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Abstract Generalized gamma distribution offers a flexible family and many of the
important lifetime models are obtained as component models by setting its shape
parameters to unity. The flexibility of the generalized gamma model, however,
occurs at the cost of its increased complexity. The present paper makes a simulation
based Bayesian study to have a thorough comparison of the generalized gamma with
its components in situations where the given data appear compatible with this family.
Of course, if a component model is recommended the latter inferences are quite easy
to deal with. The study has been conducted in two stages. First, the generalized
gamma family with a scale and two shape parameters is examined to see if one or
both of its shape parameters can be set to unity in order that the component models
can be looked upon as possible candidates. Second, a threshold parameter added in
to the family selected at the first stage is tested against zero to see if there is any
desirability of threshold in the model(s). A real data set is considered for the purpose
of illustration. The paper proceeds by checking compatibility of the various
component models with the given data set and finally compares the models to
select the one that is most pertinent with the data.
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1 Introduction

Numerous parametric models have been proposed for the analysis of lifetime data.
Generalized gamma model is one such flexible family often advocated to model such
data sets although the model has applications in several other fields too. The model
was proposed by Stacy (1962) and later on independently given by Cohen (1969).
The probability density function (pdf) of the generalized gamma model in its
standard form can be written as

fðxjq; b; kÞ ¼ b
Γ kð Þ

xbk�1

qbk
exp � x

q

� �b� �
; x > 0; q; b; k > 0 ð1Þ

where the parameter θ is the scale parameter and both β and κ determine the shape of
the distribution. The distribution reduces to the two-parameter Weibull for κ=1, the
two-parameter gamma for β=1, and the one-parameter exponential for both β=κ=1.
Thus, the generalized gamma family incorporates all the important life-testing
distributions and this is perhaps the reason that the model has enough scope in
lifetime data analyses.

The exponential, Weibull, and gamma models, which may be referred as the
component models, are all quite important in the context of lifetime data and the
inferences for these are available in bulk using both classical and Bayesian
methodologies. Inferential procedures for the generalized gamma distribution are,
however, difficult perhaps because of an additional shape parameter. Mann et al.
(1974), Lawless (1982), etc. are good references, which provide details of classical
developments for these models. For Bayesian inferences, one may refer to Martz and
Waller (1982), Upadhyay et al. (2001) and, more recently, Singpurwalla (2006), etc.

Obviously, the model written in the form (1) makes it more difficult to draw
inferences compared to its component models although flexibility of the model (1) to
deal with variety of situations cannot be denied. For the situations where (1) happens
to be appropriate, the practitioners may often desire to examine the scope of its
component models to be able to deal with the related inferences easily. The main
purpose of our study, therefore, concentrates around providing a thorough
comparison of the generalized gamma with its components when there is a dataset
that appears compatible with this family. Since the entire study is Bayesian, the
posterior simulation has been done either directly (in exponential case) or with the
Gibbs sampler algorithm (in other cases).

Bayes paradigm offers a number of tools for studying model compatibility. We
have mainly focused on the predictive simulation ideas that advocate compatibility
of the data with the model if the predicted results from the model agree with the
observed results (see, for example, Rubin (1984), Gelman et al. (1996) and
Upadhyay et al. (2001)). It is to be noted that the predictive distribution in the
present discussion is referred to mean the distribution of the future data given the
observed data that may be obtained by averaging out the parameters involved in the
process with respect to some of its appropriate distribution. When averaging is done
with respect to the posterior, the resulting distribution may be considered as the
posterior predictive distribution (see Bayarri and Berger (1998)). The simulation
from the posterior predictive distribution is often difficult but MCMC approaches in
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Bayes computation provide straightforward solution once the posterior samples are
made available by such approaches (see, for example, Gelman et al. (1996),
Upadhyay et al. (2001), etc.).

Bayesian versions of p-values based on properly chosen test statistics have also
been used extensively to provide a quantitative measure for checking model
compatibility through predictive simulation ideas. For details regarding such
measures, readers are referred to Gelman et al. (1996), Bayarri and Berger (1998),
Upadhyay et al. (2001), and Upadhyay and Mukherjee (2008), etc.

It is worthwhile to remark here that the model compatibility is related to examining
a single model with the data when there is no alternative in hand. When a number of
models are found compatible with the data, the practitioners are often willing to go for
the most appropriate one based on their comparisons. There are several Bayesian tools
available for model comparison. For the present study, we have considered the
Bayesian Information Criterion (BIC), the Deviance Information Criterion (DIC) and
an important version of Bayes factor, namely the fractional Bayes factor (FBF).
Moreover, since model comparison involves at least two models, the basis for any
such comparison should pay attention to both fitting and complexity of the models. In
the same very spirit, we have also considered the posterior predictive loss (PPL)
approach of Gelfand and Ghosh (1998) for comparing the models under
consideration and accordingly drawing the necessary conclusions.

