system with indepen-
dent components.

The contents of this paper are organized as follows. A comprehensive
account of mathematical properties of the new distribution is provided in
Sections 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15. The properties studied
include: relationship to other distributions, stochastic orderings, shapes of the
probability density function and the hazard rate function, quantile function,
raw moments, conditional moments, L moments, moment generating function,
characteristic function, cumulant generating function, mean deviation about
the mean, mean deviation about the median, Bonferroni curve, Lorenz curve,
Bonferroni index, Gini index, Rényi entropy, Shannon entropy, cumulative
residual entropy, order statistics and their moments, asymptotic distribution
of the extreme values, and reliability measures. Estimation by the methods
of moments and maximum likelihood—including the case of censoring—is
presented in Section 16. Two simulation schemes are presented in Section 17.
The performances of the two estimation methods are compared by simulation
in Section 18. Finally, Section 19 illustrates an application by using a real data
set. For additional properties of the new distribution including more details on
the derived properties, we refer the readers to Nadarajah et al. (2011).

In the application section (Section 19), the lognormal distribution that we
shall consider is a three parameter generalization (Chen 2006) of the usual one
given by the probability density function:

fLN(x) = 1√
2πσ(x − θ)

exp

{
−
[
log(x − θ) − μ

]2
2σ 2

}
(6)

for x > θ , σ > 0 and −∞ < μ < ∞. We shall yet note that the proposed two
parameter distribution provides better fits than Eq. 6.
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2 Related distributions

Note that the cumulative distribution function of a Lindley random variable
given by Eq. 5 can be represented as

FL(x) = θ FE(x) + (1 − θ)FG2(x),

where θ = λ/(1 + λ), FE(x) = 1 − exp(−λ)x, the cumulative distribution func-
tion of an exponential random variable with scale parameter λ, and FG2(x) =
1 − {1 + λx} exp(−λ)x, the cumulative distribution function of a gamma ran-
dom variable with shape parameter 2 and scale parameter λ. It follows that the
cumulative distribution function, Eq. 1, can be represented as

F(x) =
∞∑

i=0

(
α

i

)
θα−i(1 − θ)i Fα−i

E (x)Fi
G2(x).

So, the proposed distribution can be viewed as an infinite mixture of the
products of exponentiated gamma distributions. If α is an integer then the
mixture is finite.

For x > 0, λ > m > 0 and β > 0, a gamma distribution has its cumulative
distribution function and probability density function specified by

FG(x) = γ (β, mx)

	(β)

and

fG(x) = mβ xβ−1 exp(−mx)

	(β)
, (7)

respectively, where γ (a, x) = ∫ x
0 ta−1 exp(−t)dt denotes the incomplete gamma

function and 	(a) = ∫∞
0 ta−1 exp(−t)dt denotes the gamma function. It is easy

to see that
F(x)

FG(x)
≤ M

and
f (x)

fG(x)
≤ M,

where

M = sup
x>0

f (x)

fG(x)
, (8)

a finite constant for all 0 < m < λ.
For x > 0, m > 0, α > 0 and β > 0, an exponentiated gamma distribu-

tion has its cumulative distribution function and probability density function
specified by

FEG(x) =
[
γ (β, mx)

	(β)

]α

(9)
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and

fEG(x) = αmβ xβ−1 exp(−mx)

	(β)

[
γ (β, mx)

	(β)

]α−1

, (10)

respectively. The properties of this distribution have been studied in detail
by Nadarajah and Gupta (2007). The particular cases of Eqs. 9 and 10 for
β = 2 are

FEG2(x) = [1 − (1 + mx) exp(−mx)
]α

and

fEG2(x) = αm2x exp(−mx)
[
1 − (1 + mx) exp(−mx)

]α−1
,

respectively. It is easy to see that

F(x)

FEG2(x)
> 1

for m = λ and m = λ/(1 + λ) and that FEG2(x) is a decreasing function of m. If
m = λ then

f (x)

fEG2(x)
≥ 1 + x

1 + λ

for α ≥ 1 and

f (x)

fEG2(x)
≤ 1 + x

1 + λ

for α < 1. If m = λ/(1 + λ) then

f (x)

fEG2(x)
≥ (1 + x)(1 + λ)

(
1 − λ2x

1 + λ

)

for α ≥ 1 and

f (x)

fEG2(x)
≤ (1 + x)(1 + λ)

for α < 1.
For x > 0, λ > 0 and β > 0, a Weibull distribution has its cumulative distri-

bution function and probability density function specified by

FW(x) = 1 − exp
(−mxβ

)
and

fW(x) = mβxβ−1 exp
(−mxβ

)
, (11)

respectively. It is easy to see that

F(x)

FW(x)
≤ M∗
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and

f (x)

fW(x)
≤ M∗,

where

M∗ = sup
x>0

f (x)

fW(x)
, (12)

a finite constant for all 0 < β < min(1, α).

3 Stochastic orders

Suppose Xi is distributed according to Eqs. 1 and 2 with parameters λi and αi

for i = 1, 2. Let Fi denote the cumulative distribution function of Xi and let fi

denote the probability density function of Xi. If λ1 = λ2 then F1(x) ≥ F2(x) for
all x > 0 and for all 0 < α1 ≤ α2, so X2 is stochastically greater than or equal
to X1. If α1 = α2 then F1(x) ≤ F2(x) for all x > 0 and for all 0 < λ1 ≤ λ2, so X1
is stochastically greater than or equal to X2. The latter statement follows from
the fact that 1 − (1 + λ + λx) exp(−λx)/(1 + λ) is an increasing function of λ.

We say that X2 is stochastically greater than X1 with respect to likelihood
ratio if f2(x)/ f1(x) is an increasing function of x (Shaked and Shanthikumar
1994). Note that

f2(x)

f1(x)
= α2λ

2
2 (1 + λ1)

α1λ
2
1 (1 + λ2)

[
1 − 1 + λ2 + λ2x

1 + λ2
exp (−λ2x)

]α2−1

×
[

1 − 1 + λ1 + λ1x
1 + λ1

exp (−λ1x)

]1−α1

exp (λ1x − λ2x) . (13)

So, if λ1 = λ2 then X2 is stochastically greater than X1 with respect to likeli-
hood ratio if and only if α2 > α1. If α1 = α2 = α then Eq. 13 reduces to

f2(x)

f1(x)
= λ2

2 (1 + λ1)
α

λ2
1 (1 + λ2)

α
gα−1(x),

where

g(x) = 1 + λ2 − (1 + λ2 + λ2x) exp (−λ2x)

1 + λ1 − (1 + λ1 + λ1x) exp (−λ1x)
.

We can write

d log g(x)

dx
= (1 + x) {q (λ2) − q (λ1)} ,
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where

q(λ) = λ2 exp(−λx)

1 + λ − (1 + λ + λx) exp(−λx)
. (14)

Note that

d log q(λ)

dλ
= 2

λ
+ (1 + x) exp(−λx) − (1 + x + λx)

1 + λ − (1 + λ + λx) exp(−λx)
< 0. (15)

So, if α1 = α2 = α ≥ 1 then X2 is stochastically greater than X1 with respect
to likelihood ratio if and only if λ1 ≥ λ2. If α1 = α2 = α < 1 then X2 is
stochastically greater than X1 with respect to likelihood ratio if and only if
λ1 ≤ λ2.

We say that X2 is stochastically greater than X1 with respect to reverse
hazard rate if f1(x) / F1(x) ≤ f2(x) / F2(x) for all x (Shaked and Shanthikumar
1994). Note that

fi(x)

Fi(x)
= αiλ

2
i (1 + x) exp (−λix)

1 + λi − (1 + λi + λix) exp (−λix)
= αi(1 + x)q (λi) ,

where q(·) is as defined by Eq. 14. So, if λ1 = λ2 then X2 is stochastically greater
than X1 with respect to reverse hazard ratio if and only if α2 ≥ α1. If α1 = α2
then X2 is stochastically greater than X1 with respect to reverse hazard ratio if
and only if λ2 ≤ λ1. The latter statement follows from Eq. 15.

4 Shapes

It follows from Eq. 2 that

d log f (x)

dx
= 1

1 + x
+ (α − 1)λ2(1 + x) exp(−λx)

(1 + λ)V(x)
− λ

and

d2 log f (x)

dx2 =− 1
(1 + x)2 + (α − 1)λ2

(1 + λ)V2(x)
exp(−λx)

{
1 − λ(1 + x) − exp(−λx)

1 + λ

}
,

where V(·) is given by Eq. 4. If α ≥ 1 then, using the fact exp(−λx) > 1 − λx,
we can see that d2 log f (x)/dx2 < 0 for all x. So, f is log-concave and has
the increasing likelihood ratio property. Also d log f (x)/dx monotonically
decreases from ∞ to −λ, so f must attain a unique maximum at x = x0
for some 0 < x0 < ∞. If α < 1 and λ ≥ 1 then d log f (x)/dx < 0 for all x,
so f is monotonically decreasing for all x. If α < 1 and λ < 1 then f could
attain a maximum, a minimum or a point of inflection according to whether
d2 log f (x)/dx2 < 0, d2 log f (x)/dx2 > 0 or d2 log f (x)/dx2 = 0.
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It follows from Eq. 3 that

d log h(x)

dx
= d log f (x)

dx
+ αλ2(1 + x)Vα−1(x) exp(−λx)

(1 + λ) {1 − Vα(x)}
and

d2 log h(x)

dx2 = d2 log f (x)

dx2 + αλ2Vα−1(x) exp(−λx)

1 + λ

×
{ [

1−Vα(x)
]

[1 − λ(1 + x)]− (α − 1)λ

1 + λ
(1 + x)2 exp(−λx)V−1(x)

− λ

1 + λ
(1 + x)2 exp(−λx)Vα−1(x)

}
.

The modes of Eq. 3 are the points x = x0 satisfying d log h(x)/dx = 0. These
points correspond to a maximum, a minimum and a point of inflection if
d2 log h(x)/dx2 < 0, d2 log h(x)/dx2 > 0 and d2 log h(x)/dx2 = 0, respectively.
Plots of Eq. 3 presented in Nadarajah et al. (2011) show: the shape of Eq. 3
appears monotonically decreasing or to initially decrease and then increase,
a bath-tub shape, if α < 1; the shape appears monotonically increasing if
α ≥ 1. So, the proposed distribution allows for monotonically decreasing,
monotonically increasing and bath-tub shapes for its hazard rate function. Note
that a constant hazard rate is not allowed.

Note that

f (x) ∼ αλ2

1 + λ
x exp(−λx) (16)

as x → ∞,

f (x) ∼ α

(
λ2

1 + λ

)α

xα−1 (17)

as x → 0,

1 − F(x) ∼ αλ

1 + λ
x exp(−λx)

as x → ∞,

F(x) ∼
(

λ2

1 + λ

)α

xα

as x → 0,

h(x) → λ

as x → ∞, and

h(x) ∼ α

(
λ2

1 + λ

)α

xα−1

as x → 0. So, the lower tail of the probability density function is polynomial
while its upper tail decays exponentially. The lower tail of the hazard rate
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function is polynomial and allows for decreasing, increasing and constant
hazard rates. In the upper tail, the hazard rate function approaches a constant.

5 Quantile function

Let X denote a random variable with the probability density function 2.
The quantile function, say Q(p), defined by F(Q(p)) = p is the root of the
equation

[
1 + λQ(p)

1 + λ

]
exp {−λQ(p)} = 1 − p1/α (18)

for 0 < p < 1. Substituting Z (p) = −1 − λ − λQ(p), one can rewrite Eq. 18 as

Z (p) exp {Z (p)} = −(1 + λ) exp (−1 − λ)
(
1 − p1/α

)

for 0 < p < 1. So, the solution for Z (p) is

Z (p) = W
(−(1 + λ) exp (−1 − λ)

(
1 − p1/α

))
(19)

for 0 < p < 1, where W(·) is the Lambert W function, see Corless et al. (1996)
for detailed properties. Inverting Eq. 19, one obtains

Q(p) = −1 − 1
λ

− 1
λ

W
(−(1 + λ) exp (−1 − λ)

(
1 − p1/α

))
(20)

for 0 < p < 1. The particular case of Eq. 20 for α = 1 has been derived recently
by Jodrá (2010). Our derivation of the general form here is independent.

A series expansion for Eq. 20 around p = 1 can be obtained as

Q(p) = −1 − 1
λ

− 1
λ

∞∑
i=1

(−i)i−1xi

i! , (21)

where x = −(1 + λ)(1 − p1/α) exp(−1 − λ). However, these expansions may
not be needed as in-built routines for computing W(·) are widely available,
for example, ProductLog[·] in Mathematica.

6 Moments

Let X denote a random variable with the probability density function 2.
Calculating moments of X requires the following lemma.
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Lemma 1 Let

K(a, b , c, δ) =
∫ ∞

0
xc(1 + x)

[
1 − 1 + b + b x

1 + b
exp(−b x)

]a−1

exp(−δx)dx.