Before we end the section, let us have yet another important observation. It can be
seen that (1) is free of threshold parameter although the addition of a threshold will
further generalize the model. This generalization will lead to a non-regular family
compounded with the constrained parameter region and, will further complicate the
issue in a model that is already quite complicated. We have, therefore, considered the
following two stages. First, we have studied the model (1) with its component
models to get a single model that appears most appropriate for the data in hand.
Second, we add a threshold parameter in the family chosen at the first stage and
check if the threshold can be taken to be zero. If the result of comparison goes in
favour of the extended family, we can justify the inclusion of a threshold parameter
otherwise we consider a model chosen at the first stage without a threshold. It is to
be noted that this entire strategy has been adopted to avoid the difficulty of
entertaining four models each with a threshold for comparison at the first stage. As a
word of remark: generalized gamma and a few of its components are difficult with a
threshold but in no way it should be taken to mean that the solutions cannot be
worked out as it has been successfully shown by Upadhyay and Smith (1994),
Singpurwalla (2006), etc.

The plan of the paper is as under. The next section provides the model
formulation, a brief review of the Gibbs sampler and its implementation details for
the concerned posteriors. Section 3 considers the numerical illustration and provides
full posterior analyses for all the four models based on a real data set. Section 4
relates to the model compatibility study and provides a brief review of various tools
employed for the purpose. Section 5 continues with the numerical illustration for
studying compatibility of all the four models with the data given in Section 3.
Section 6 summarizes a brief discussion of different tools used for the comparison of
the models. It is to be noted that the tools given in Section 6 are mostly borrowed
from the cited literature although a description is provided to make the paper self-
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content. Section 7 continues with the real data illustration and recommends a model
based on the tools given in Section 6. A model chosen at this stage is then added
with a threshold parameter that has been finally considered as a proposal for the
second stage comparison in Section 8. Section 9 provides the numerical illustration
for the second stage study using the same data set that has been considered in
Section 3. The section also aims to test the appropriateness of adding a threshold
parameter at the second stage. The paper finally ends with a brief conclusion given
in Section 10.

2 Model formulation, Gibbs sampler, and the posterior exploration

Gibbs sampler provides a way for generating samples from the posteriors that are
specified up to proportionality only. The scheme proceeds iteratively by generating
variate values in a cyclic manner from the various full conditionals, specified up to
proportionality, using suitably chosen initial values for starting the process. The
iterations are carried out until a systematic pattern of convergence is achieved
through the generating scheme. It has been observed that after a large number of
iterations the generated samples converge in distribution to a random sample from
the true posterior distribution (see, for example, Smith and Roberts (1993),
Upadhyay et al. (2001) and Robert and Casella (2004), etc. for a detailed
discussion).

To provide the implementation details of the algorithm for the generalized
gamma, let us assume that x: x1, x2,…,xn be the observed lifetimes from (1). The
corresponding likelihood function can be written as

L xjq; b; kð Þ ¼ b

Γ kð Þqbk
� �nYn

i¼1

xið Þbk�1 exp �
Xn
i¼1

xi
q

� �b" #
: ð2Þ

We consider independent prior for θ, β and κ (see Upadhyay et al. (2001)) given
as

g1ðqÞ /
1

q

g2ðbÞ / Gða1; b1Þ
g3ðkÞ / Gða2; b2Þ

g ð3Þ

where G(a, b) stands for the gamma distribution with shape parameter a and scale
parameter b. It should be noted here that except for the prior distribution of θ, the prior
distributions for rest of the parameters are proper. Moreover, the prior for θ is taken as
per Jeffreys’ suggestion for the priors of the scale parameters. The above choices,
therefore, ensure the posterior to be proper (see also Upadhyay et al. (2001),
Singpurwalla (2006)). Obviously, the posterior up to proportionality can be written as

p q; b; kjxð Þa bnþa1�1ka2�1

Γ kð Þð Þnqnbkþ1

Yn
i¼1

xið Þbk�1 exp �
Xn
i¼1

xi
q

� �b
þ b

b1
þ k

b2

 !" #
: ð4Þ
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The full conditionals of θ, β and κ can be easily made available from (4).
Upadhyay et al. (2001) have provided the necessary details on sample generation
schemes from these various full conditionals (see also Singpurwalla (2006)). Thus,
the Gibbs sampler algorithm can be easily applied to model (1) to simulate the
corresponding posterior.

For implementation of the Gibbs sampler algorithm to models such as the Weibull
and/or the gamma, one can similarly proceed by putting κ=1 and/or β=1 in the
likelihood (2) and omit the corresponding prior and the variate in (4). Thus, the
implementation of the algorithm to these component models will be even more
simplified. The exponential model (β=1, κ=1) is perhaps the easiest one and if we
consider the same prior for θ as in (3), the posterior simplifies to

p qjxð Þa 1

qnþ1 exp �
Xn
i¼1

xi
q

 !
; ð5Þ

which is a gamma distribution and it can be directly simulated using any gamma
generating routine (see, for example, Devroye (1986)).