We have

K(a, b , c, δ) =
∞∑

i=0

i∑
j=0

j+1∑
k=0

(
a − 1

i

)(
i
j

)(
j + 1

k

)
(−1)ib j	(c + k + 1)

(1 + b)i(bi + δ)c+k+1 .

Proof Using the series expansion, Eq. 38, one can write

K(a, b , c, δ) =
∞∑

i=0

(
a − 1

i

)
(−1)i

(1 + b)i

×
∫ ∞

0
xc(1 + x)(1 + b + b x)i exp (−bix − δx) dx

=
∞∑

i=0

(
a − 1

i

)
(−1)i

(1 + b)i

i∑
j=0

(
i
j

)
b j

×
∫ ∞

0
xc(1 + x) j+1 exp (−bix − δx) dx

=
∞∑

i=0

(
a − 1

i

)
(−1)i

(1 + b)i

i∑
j=0

(
i
j

)
b j

j+1∑
k=0

(
j + 1

k

)

×
∫ ∞

0
xc+k exp (−bix − δx) dx.

The result of the lemma follows by the definition of the gamma function. 	


It follows from Lemma 1 that

E
(
Xn) = αλ2

1 + λ
K(α, λ, n, λ).

In particular, the first four moments of X are

E (X) = αλ2

1 + λ
K(α, λ, 1, λ),

E
(
X2) = αλ2

1 + λ
K(α, λ, 2, λ),

E
(
X3) = αλ2

1 + λ
K(α, λ, 3, λ)
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and

E
(
X4) = αλ2

1 + λ
K(α, λ, 4, λ).

The variance, skewness and kurtosis of X can now be obtained. Plots of E(X),
Var(X), Skewness(X) and Kurtosis(X) versus λ and α presented in Nadarajah
et al. (2011) show: E(X) and Var(X) are decreasing functions of λ while
Skewness(X) and Kurtosis(X) are increasing functions of λ for every fixed
α; E(X) and Var(X) are increasing functions of α while Skewness(X) and
Kurtosis(X) are decreasing functions of α for every fixed λ.

7 Conditional moments

For lifetime models, it is also of interest to know what E(Xn | X > x) is.
Calculating these moments requires the following lemma.

Lemma 2 Let

L(a, b , c, δ, t) =
∫ ∞

t
xc(1 + x)

[
1 − 1 + b + b x

1 + b
exp(−b x)

]a−1

exp(−δx)dx.

We have

L(a, b , c, δ, t) =
∞∑

i=0

i∑
j=0

j+1∑
k=0

(
a − 1

i

)(
i
j

)(
j + 1

k

)
(−1)ib j	 (c + k + 1, (bi + δ)t)

(1 + b)i(bi + δ)c+k+1 ,

(22)
where 	(a, x) = ∫∞

x ta−1 exp(−t)dt denotes the complementary incomplete
gamma function. If c is an integer then Eq. 22 can be simplif ied to

L(a, b , c, δ, t)=
∞∑

i=0

i∑
j=0

j+1∑
k=0

(
a − 1

i

)(
i
j

)(
j + 1

k

)
(−1)ib j(c + k)! exp {−(bi + δ)t}

(1 + b)i(bi + δ)c+k+1

×
c+k∑
l=0

(bi + δ)l

l! .

Proof The proof of Eq. 22 is similar to the proof of Lemma 1, but using
the definition of the complementary incomplete gamma function. The final
relation follows by using the fact

	(n, z) = (n − 1)! exp(−z)

n−1∑
l=0

zl

l! ,

see http://functions.wolfram.com/GammaBetaErf/Gamma2/03/01/02/0007/.
	


http://functions.wolfram.com/GammaBetaErf/Gamma2/03/01/02/0007/
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Using Lemma 2, it is easily seen that

E
(
Xn | X > x

) = αλ2

(1 + λ) {1 − Vα(x)} L(α, λ, n, λ, x),

where V(·) is given by Eq. 4. In particular,

E (X | X > x) = αλ2

(1 + λ) {1 − Vα(x)} L(α, λ, 1, λ, x),

E
(
X2 | X > x

) = αλ2

(1 + λ) {1 − Vα(x)} L(α, λ, 2, λ, x),

E
(
X3 | X > x

) = αλ2

(1 + λ) {1 − Vα(x)} L(α, λ, 3, λ, x)

and

E
(
X4 | X > x

) = αλ2

(1 + λ) {1 − Vα(x)} L(α, λ, 4, λ, x).

The mean residual lifetime function is E(X | X > x) − x.

8 L moments

Some other important measures useful for lifetime models are the L moments
due to Hoskings (1990). It can be shown using Lemma 1 that the kth L mo-
ment is

λk =
k−1∑
j=0

(−1)k−1− j
(

k − 1
j

)(
k − 1 + j

j

)
β j,

where

βk = αλ2

1 + λ
K (α(k + 1), λ, 1, λ) .

In particular,

λ1 = β0,

λ2 = 2β1 − β0,

λ3 = 6β2 − 6β1 + β0

and

λ4 = 20β3 − 30β2 + 12β1 − β0,
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where

β0 = αλ2

1 + λ
K (α, λ, 1, λ) ,

β1 = αλ2

1 + λ
K (2α, λ, 1, λ) ,

β2 = αλ2

1 + λ
K (3α, λ, 1, λ)

and

β3 = αλ2

1 + λ
K (4α, λ, 1, λ) .

The L moments have several advantages over ordinary moments: for example,
they apply for any distribution having finite mean; no higher-order moments
need be finite.

9 MGF, CHF and CGF

Let X denote a random variable with the probability density function 2. It
follows from Lemma 1 that the moment generating function of X, M(t) =
E[exp(tX)], is given by

M(t) = αλ2

1 + λ
K(α, λ, 0, λ − t)

for t < λ. So, the characteristic function of X, φ(t) = E[exp(itX)], and the
cumulant generating function of X, K(t) = log φ(t), are given by

φ(t) = αλ2

1 + λ
K (α, λ, 0, λ − it)

and

K(t) = log
αλ2

1 + λ
+ log K (α, λ, 0, λ − it) ,

respectively, where i = √−1.

10 Mean deviations

The amount of scatter in a population is evidently measured to some extent by
the totality of deviations from the mean and median. These are known as the
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mean deviation about the mean and the mean deviation about the median—
defined by

δ1(X) =
∫ ∞

0
|x − μ| f (x)dx

and

δ2(X) =
∫ ∞

0
|x − M| f (x)dx,

respectively, where μ = E(X) and M = Median(X) denotes the median. The
measures δ1(X) and δ2(X) can be calculated using the relationships

δ1(X) =
∫ μ

0
(μ − x) f (x)dx +

∫ ∞

μ

(x − μ) f (x)dx

= μF(μ) −
∫ μ

0
xf (x)dx − μ {1 − F(μ)} +

∫ ∞

μ

xf (x)dx

= 2μF(μ) − 2μ + 2
∫ ∞

μ

xf (x)dx

and

δ2(X) =
∫ M

0
(M − x) f (x)dx +

∫ ∞

M
(x − M) f (x)dx

= MF(M) −
∫ M

0
xf (x)dt − M {1 − F(M)} +

∫ ∞

M
xf (x)dx

= −μ + 2
∫ ∞

M
xf (x)dx.

By Lemma 2,
∫ ∞

μ

xf (x)dx = αλ2

1 + λ
L(α, λ, 1, λ, μ)

and ∫ ∞

M
xf (x)dx = αλ2

1 + λ
L(α, λ, 1, λ, M),

so it follows that

δ1(T) = 2μF(μ) − 2μ + 2αλ2

1 + λ
L(α, λ, 1, λ, μ)

and

δ2(T) = −μ + 2αλ2

1 + λ
L(α, λ, 1, λ, M).
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11 Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves (Bonferroni 1930) and the Bonferroni and
Gini indices have applications not only in economics to study income and
poverty, but also in other fields like reliability, demography, insurance and
medicine. The Bonferroni and Lorenz curves are defined by

B(p) = 1
pμ

∫ q

0
xf (x)dx (23)

and

L(p) = 1
μ

∫ q

0
xf (x)dx, (24)

respectively, or equivalently by

B(p) = 1
pμ

∫ p

0
F−1(x)dx (25)

and

L(p) = 1
μ

∫ p

0
F−1(x)dx, (26)

respectively, where μ = E(X) and q = F−1(p). The Bonferroni and Gini
indices are defined by

B = 1 −
∫ 1

0
B(p)dp (27)

and

G = 1 − 2
∫ 1

0
L(p)dp, (28)

respectively.
If X has the probability density function, Eq. 2, then, by Lemma 2, one can

calculate Eqs. 23 and 24 as

B(p) = 1
pμ

{
μ − αλ2

1 + λ
L(α, λ, 1, λ, q)

}
(29)

and

L(p) = 1
μ

{
μ − αλ2

1 + λ
L(α, λ, 1, λ, q)

}
, (30)

respectively. Alternatively, by using Eq. 21, one can calculate Eqs. 25 and
26 as

B(p) = 1
μ

⎡
⎣−1 − 1

λ
+

∞∑
i=1

i∑
j=0

ii−1

i! (1 + λ)i exp(−i − iλ)

(
i
j

)
(−1) j p j/α

j/α + 1

⎤
⎦ (31)
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and

L(p) = p
μ

⎡
⎣−1 − 1

λ
+

∞∑
i=1

i∑
j=0

ii−1

i! (1 + λ)i exp(−i − iλ)

(
i
j

)
(−1) j p j/α

j/α + 1

⎤
⎦ , (32)

respectively. Integrating Eqs. 31 and 32 with respect to p, one can calculate the
Bonferroni and Gini indices given by Eqs. 27 and 28, respectively, as

B = 1 − 1
μ

⎡
⎣−1 − 1

λ
+

∞∑
i=1

i∑
j=0

ii−1

i! (1 + λ)i exp(−i − iλ)

(
i
j

)
(−1) j

( j/α + 1)2

⎤
⎦ (33)

and

G=1− 1
μ

⎡
⎣−1− 1

λ
+2

∞∑
i=1

i∑
j=0

ii−1

i! (1+λ)i exp(−i − iλ)

(
i
j

)
(−1) j

( j/α + 1) ( j/α+2)

⎤
⎦,

(34)

respectively. Plots of the Bonferroni curve given by Eq. 29 and the Lorenz
curve given by Eq. 30 presented in Nadarajah et al. (2011) show that the
variability of X—as measured by the area between Bonferroni curve and
B(p) = 1 or the area between the Lorenz curve and L(p) = p—decreases
as α increases. The area between a Bonferroni curve and B(p) = 1 is the
Bonferroni index given by Eq. 33. The area between a Lorenz curve and
L(p) = p is known as the area of concentration. The Gini index given by
Eq. 34 is twice this area.

12 Entropies

An entropy of a random variable X is a measure of variation of the uncer-
tainty. A popular entropy measure is Rényi entropy (Rényi 1961). If X has the
probability density function f (·) then Rényi entropy is defined by

JR(γ ) = 1
1 − γ

log
{∫

f γ (x)dx
}

, (35)
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where γ > 0 and γ �= 1. Suppose X has the probability density function 2.
Then, one can calculate∫

f γ (x)dx =
(

αλ2

1 + λ

)γ ∫ ∞

0
(1 + x)γ Vγα−γ (x) exp(−λγ x)dx

=
(

αλ2

1 + λ

)γ ∞∑
k=0

(
γα − γ

k

)
(−1)k

(1 + λ)k

×
∫ ∞

0
(1 + x)γ (1 + λ + λx)k exp {−(k + γ )λx} dx

=
(

αλ2

1 + λ

)γ ∞∑
k=0

(
γα − γ

k

)
(−1)k

(1 + λ)k

k∑
j=0

(
k
j

)
λ j

×
∫ ∞

0
(1 + x)γ+ j exp {−(k + γ )λx} dx

=
(

αλ2

1 + λ

)γ ∞∑
k=0

(
γα − γ

k

)
(−1)k

(1 + λ)k

k∑
j=0

(
k
j

)
λ j exp {(k + γ )λ}

×
∫ ∞

1
yγ+ j exp {−(k + γ )λy} dy

=
(

αλ2

1 + λ

)γ ∞∑
k=0

(
γα − γ

k

)
(−1)k

(1 + λ)k

×
k∑

j=0

(
k
j

)
λ j exp {(k+γ )λ} {(k+γ )λ}−γ− j−1 	 (γ + j+1, (k+γ )λ) ,

where V(·) is given by Eq. 4 and the final step follows by the definition of
the complementary incomplete gamma function. So, one obtains the Rényi
entropy as

JR(γ ) = γ

1 − γ
log
(

αλ2

1 + λ

)

+ 1
1 − γ

log

⎧⎨
⎩

∞∑
k=0

k∑
j=0

(
γα − γ

k

)(
k
j

)

× (−1)kλ j exp {(k + γ )λ}	 (γ + j + 1, (k + γ )λ)

(1 + λ)k {(k + γ )λ}γ+ j+1

⎫⎬
⎭ .