3 Numerical illustration: posterior analysis based on a real data

The data set considered for the purpose of numerical illustration refers to number of
million revolutions before failure for each of 23 bearings in a life test experiment. The
complete set of observations is shown in Table 1. Lieblein and Zelen (1956) analyzed
the data for Weibull model whereas Lawless analyzed it for both Weibull and
generalized gamma models. Upadhyay et al. (2001) considered this data in the context
of generalized gamma model while Bain and Engelhardt (1980) used it for comparing
Weibull and gamma models. It, therefore, appears that not only the generalized gamma
but also a few of its important components appear to be strong contenders for this data
set. It is to be noted that if one goes for recommending the component models, one is
actually saved from the inherent complexities of the generalized gamma.

Assuming the data set from each of the four models, in turn, we analyzed the
corresponding posteriors as per details provided in the previous section taking ai=
2.00 and bi=1.00 (i=1, 2). The values 2.00 and 1.00 were simply taken following
Upadhyay et al. (2001) although variations in priors because of the changes in
hyperparameters (or even the modeling assumptions) do not make any detrimental
consequence as long as the tools such as those of sampling-importance-resampling
are available (see, for example, Upadhyay and Smith (1993)). Moreover, since the
objective of the paper is model comparison in a Bayesian framework, the paradigm
checks the entire modeling assumption that includes the prior as well.

Table 1 Million of revolutions before failure for each of 23 ball bearings

17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84

51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40
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A few of the important results of our posterior analyses in the form of posterior
modes and means are shown in Table 2. These results are based on a sample of size
1,000 from each of the four posteriors obtained either directly in exponential case or
through the proper implementation of the Gibbs sampler algorithm in other cases.
We skip any discussion on these results simply because they represent the usual
point estimates; posterior mode being the most probable value whereas posterior
mean being the optimal estimate under squared error loss function.

4 Model compatibility

There are several tools for studying model compatibility. An important and logically
convincing idea to check model compatibility is based on predictive simulation, which
suggests that a model is compatible if it provides the prediction in accordance with the
patterns given in the observed data x. In case of no or poor resemblance of the predicted
data with the observed data, the model is suspected. This resemblance can often be
measured on the basis of a suitable test statistic and the result can be presented either
graphically or by means of a quantitative measure such as the p-value (see, for example,
Gelman et al. (1996), Bayarri and Berger (1998), Upadhyay and Peshwani (2003), etc.).

For the present study, we consider the empirical distribution function (Edf) plots
for the observed and the predicted data from the model(s) (see Upadhyay et al.
(2001)) as well as some other plots based on some future order statistics that we feel
important for model discrimination in life testing studies. These plots often provide
an informal but a striking message on model compatibility. To provide quantitative
evidence on the study of model compatibility, we advocate for the use of an
important Bayesian version of p-value based on some statistics with large values of
the latter casting doubt on the model authenticity.

To discuss briefly the notion of p-value, let us consider the data x from an assumed
model f(.) given under the hypothesis H0: X∼f(x|Θ) where Θ stands for the unknown
model parameter(s). Suppose further that we have a test statistic T(X) to investigate
compatibility of the model with the observed data. The p-value is then defined as

p ¼ P½T Xð Þ � t xð Þ� ð6Þ
where tðxÞ denotes the value of T(X) at the observed data x. Obviously, the large value
of tðxÞ cast doubt on compatibility of the model with the given data as it increases the
chance of p getting smaller.

Table 2 Posterior modes and means for different parameters under the assumption of each of the four models

Models Posterior modes Posterior means

θ β κ θ β κ

Exponential 67.634 – – 75.235 – –

Weibull 83.410 2.036 – 83.054 2.057 –

Gamma 20.691 – 3.393 23.081 – 3.408

Generalized gamma 42.151 1.291 1.697 50.019 1.531 2.068
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The main problem with the p-value defined in (6) is its dependence on the unknown
parameter Θ. A number of suggestions have been made both in the classical as well as
in the Bayesian literature to get rid of this unknown parameter but we are not going
into the details of these various suggestions. The interested readers may refer to
Bayarri and Berger (1998) and, more recently, Upadhyay and Mukherjee (2008) for
details. It is to be noted that the main logic behind Bayesian version of p-value is to
average out the unknown Θ with respect to any of its suitable distribution.

The present paper focuses on partial posterior predictive p-value (PV) suggested
by Bayarri and Berger (1998) mainly because of its advantages over other versions
and perhaps because of its comparative ease of computation. PV can be defined as

P ¼
Z

pr TðXÞ � tðxÞ½ � � p»ðΘÞ � dΘ ð7Þ

where p*(Θ) is the partial posterior given as

p»ðΘÞ / Lðx tðxÞ;Θj Þ � gðΘÞ / Lðx Θj Þ � gðΘÞ
LðtðxÞ Θj Þ :

For evaluating (7) one needs repeated generation from p*(Θ) and then
correspondingly T from f(t|Θ), the latter can, of course, be done by generating X
from f(x|Θ) and computing T. The fraction of generated T that exceeds t(.) will then
provide the estimate of the p-value. It is to be noted that generation of X from f(x|Θ)
when Θ has already been obtained from p*(Θ) can be regarded in a predictive sense
and, therefore, a better notation can be Y instead of X. We are, however, writing X to
maintain notational uniformity that has been given in (6).

A possible way for generating Θ from p*(Θ) may include the use of Metropolis
chain where the full posterior density p(Θ|x) may itself be taken as the probing
distribution. Alternatively, PV can also be computed approximately by using an
importance sampling based estimate given as

PV
^ ¼

Pm
i¼1

Pr T � tð:ÞjΘið Þ=f tð:ÞjΘið ÞPm
i¼1

1=f tð:ÞjΘið Þ
; ð8Þ

where Θ1,Θ2,…,Θm constitute a sample of size m obtained from the posterior
pðΘjxÞ. Readers may also refer to Bayarri and Berger (1998) for the details of
various computational strategies.

5 Numerical illustration continued: examining model compatibility
based on real data

For examining model compatibility, we considered the same data set reported earlier
in Table 1. First of all, we plotted the Edfs for the observed and the predicted data on
the same scale corresponding to the generalized gamma and its components. For this
purpose, we generated ten predictive datasets each of size equal to that of the
observed dataset from each of the considered models separately using the
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corresponding posterior samples. The plots are shown in the Figs. 1, 2, 3, and 4 with
broken lines corresponding to the predictive data. We observe that the figures are
quite supportive to at least Weibull, gamma and generalized gamma models. The
exponential model may be slightly indifferent in the tails but it also cannot be
rejected at a first glance.

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0Fig. 1 Edf plots for the

observed and the predictive
data corresponding to the
exponential model (continuous
line corresponds to observed
data based Edf)
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0Fig. 2 Edf plots for the ob-

served and the predictive data
corresponding to the Weibull
model (continuous line corre-
sponds to observed data
based Edf)
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To examine our conclusion especially in the tail areas, we next consider some
additional plots based on the extreme observations. Figures 5 and 6 show the density
estimates of lowest and highest order future statistics (Y1 and Yn) based on
predictive samples of size 1,000 from the corresponding models. The dashed lines in
the figures represent the observed values of the same order. It can be seen here too
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0Fig. 3 Edf plots for the ob-

served and the predictive data
corresponding to the gamma
model (continuous line corre-
sponds to observed data
based Edf)
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0Fig. 4 Edf plots for the ob-

served and the predictive data
corresponding to the general-
ized gamma model (continuous
line corresponds to observed
data based Edf)
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that both the extreme observations are not supportive to the exponential model the
way they are supporting the other models. The smallest observed value rather
conveys to go against the exponential assumption.

0
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40
50

60

Exponential Weibull Gamma Generalized gamma

Fig. 5 Box plots showing the
density estimates of Y1 under
the four models (dashed line
corresponds to the smallest
observed data)
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Exponential Weibull Gamma Generalized gamma

Fig. 6 Box plots showing the
density estimates of Yn under
the four models (dashed line
corresponds to the largest
observed data)
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We finally evaluated PV
^

based on a few smallest (for example, Y1, Y2, and Y3), a
few largest (for example, Yn-1, Yn) and a few middle (say, YMd-1, YMd, YMd+1)
ordered predictive test statistics. These statistics will provide an idea about the
overall compatibility of the models with the observed data. Whereas the smallest and
the largest ordered observations will check the compatibility at the lower and upper
tails, the middle ordered observations would reflect the information about the central
region of the hypothesized model. It is to be noted that the predictive sample size is
same as the observed sample size and, therefore, the largest order test statistic
corresponds to n=23 whereas the middle order test statistic corresponds to Md=12.
Also, Md=12 is an arbitrary selection which simply means a value in the central part
of the predictive data.

Table 3 summarizes the estimated PV for various test statistics assuming each of
the four models separately. The values are importance-sampling based estimates of
PV as given in (8). It can be further noted that while calculating PV, the prior for the
scale parameter for all the four models was taken to be proportional to unity. This
has been done to ensure that the corresponding partial posteriors remain proper (see,
for example, Upadhyay and Mukherjee (2008)).

Obviously, the p-values corresponding to lower ordered test statistics are not
supportive to the exponential distribution, a finding that changes with regard to
higher ordered test statistics where all the four models appear compatible and
none can be rejected based on these measures. On the other hand, if we consider
the other three models they are found to provide good fit with the data whatever
order of predictive statistics we choose. Thus, our model compatibility study
conveys that at least three of the models, namely Weibull, gamma, and
generalized gamma, are good candidates for the data in hand. The situation can
be somewhat regarded under the context of Bayesian robustness analysis where
one can claim that the generalized gamma distribution and its two components are
insensitive to have a narrow discriminatory capability. The normal practice may
be try using parsimony principle to select the simplest model but we shall stick to
a thorough comparison of these models before we draw any final conclusion in
favour of one among these. As a word of final comment, it should be made clear
that the model compatibility study given above should not be taken as a deciding
factor to go against a model and hence we propose to include exponential model
as well in the said comparison.