(36)
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Shannon entropy (Shannon 1951) defined by E[− log f (X)] is the the partic-
ular case of Eq. 35 for γ ↑ 1. Limiting γ ↑ 1 in Eq. 36 and using L’Hospital’s
rule, one obtains after considerable algebraic manipulation that

E
[− log f (X)

] = − log
(

αλ2

1 + λ

)
+ λE(X) +

∞∑
k=1

(−1)k

k
E
(
Xk)

+(1 − α)

∞∑
k=0

k∑
l=0

(
k
l

)
(1 + λ)k=lλl

k(1 + λ)k
K (α, λ, l, λ + λk) ,

where K(· · · ) is as defined by Lemma 1.
Finally, consider the cumulative residual entropy (Rao et al. 2004) de-

fined by

JC = −
∫

Pr(X > x) log Pr(X > x)dx. (37)

Using the series expansions,

(1 − z)a−1 =
∞∑

i=0

(
a − 1

i

)
(−1)izi (38)

and

log(1 − z) = −
∞∑

i=1

zi

i
,

one can calculate Eq. 37 as

JC =
∞∑

i=0

1
i

∫ ∞

0
Vαi(x) {1 − Vα(x)} dx

= −
∞∑

i=0

∞∑
j=1

(
α

j

)
(−1) j

i(1 + λ) j

∫ ∞

0
(1 + λ + λx) jVαi(x) exp(−λ jx)dx

= −
∞∑

i=0

∞∑
j=1

j∑
k=0

(
α

j

)(
j
k

)
(−1) jλk

i(1 + λ) j

∫ ∞

0
(1 + x)kVαi(x) exp(−λ jx)dx

= −
∞∑

i=0

∞∑
j=1

j∑
k=0

(
α

j

)(
j
k

)
(−1) jλk

i(1 + λ) j
K (αi + 1, λ, 0, λ j) ,

where the final step follows by an application of Lemma 1.
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13 Order statistics

Suppose X1, X2, . . . , Xn is a random sample from Eq. 2. Let X1:n < X2:n <

· · · < Xn:n denote the corresponding order statistics. It is well known that the
probability density function and the cumulative distribution function of the kth
order statistic, say Y = Xk:n, are given by

fY(y) = n!
(k − 1)!(n − k)! Fk−1(y) {1 − F(y)}n−k f (y)

= n!
(k − 1)!(n − k)!

n−k∑
l=0

(
n − k

l

)
(−1)l Fk−1+l(y) f (y)

and

FY(y) =
n∑

j=k

(
n
j

)
F j(y) {1 − F(y)}n− j =

n∑
j=k

n− j∑
l=0

(
n
j

)(
n − j

l

)
(−1)l F j+l(y),

respectively, for k = 1, 2, . . . , n. It follows from Eqs. 1 and 2 that

fY(y) = αλ2n!
(1 + λ)(k − 1)!(n − k)! (1 + x) exp(−λx)

n−k∑
l=0

(
n − k

l

)
(−1)lVα(k+l)−1(y)

and

FY(y) =
n∑

j=k

n− j∑
l=0

(
n
j

)(
n − j

l

)
(−1)lVα( j+l)(y),

where V(·) is given by Eq. 4. Using Lemma 1, the qth moment of Y can be
expressed as

E
(
Yq) = αλ2n!

(1 + λ)(k − 1)!(n − k)!
n−k∑
l=0

(
n − k

l

)
(−1)l K (α(k + l), λ, m, λ)

for q ≥ 1.

14 Extreme values

If X = (X1 + · · · + xn)/n denotes the sample mean then by the usual central
limit theorem

√
n(X − E(X))/

√
Var(X) approaches the standard normal dis-

tribution as n → ∞. Sometimes one would be interested in the asymptotics of
the extreme values Mn = max(X1, . . . , Xn) and mn = min(X1, . . . , Xn).
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Let g(t) = 1/λ. Take the cumulative distribution function and the probabil-
ity density function as specified by Eqs. 1 and 2, respectively. Note from Eqs. 16
and 17 that

lim
t→∞

1 − F(t + xg(t))
1 − F(t)

= lim
t→∞

f (t + x/λ)

f (t)
= lim

t→∞
t + x/λ

t
exp(−x) = exp(−x)

as t → ∞ and

lim
t→0

F(tx)

F(t)
= lim

t→∞
xf (tx)

f (t)
= xα

as t → 0. Hence, it follows from Theorem 1.6.2 in Leadbetter et al. (1987) that
there must be norming constants an > 0, b n, cn > 0 and dn such that

Pr {an (Mn − b n) ≤ x} → exp {− exp(−x)}

and

Pr {cn (mn − dn) ≤ x} → 1 − exp (−xα)

as n → ∞. The form of the norming constants can also be determined. For
instance, using Corollary 1.6.3 in Leadbetter et al. (1987), one can see that
b n = F−1(1 − 1/n) and an = λ, where F−1(·) denotes the inverse function
of F(·).

15 Reliability

In the context of reliability, the stress-strength model describes the life of a
component which has a random strength X1 that is subjected to a random stress
X2. The component fails at the instant that the stress applied to it exceeds the
strength, and the component will function satisfactorily whenever X1 > X2.
So, R = Pr(X2 < X1) is a measure of component reliability. It has many appli-
cations especially in engineering concepts such as structures, deterioration of
rocket motors, static fatigue of ceramic components, fatigue failure of aircraft
structures, and the aging of concrete pressure vessels. In the area of stress-
strength models there has been a large amount of work as regards estimation of
the reliability R when X1 and X2 are independent random variables belonging
to the same univariate family of distributions and its algebraic form has been
worked out for the majority of the well-known standard distributions. How-
ever, there are still many other distributions (including generalizations of the
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well-known distributions) for which the form of R has not been investigated.
Here, we derive the reliability R when X1 and X2 are independent random
variables distributed according to Eq. 2 with parameters (α1, λ1) and (α2, λ2),
respectively.