Table 3 PV
^

for the four models based on a few selected ordered future observations (Md=12, n=23)

Model PV
^

based on the test statistic

Y1 Y2 Y3 YMd-1 YMd YMd+1 Yn-1 Yn

Exponential 0.004 0.003 0.004 0.252 0.211 0.252 0.185 0.187

Weibull 0.300 0.254 0.312 0.249 0.285 0.255 0.282 0.280

Gamma 0.469 0.230 0.309 0.248 0.301 0.255 0.401 0.439

Generalized gamma 0.488 0.252 0.314 0.250 0.311 0.258 0.391 0.367
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6 Model comparison

The following subsections sketch briefly the different model comparison criteria that
have been taken into account. Readers may refer to cited references for further
details.

6.1 Bayes and deviance information criteria

A good model comparison criterion suggests a model that incorporates the main
features of the data and not the noise involved therein and, therefore, we advocate for
the use of a criterion which includes terms for both model fit and model complexity.
Two most common selection criteria, which include both complexity and goodness of
fit, are BIC (see Schwarz (1978)) and DIC (see Spiegelhalter et al. (2002)).

The BIC chooses a model that minimizes

BIC ¼ �2 log Lðx Θ̂
��� Þ þ k lnðnÞ; ð9Þ

where Lðx Θ̂:Þ
��� is the maximum likelihood (ML) corresponding to the model under

consideration and k is the number of components in Θ. The first term in (9)
corresponds to model fit and the second is a penalty term which promotes model
parsimony by penalizing the model that is more complex. The BIC is a consistent
measure in the sense that it provides the probability of selecting the correct model
tending towards unity as the number of observations approaches to infinity. It also
has advantages of simplicity and (an apparent) freedom from prior assumptions.

For computation of BIC, we consider a slight approximation and use posterior
mode in place of ML estimator in (9). This has been done partially because of ease
and partially because of maintaining uniformity with all the models as ML estimator
may often fail to exist with the generalized gamma (see, for example, Lawless
(1982)). Moreover, since the priors are not too strong, we feel as if we do not deviate
much from the BIC based on ML estimators. It is to be noted that similar
approximation in the evaluation of BIC has also been suggested by Sahu and Dey
(2000) among others.

DIC was introduced by Spiegelhalter et al. (2002). The formulation of DIC is
based on examining the posterior distribution of the classical deviance (see also
Dempster (1974)), which is defined as

D Θð Þ ¼ �2 log L xjΘð Þ þ 2 log h xð Þ ð10Þ
where log hððxÞ denotes a fully specified standardizing term and is a function of data
alone. The DIC, a measure based on the posterior distribution of D(Θ), can then be
defined as

DIC ¼ DðΘÞ þ pD ð11Þ
where pD ¼ D Θð Þ � D

~
Θ
	 


and is known as effective number of parameters. It can
also be thought of as a measure of model complexity.

~
Θ is an estimate of Θ which

depends upon x only. Spiegelhalter et al. (2002) recommended choosing posterior
mean as an estimate of Θ. The first term of Eq. 11 is the posterior expectation of the
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deviance and it can be considered as a Bayesian measure of model fit. Thus, DIC
provides a model comparison criterion, which depends on both the goodness of fit
and complexity of the models. A model, giving the smallest value of DIC among all
the competing models, is finally recommended.

6.2 Fractional Bayes factor

To provide a formal definition of Bayes factor, consider the two models or the
hypotheses being specified as Hj: data x support model Mj = fj(x|Θj), j=1, 2; with
unknown parameter vector Θj associated with Mj. The Bayes factor for M2 against
M1 can be defined as

B21 ¼
R
L2ðx Θ2j Þg2ðΘ2ÞdΘ2R
L1ðx Θ1j Þg1ðΘ1ÞdΘ1

ð12Þ

where Lj(.) is the likelihood function corresponding to Mj and gjðΘjÞ is the prior
distribution of Θj. Thus the unknown parameter vector Θj can be successfully
eliminated from (12) by averaging the likelihood with respect to the prior
distribution of Θj.

The Bayes factor defined in (12) appears simple but suffers from a major caveat
when the priors are non-informative and defined up to arbitrary constants (see, for
example, Berger and Pericchi (1996)). There have been several suggestions in the
literature to deal with such situations. We, however, confine our discussion to FBF
introduced by O’Hagan (1995) mainly because of its inherent advantages. The FBF
considers the likelihood in two parts, one corresponding to (usually) a small fraction
and the other for the remaining fraction. The small fraction of the likelihood is used
to convert the non-informative (usually improper) prior to a proper posterior. This
proper posterior is then used to obtain the posterior mean of the major fraction of the
likelihood (see O’Hagan (1995) for other details). Thus FBF can be defined as,

BF
21 ¼

R
L1�b
2 ðxjΘ2Þ pb2ðΘ2jxÞdΘ2R

L1�b
1 ðxjΘ1Þ pb1ðΘ1jxÞdΘ1

ð13Þ

where pbj ðΘj xj Þ denotes the posterior corresponding to the small fraction b of the
likelihood. O’Hagan (1995) has provided some suggestions on the choices of b that
vary according to the degree of robustness desired by the experimenter.

6.3 Posterior predictive loss approach

We consider an additional tool for comparing the models that facilitates in decision-
making too. The tool for model comparison based on predictive distributions was
proposed by Gelfand and Ghosh (1998) where the authors advocated to minimize
loss over the concerned models following the standard utility ideas discussed in
Raiffa and Schlaifer (1961). To clarify, let us suppose that x is the vector of observed
values with components xi (i=1,2,…,n). Also suppose that y with components yi
denote the future set of observations from the same model under consideration. We
further assume the action vector a, which is an estimate trying to accommodate both
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x and y, the latter being the quantity that we predict for x. Finally, suppose that
L(y, a; x) denotes the loss incurred in taking action a when y obtains and x was
observed. The authors finally suggested choosing a model that minimizes the
expected loss over a where expectation is taken with respect to the posterior
predictive distribution of y. For the ith component of y and the action vector a, the
authors partitioned the loss function as

Lðyi; ai; xÞ ¼ Lðyi; aiÞ þ k Lðxi; aiÞ; ð14Þ
where the action ai tries to accommodate both xi and yi. This way ai is a univariate
compromising action for the partially unknown bivariate state of nature (xi; yi). The
predetermined constant k (≥0) is the weight that indicates the relative regret for the
departure from xi compared with departure from yi. The first term on the right hand side
of Eq. 14 gives the precision of estimation and the second term is a measure for goodness
of fit. Thus the criterion proposed by Gelfand and Ghosh (1998) combines both the
predictive variability of the model and its performance at the observed data points.

If (14) is aggregated over the components of y, the expression for minimum
expected loss function corresponding to a model, say m, could be given as

Dk mð Þ ¼
Xm
i¼1

min
ai

Eyijx;mL yi; ai; xð Þ: ð15Þ

For the squared error loss function, often used for its inherent simplicity, the
minimization can be carried out explicitly (see, for example, Sahu and Dey (2000)).
The expression for the squared error loss function can be written as

Dk mð Þ ¼ k

kþ 1
G mð Þ þ P mð Þ ð16Þ

where G mð Þ ¼Pn
i¼1

mm
i � xi

	 
2
, P mð Þ ¼Pn

i¼1
s2 mð Þ
i , m mð Þ

i ¼ E yijx;mð Þ and s2ðmÞ
i ¼

var yijx;mð Þ.
A simplified version of (16), that becomes independent of k, was given by Laud

and Ibrahim (1995) and later on used by Sahu and Dey (2000) in the context of
analyzing bivariate survival data. In fact, the version proposed by Gelfand and
Ghosh (1998) can be considered as the generalized version of the criterion proposed
by these authors.

7 Numerical illustration continued: model comparison and choice
based on real data

We compared the models, for the data given in Table 1, based on the tools discussed
in Section 6. The BIC and DIC values evaluated for each model are shown in
Table 4. Throughout we have considered posterior samples of size 1,000
corresponding to the generalized gamma and its component models as per the
discussion given in Section 2.

It is obvious from the table that BIC and DIC values for the gamma model are the
smallest though the values corresponding to the generalized gamma and Weibull
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models are not much apart. Therefore, it appears that all the three models, namely
Weibull, gamma and generalized gamma, appear to be good contenders though
gamma seems to be the most appropriate choice. Exponential model, on the other
hand, is certainly the weakest candidate for the data and one may not be advised to
entertain it. Thus, if one has to provide a preference pattern for the models based on
these two measures, the order will be gamma, Weibull, generalized gamma, and
lastly the exponential. Before sticking to this as a final conclusion, let us examine
other tools as well.

The values of FBF are shown in the Table 5 for all the possible pairs of models. In the
table, scripts 1, 2, 3, and 4 are used to denote generalized gamma, gamma, Weibull, and
exponential models, respectively. In addition, BF

ji stands for FBF, for model j against
model i. It is to be noted here that the expressions of FBF for different pairs of models
are not available in closed form and, therefore, we relied on simulation-based
techniques, especially the one using Gibbs sampler algorithm. For the purpose we
employed the strategies detailed in Section 2 but confined to the fraction b of various
posteriors. We finally used Eq. 13 to find out the means of remaining fraction of
likelihoods using the first stage posteriors. The value of b was taken to be 0:20ð� p

n=nÞ
in each case following a suggestion given by O’Hagan (1995).

Table 5 shows that the values of FBF are equally favouring the generalized
gamma and the gamma models for the data in hand. The Weibull model also does
not appear to be a bad choice although the preferential ordering based on evaluated
FBF certainly recommends the generalized gamma or the gamma model. In any
case, the exponential model is not to be considered at all. Thus, we came across the
same preferential pattern for selecting the models that was given earlier on the basis
of BIC and DIC. One nice property with FBF is that this measure is coherent. This
means that for the three models labeled as M1, M2 and M3, if FBF is computed pair
wise then the product of the FBF of M1 vs. M2 and M2 vs. M3 is equal to the FBF of
M1 vs. M3. It is to be noted that our reported results do not satisfy this coherency

Model BIC DIC

Exponential 246.104 244.985

Weibull 233.756 228.984

Gamma 232.738 226.653

Generalized gamma 239.350 230.419

Table 4 BIC and DIC values
for generalized gamma and its
components based on the
observed data

Values of (j, i) BF
ji

(1, 2) 1.015

(1, 3) 2.935

(1, 4) 361.872

(2, 3) 2.916

(2, 4) 348.370

(3, 4) 176.531

Table 5 FBF for model
j (=1, 2, 3) against i (=2, 3, 4)
based on the observed data
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property exactly. This may be because of the fact that a few of the considered models
are complicated and the computational strategies based on simulation can never be
exact. Thus the values depicted in Table 5 may be regarded as estimates of FBF in a
true sense.