Several representations can be derived for the reliability R. Firstly, note
from Eqs. 1 and 2 that

R = α1λ
2
1

1 + λ1

∫ ∞

0
(1 + x)

[
1 − 1 + λ1 + λ1x

1 + λ1
exp (−λ1x)

]α1−1

×
[

1 − 1 + λ2 + λ2x
1 + λ2

exp (−λ2x)

]α2

exp (−λ1x) dx. (39)

Applying the series expansion, Eq. 38, for both the terms within square
brackets in Eq. 39, one obtains the representation

R = α1λ
2
1

1 + λ1

∞∑
k=0

∞∑
l=0

(
α1 − 1

k

)(
α2

l

)
(−1)k+l

(1 + λ1)
k (1 + λ2)

l

×
∫ ∞

0
(1 + x) (1 + λ1 + λ1x)k (1 + λ2 + λ2x)l exp {−λ1(k + 1)x − λ2lx} dx

= α1λ
2
1

1 + λ1

∞∑
k=0

∞∑
l=0

k∑
m=0

l∑
n=0

(
α1 − 1

k

)(
α2

l

)(
k
m

)(
l
n

)
(−1)k+lλm

1 λn
1

(1 + λ1)
m (1 + λ2)

n

×
∫ ∞

0
(1 + x)xm+n exp {−λ1(k + 1)x − λ2lx} dx

= α1λ
2
1

1 + λ1

∞∑
k=0

∞∑
l=0

k∑
m=0

l∑
n=0

(
α1 − 1

k

)(
α2

l

)(
k
m

)(
l
n

)
(−1)k+lλm

1 λn
1

(1 + λ1)
m (1 + λ2)

n

×
[∫ ∞

0
xm+n exp (−λ1kx − λ2lx) dx

+
∫ ∞

0
xm+n+1 exp {−λ1(k + 1)x − λ2lx} dx

]

= α1λ
2
1

1 + λ1

∞∑
k=0

∞∑
l=0

k∑
m=0

l∑
n=0

(
α1 − 1

k

)(
α2

l

)(
k
m

)(
l
n

)
(−1)k+lλm

1 λn
1

(1 + λ1)
m (1 + λ2)

n

× (m + n)!
{λ1(k + 1) + λ2l}m+n+1

[
1 + m + n + 1

λ1(k + 1) + λ2l

]
,
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where the final step follows by the definition of the gamma function. Applying
series expansion, Eq. 38, for only the first term within square brackets in
Eq. 39, one obtains the representation

R = α1λ
2
1

1 + λ1

∞∑
k=0

(
α1 − 1

k

)
(−1)k

(1 + λ1)
k

∫ ∞

0
(1 + x) (1 + λ1 + λ1x)k

×
[

1 − 1 + λ2 + λ2x
1 + λ2

exp (−λ2x)

]α2

exp {−(k + 1)λ1x} dx

= α1λ
2
1

1 + λ1

∞∑
k=0

k∑
l=0

(
α1 − 1

k

)(
k
l

)
(−1)kλl

1

(1 + λ1)
l

×
[ ∫ ∞

0
xl
[

1 − 1 + λ2 + λ2x
1 + λ2

exp (−λ2x)

]α2

exp {−(k + 1)λ1x} dx

+
∫ ∞

0
xl+1

[
1 − 1 + λ2 + λ2x

1 + λ2
exp (−λ2x)

]α2

exp {−(k + 1)λ1x} dx
]

= α1λ
2
1

1 + λ1

∞∑
k=0

k∑
l=0

(
α1 − 1

k

)(
k
l

)
(−1)kλl

1

(1 + λ1)
l

× [K (α2 + 1, λ2, l, (k + 1)λ1) + K (α2 + 1, λ2, l + 1, (k + 1)λ1)
]
,

where the final step follows by an application of Lemma 1. Applying series
expansion, Eq. 38, for only the second term within square brackets in Eq. 39,
one obtains the representation

R = α1λ
2
1

1 + λ1

∞∑
k=0

(
α2

k

)
(−1)k

(1 + λ2)
k

∫ ∞

0
(1 + x) (1 + λ2 + λ2x)k

×
[

1 − 1 + λ1 + λ1x
1 + λ1

exp (−λ1x)

]α1−1

exp (−kλ2x − λ1x) dx

= α1λ
2
1

1 + λ1

∞∑
k=0

k∑
l=0

(
α2

k

)(
k
l

)
(−1)kλl

2

(1 + λ2)
l

×
∫ ∞

0
(1 + x)xl

[
1 − 1 + λ1 + λ1x

1 + λ1
exp (−λ1x)

]α1−1

exp (−kλ2x − λ1x) dx

= α1λ
2
1

1 + λ1

∞∑
k=0

k∑
l=0

(
α2

k

)(
k
l

)
(−1)kλl

2

(1 + λ2)
l
K (α1, λ1, l, λ1 + kλ2) ,
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where the final step follows by an application of Lemma 1. Finally, if λ1 = λ2 =
λ then

R = α1λ
2

1 + λ
K (α1 + α2, λ, 0, λ1) ,

which follows by an application of Lemma 1. If in addition α1 = α2 then R =
1/2. Contours of the Eq. 39 presented in Nadarajah et al. (2011) show that they
appear symmetric around the 45◦ diagonal when λ1 and λ2 are equal. They
become more skewed towards the vertical axis (respectively, the horizontal
axis) as the magnitude of λ2 − λ1 (respectively, λ1 − λ2) increases.

16 Estimation

Here, we consider estimation by the methods of moments and maximum like-
lihood and provide expressions for the associated Fisher information matrix.
We also consider estimation issues for censored data.

Suppose x1, . . . , xn is a random sample from Eq. 2. For the moments
estimation, let m1 = (1/n)

∑n
j=1 x j and m2 = (1/n)

∑n
j=1 x2

j . By equating the
theoretical moments of Eq. 2 with the sample moments, one obtains the
equations:

αλ2

1 + λ
K(α, λ, 1, λ) = m1 (40)

and

αλ2

1 + λ
K(α, λ, 2, λ) = m2. (41)

The method of moments estimators are the simultaneous solutions of these
two equations.

Now consider estimation by the method of maximum likelihood. The log
likelihood function of the two parameters is:

log L(α, λ)= n log
(

αλ2

1+λ

)
+

n∑
i=1

log (1+Xi)−λ

n∑
i=1

Xi + (α − 1)

n∑
i=1

log V (Xi) ,

(42)
where V(·) is given by Eq. 4. It follows that the maximum likelihood estimators,
say α̂ and λ̂, are the simultaneous solutions of the equations:

n
α

= −
n∑

i=1

log V (Xi) (43)

and

n(2 + λ)

λ(1 + λ)
=

n∑
i=1

Xi + 1 − α

(1 + λ)2

n∑
i=1

exp (−λXi)

V (Xi)
[λ(1 + λ) (1 + λ + λXi) − Xi] .