We finally calculated the PPL for the models under consideration using the
squared-error loss function. The values are shown in Table 6. The table clearly
shows that the overall loss corresponding to the gamma model is least. If, however,
we look on other values, we find that the losses corresponding to the generalized
gamma and the Weibull models are not much larger than that of the gamma model.
For the generalized gamma, the obvious reason is that while the model is not
providing appreciable gain in fitting over gamma, it is being penalized enough due
to its inherent complexity and thereby increasing the overall loss. For the Weibull
model, it was seen that its fit was not as good as that of the other two models and
this fact is reflected here too in terms of the losses due to fitting. Its complicacy
factor is, however, small in comparison to the generalized gamma though not
appreciably penalized with respect to gamma, a fact that can be clearly seen in the
table. It must be noted that the loss due to penalty is nothing but the predictive
variance and hence it inflates both for simple and overly complicated models. The
exponential model is simplest and, therefore, giving the largest penalty loss and loss
due to fitting which result in overall loss much larger. Thus, our decision is to choose
gamma or at most the Weibull model for the given data

8 Three-parameter gamma model—a proposal for second stage comparison

In the preceding sections, we compared the generalized gamma model with its
components and observed that gamma model happens to be an appropriate choice
for the entertained data given in Table 1. The generalized gamma and all its
components were considered without a threshold parameter to make the study
simpler. As mentioned in Section 1, we now incorporate a threshold parameter in the
two-parameter gamma model, a model selected through an extensive study given in
the previous section. We then test this threshold parameter against zero to see if the
two-parameter gamma model is really justified for the entertained data or there is
some scope of a threshold hidden in the model. This is worth mentioning that we are
doing this only for the sake of simplicity and it does not always ensure that the best
of the possible combinations, with or without a threshold, is finally selected. Thus, to
begin our second stage model comparison study, we notice that the three-

Table 6 PPL for the four models based on observed data

Model Loss due to penalty Loss due to fitting Overall loss

Exponential 5.859 55.868 56.649

Weibull 2.018 41.965 40.168

Gamma 1.676 40.550 38.540

Generalized gamma 7.587 41.253 45.089
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parameter gamma model can be easily accessed by putting β=1 and replacing x
with (x-μ), x > μ, in (1). The corresponding likelihood function can be written
from (2) as

L xjq; k;mð Þ ¼ 1

Γ kð Þqk
� �nYn

i¼1

xi � mð Þk�1 exp �
Xn
i¼1

xi � m
q

� �" #
: ð17Þ

If we consider the same prior for κ and θ as given in (3) and allow the threshold
to have a prior proportional to constant, the posterior up to proportionality can be
written as

p q; k;mjxð Þa ka2�1

Γ kð Þð Þnqnkþ1

Yn
i¼1

xi � mð Þk�1 exp �
Xn
i¼1

xi � m
q

� �
þ k

b2

 !" #
: ð18Þ

The posterior (18) can be an easy candidate for the Gibbs sampler implementation
as all its full conditionals are available from the viewpoint of sample generation. The
details of the various full conditionals and related sample generation schemes can be
had from Upadhyay and Smith (1994) as a special case of their entertained model
formulation.

9 Numerical illustration for second stage study

9.1 Posterior analysis for the second stage study

For numerical illustration, we proceeded with a single Gibbs chain of long run and,
after the convergence monitoring was assessed, took equally spaced (every 10th)
outcome to form the samples from the posterior (18). The prior hyperparameter and
other implementation strategies were same as those given in Section 2.

Table 7 provides the posterior modes and means though other characteristics can
be likewise drawn once the posterior samples are obtained. These results are based
on a sample of size 1,000. The values are self-explanatory and, therefore, do not
require any discussion in the light of our primary objective of model comparison.

9.2 Compatibility study of the three-parameter gamma model

As mentioned, the comparison of two models for a data is justified if both happen to
provide good compatibility with the data. We have already seen the compatibility of

Table 7 Posterior modes and means for different parameters under the assumption of the three-parameter
gamma model

Model Posterior modes Posterior means

θ κ μ θ κ μ

Three-parameter gamma 21.236 2.473 10.301 25.651 2.776 8.854
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two-parameter gamma model for the data given in Table 1 (see Section 4) so we are
left only with the compatibility study of the three-parameter gamma model for the
same data. If the latter compatibility is established, we shall proceed for model
comparison otherwise our conclusion of model choice will remain in favour of two-
parameter gamma model.