(44)
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For interval estimation of (α, λ) and tests of hypothesis, one requires the Fisher
information matrix:

I =

⎛
⎜⎜⎝

E
(

−∂2 log L
∂α2

)
, E
(

−∂2 log L
∂α∂λ

)

E
(

−∂2 log L
∂α∂λ

)
E
(

−∂2 log L
∂λ2

)
⎞
⎟⎟⎠ .

The elements of this matrix for Eq. 42 can be worked out as:

E
(

−∂2 log L
∂α2

)
= n

α2 ,

E
(
−∂2 log L

∂α∂λ

)
= αλ3

1+λ
K (α−1, λ, 0, 2λ)+ αλ2

[
λ2(1+λ)−1

]
(1+λ)3 K (α−1, λ, 1, 2λ)

and

E
(

−∂2 log L
∂λ2

)
= 2n

λ2 − n
(1 + λ)2 + αλ4

1 + λ
K (α − 2, λ, 0, 3λ)

−2αλ3
[
λ2(1 + λ) − 1

]
(1 + λ)3 K (α − 2, λ, 1, 3λ)

+αλ2
[
λ2(1 + λ) − 1

]2
(1 + λ)5 K (α − 2, λ, 2, 3λ)

+αλ2
[
λ2(1 + λ) − λ − 1

]
(1 + λ)2 K (α − 1, λ, 0, 2λ)

+αλ2 [2 − λ(1 + λ)(1 + 3λ)]
(1 + λ)4 K (α − 1, λ, 1, 2λ) ,

where K(· · · ) is as defined by Lemma 1. Under regularity conditions, the
asymptotic distribution of (̂α, λ̂) as n → ∞ is bivariate normal with zero means
and variance co-variance matrix I−1.

Often with lifetime data, one encounters censored data. There are different
forms of censoring: type I censoring, type II censoring, etc. Here, we consider
the general case of multicensored data: there are n subjects of which

• n0 are known to have failed at the times X1, . . . , Xn0 .
• n1 are known to have failed in the interval [Si−1, Si], i = 1, . . . , n1.
• n2 survived to a time Ri, i = 1, . . . , n2 but not observed any longer.
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Note that n = n0 + n1 + n2. Note too that type I censoring and type II cen-
soring are contained as particular cases of multicensoring. The log likelihood
function of the two parameters for this multicensoring data is:

log L(α, λ) = n0 log
(

αλ2

1 + λ

)
+

n0∑
i=1

log (1+Xi)−λ

n0∑
i=1

Xi+(α−1)

n0∑
i=1

log V (Xi)

+
n1∑

i=1

log
[
Vα (Si) − Vα (Si−1)

]+
n2∑

i=1

log
[
1 − Vα (Ri)

]
. (45)

It follows that the maximum likelihood estimators are the simultaneous solu-
tions of the equations:

n
α

= −
n∑

i=1

log V (Xi) −
n1∑

i=1

U (Si) − U (Si−1)

Vα (Si) − Vα (Si−1)
+

n2∑
i=1

U (Ri)

Vα (Si) − Vα (Si−1)

and

n(2 + λ)

λ(1 + λ)
=

n∑
i=1

Xi + 1 − α

(1 + λ)2

n∑
i=1

exp (−λXi)

V (Xi)
[λ(1 + λ) (1 + λ + λXi) − Xi]

−α

n1∑
i=1

W (Si) − W (Si−1)

Vα (Si) − Vα (Si−1)
+

n2∑
i=1

W (Ri)

Vα (Si) − Vα (Si−1)
,

where U(x) = Vα(x) log V(x) and W(x) = (1 + λ)−2Vα−1(x) exp(−λx){λ(1 +
λ)(1 + λ + λx) − x}. The Fisher information matrix corresponding to Eq. 45
is too complicated to be presented here.

17 Simulation

Here, we consider simulating values of a random variable X with the probabil-
ity density function 2. Let U denote a uniform random variable on the interval
(0, 1). One way to simulate values of X is to set[

1 + λX
1 + λ

]
exp (−λX) = 1 − U1/α

and solve for X, i.e. use the inversion method. Using Eq. 20, we obtain X as

X = −1 − 1
λ

− 1
λ

W
(−(1 + λ) exp (−1 − λ)

(
1 − U1/α

))
,

where W(·) denotes the Lambert W function. Another way to simulate values
of X is by the rejection method with envelope g(·) chosen to be either the
gamma probability density function in Eq. 7 or the Weibull probability density
function in Eq. 11. It is well known that the rejection scheme for simulating is
given by:

1. Simulate X = x from the probability density function g(·).
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2. If g(·) is given by Eq. 7 then simulate Y = U Mg(x), where U is an
independent uniform random variable on (0, 1) and M is given by Eq. 8;
if g(·) is given by Eq. 11 then simulate Y = U M∗g(x), where U is an
independent uniform random variable on (0, 1) and M∗ is given by Eq. 12.

3. Accept X = x as a realization of a random variable with the probability
density function 2 if Y < f (x). If Y ≥ f (x) return to step 2.

Routines are widely available for simulating from gamma and Weibull distrib-
utions (step 1).

18 Maximum likelihood versus moments estimation

In this section, we compare the performances of the two estimation methods
presented in Section 16. For this purpose, we generated samples of size n =
10, 20, . . . , 50 from Eq. 2 for λ = 1, 2, . . . , 6, α = 1, 2, . . . , 6 by following the
inversion method described in Section 17. For each sample, we computed
the moments estimates and the maximum likelihood estimates, by solving the
Eqs. 40, 41, 43 and 44 in Section 16. We repeated this process thousand times
and computed the bias of the estimates and the mean squared error (MSE).
The computer programs NEQNF and GAMIC in IMSL and the computer
package R were used for the calculations. The results for n = 20 are reported
in Table 1. Those for n = 10, 30, 40, 50 are reported in Nadarajah et al. (2011).
logl

The following observations can be made:

• for n = 10, the moments estimator is generally superior in terms of bias
and mean squared error,

• for n = 20, 30, 40, 50, the moments estimator is generally superior in terms
of bias and the maximum likelihood estimator is generally superior in
terms of mean squared error,

• the bias of λ̂ decreases with increasing n for both maximum likelihood and
moments estimators,

• the bias of α̂ decreases with increasing n for both maximum likelihood and
moments estimators,

• the mean squared error of λ̂ decreases with increasing n for both maximum
likelihood and moments estimators,

• the mean squared error of α̂ decreases with increasing n for both maximum
likelihood and moments estimators,

• the bias of λ̂ generally decreases with increasing α for any given λ and n
and for both maximum likelihood and moments estimators,

• the bias of λ̂ generally increases with increasing λ for any given α and n
and for both maximum likelihood and moments estimators,

• the bias of α̂ generally increases with increasing α for any given λ and n
and for both maximum likelihood and moments estimators,
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Table 1 Maximum likelihood versus moments estimation for n = 20

λ α Maximum likelihood estimation Moments estimation

Bias(̂λ) Bias(̂α) MSE(̂λ) MSE(̂α) Bias(̂λ) Bias(̂α) MSE(̂λ) MSE(̂α)

1 1 0.208 0.147 0.290 0.158 0.276 0.213 0.431 0.269
1 2 0.186 0.312 0.235 0.701 0.192 0.323 0.277 0.851
1 3 0.184 0.499 0.231 1.760 0.170 0.457 0.243 1.877
1 4 0.180 0.660 0.220 3.100 0.154 0.558 0.220 3.113
1 5 0.182 0.848 0.222 4.900 0.153 0.705 0.217 4.826
1 6 0.188 1.073 0.232 7.610 0.152 0.854 0.218 7.151
2 1 0.418 0.147 1.195 0.167 0.564 0.215 1.783 0.275
2 2 0.389 0.325 0.972 0.725 0.410 0.345 1.151 0.885
2 3 0.374 0.492 0.941 1.736 0.348 0.454 1.002 1.874
2 4 0.352 0.649 0.935 3.237 0.305 0.556 0.943 3.286
2 5 0.364 0.850 0.906 5.061 0.303 0.699 0.873 4.887
2 6 0.356 1.010 0.862 7.111 0.286 0.802 0.823 6.782
3 1 0.596 0.141 2.402 0.149 0.812 0.211 3.635 0.258
3 2 0.552 0.311 2.105 0.703 0.587 0.334 2.492 0.865
3 3 0.544 0.479 2.108 1.711 0.505 0.441 2.256 1.873
3 4 0.540 0.665 2.016 3.141 0.471 0.573 2.034 3.169
3 5 0.539 0.830 2.007 4.964 0.441 0.669 1.951 4.850
3 6 0.550 1.047 2.023 7.429 0.438 0.825 1.908 7.011
4 1 0.835 0.149 4.748 0.161 1.153 0.225 7.123 0.276
4 2 0.772 0.319 4.064 0.755 0.815 0.339 4.779 0.907
4 3 0.723 0.487 3.710 1.721 0.674 0.451 3.969 1.869
4 4 0.759 0.691 3.717 3.201 0.658 0.591 3.736 3.229
4 5 0.705 0.826 3.528 4.955 0.569 0.658 3.373 4.774
4 6 0.734 1.037 3.682 7.515 0.595 0.831 3.483 7.136
5 1 1.004 0.141 6.861 0.156 1.363 0.208 10.621 0.268
5 2 0.919 0.303 5.972 0.724 0.969 0.323 6.966 0.866
5 3 0.922 0.485 5.869 1.736 0.860 0.449 6.334 1.888
5 4 0.859 0.634 5.394 3.033 0.739 0.539 5.374 3.031
5 5 0.906 0.848 5.793 5.141 0.750 0.694 5.668 5.059
5 6 0.933 1.063 5.922 7.732 0.752 0.849 5.612 7.362
6 1 1.183 0.140 10.163 0.164 1.637 0.212 15.388 0.275
6 2 1.156 0.330 8.832 0.744 1.216 0.349 10.417 0.901
6 3 1.056 0.464 7.939 1.642 0.986 0.428 8.560 1.786
6 4 1.090 0.667 8.198 3.169 0.949 0.575 8.157 3.176
6 5 1.122 0.877 8.364 5.189 0.933 0.723 8.044 5.033
6 6 1.094 1.043 8.195 7.417 0.882 0.832 7.754 7.028

• the mean squared error of λ̂ generally decreases with increasing α for any
given λ and n and for both maximum likelihood and moments estimators,

• the mean squared error of λ̂ generally increases with increasing λ for any
given α and n and for both maximum likelihood and moments estimators,

• the mean squared error of α̂ generally increases with increasing α for any
given λ and n and for both maximum likelihood and moments estimators.

Because of space limitations, we have only considered n = 10, 20, . . . , 50. But
the above observations hold also for sample sizes greater than 50.
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Table 2 Relief times of twenty patients

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7 4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2

19 Data analysis

In this section, we illustrate that the new distribution given by Eq. 2 can be
a better model than those based on the gamma, lognormal and the Weibull
distributions. We use the lifetime data set given by Table 2. This data set is
taken from Gross and Clark (1975, p. 105). It shows the relief times of twenty
patients receiving an analgesic. We would like to emphasize that the aim here
is not to provide a complete statistical modeling or inferences for the data set
involved.

We fitted the models given by Eqs. 2, 7, 6 and 11 to the lifetime data set.
The maximum likelihood procedure described by Eqs. 43 and 44 was used.
The fitted estimates are given in Table 3. The numbers given within brackets
are the standard errors of parameter estimates obtained by the delta method
(Rao 1973, pp. 387–389). Also given in the table are the Kolmogorov Smirnov
statistics of the fits and the associated p values.

The fitted models given by Eqs. 2, 7, 6 and 11 are not nested. So, their
comparison should be based on criteria such as the Akaike’s information
criterion or the Bayesian information criterion. Table 3 also gives values of
these criteria. Note however that if the models have the same number of
parameters then these criteria reduce to the usual likelihood ratio test.

Comparing the likelihood values, p values based on the Kolmogorov
Smirnov test, AIC and BIC, we see that Eq. 2 provides a significantly better
fit than the other three models. We also note from Table 3 that the new model
generally yields smaller standard errors than the gamma, lognormal and the
Weibull models. This suggests that the new model provides more accurate
estimates as well as better fits.

Table 3 Fitted estimates for data in Table 2

Model Parameter estimates Log likelihood K-S statistic p-value AIC BIC

Weibull m̂ = 2.1300(0.4763), −20.5864 0.1850 0.4472 45.1728 47.1643
β̂ = 2.7870(0.6232)

Gamma m̂ = 9.6695(3.1141), −17.8186 0.1734 0.5283 39.6372 41.6287
β̂ = 5.0892(1.5595)

Lognormal θ̂ = 0.8836(0.1848), −18.9187 0.1011 0.9737 39.6372 41.6287
μ̂ = −0.1774(0.3020)

σ̂ = 0.6231(0.1939)

Generalized λ̂ = 27.8766(0.5678), −16.4044 0.1377 0.7941 36.8089 38.8004
Lindley α̂ = 2.5395(0.0233)
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