The study begins with Edf plots for both the predicted and the observed data
under the assumption of the three-parameter gamma model. Figure 7 shows the
corresponding Edf plots based on the observed data and the ten predicted data, each
of size similar to that of the observed data. One can clearly see that the model
provides a good compatibility with the data in hand (see Fig. 7). Moreover, since the
study based on these plots is an informal one, we also considered the evaluation of
PV as per the details given in Section 4. The estimated PVs based on the same future
order statistics (see also Section 5) are shown in Table 8. It is obvious that the
estimates are quite supportive to the three-parameter gamma model as far as the
compatibility with the observed data is concerned.

The compatibility of the three-parameter gamma model was further examined,
especially in the tail area regions by studying the density estimates of the lowest and
the highest order future observations based on samples of size 1,000 from the model.
The density estimates are shown in the Fig. 8. In the figure GM3-Min(Max) denotes
the plot corresponding to smallest(largest) ordered future observation from the three-
parameter gamma model. The dashed lines in the figure represent the corresponding
observed values. It is obvious from the figure that the observed highest and lowest
data points appear quite probable in the distributions of the corresponding predictive
statistics giving us a clear-cut impression about the model compatibility in the
extreme tails, the region where the lifetime distributions often mismatch and provide
disagreement with the data.

0 10 20 30 40 50

0.
0

0.
8

0.
6

0.
4

0.
2

1.
0Fig. 7 Edf plots for the

observed and the predictive
data for the three-parameter
gamma model (continuous line
corresponds to observed data
based Edf)
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9.3 Model comparison: gamma with threshold vs. gamma without threshold

The model compatibility study given in Sections 5 and 9.2 are supportive to both
two-parameter and three-parameter gamma models and hence the comparison of
these models can be taken up to see if the threshold parameter is really desired for
the data in hand. We may, therefore, proceed for the said comparison using the tools
discussed in Section 6.

The evaluated values of BIC and DIC are shown in Table 9. The values
corresponding to the two-parameter form are borrowed from Table 4 and these have
been rewritten for the purpose of comparison only. One can clearly see that the
differences between the BIC and DIC values corresponding to the two models are
not significant and, therefore, one can advocate the use of simpler two-parameter
gamma model. This is otherwise conveyed too by the parsimony principle.

As it has been done earlier, we do not summarize our conclusion just based on the
above two information criteria rather see the message obtained through the
evaluation of FBF and PPL. It is to be noted here that the three-parameter gamma
model is an irregular constrained parameter family and, as such, FBF always tends to

Table 8 PV
^

for the three-parameter gamma model based on a few selected ordered future observations
(Md=12, n=23)

Model PV
^

based on the test statistic

Y1 Y2 Y3 YMd-1 YMd YMd+1 Yn-1 Yn

Three-parameter gamma 0.348 0.503 0.513 0.473 0.486 0.504 0.497 0.562

0
10

0
20

0
30

0
40

0

GM3-Min GM3-Max

Fig. 8 Box plots showing the
density estimates of Y1 and Yn

for the three-parameter gamma
model (dashed lines correspond
to the smallest and largest
observed data)
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favour a more complex model. Thus following Berger and Pericchi (2001), we shall
refrain from using FBF and draw our conclusion based on only PPL, the details of
which are provided in subsection 6.3 (see also Laud and Ibrahim (1995)).

The values of PPL for the two gamma models are shown in Table 10. The
values corresponding to the two-parameter form of the model are borrowed from
Table 6 and are reproduced here for an easy impact of comparison. It is apparent
from the table that the overall loss corresponding to the three-parameter gamma
model is smaller than that of the two-parameter form. This clearly gives an
indication of threshold in the model so that no important information supplied by
the data goes astray. We also notice that the loss due to penalty associated with
two-parameter model is higher than the corresponding value for the three-
parameter form. This loss is nothing but the predictive variance which may
sometimes increase with the oversimplified model (see Gelfand and Ghosh (1998))
thereby giving higher loss due to penalty. This finding is a bit surprising as it
conveys that the two-parameter gamma model is an over simplified model for this
data set.

10 Conclusion

Model comparison or model choice has always been a challenging task but thanks to the
availability of various tools, a few of them successfully described and explored in the
present paper. After a thorough comparison of the generalized gamma with its
components, we observe that one should not simply follow the flexibility or parsimony
principle but also look on various aspects before recommending a model. As a result, we
have neither gone in favour of exponential nor in favour of generalized gamma but
suggest the use of gamma model for the considered data set. Our entire study has been
undertaken in two stages. The first stage entertains each model without threshold
whereas the second, after getting a model from the first stage, incorporates a threshold to
test for its authenticity. This way we have avoided, at first stage, the intricacy of
entertaining the generalized gamma and all its components with threshold but finally
recommended a model with threshold parameter.

Table 10 PPL for the two gamma models based on the observed data

Model Loss due to penalty Loss due to fitting Overall loss

Two-parameter gamma 1.676 40.550 38.540

Three-parameter gamma 1.182 40.477 37.981

Model BIC DIC

Two-parameter gamma 232.738 226.653

Three-parameter gamma 233.084 225.988

Table 9 BIC and DIC values
for the two-parameter and the
three-parameter gamma models
based on the observed data
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