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Abstract
Himalayacalamus falconeri is a socio-economically important temperate woody bamboo of north-western Himalayas, which 
has been investigated for genetic diversity and population genetic structure across distribution range in western Himalayas 
using genomic STMS markers. The calculated diversity measures have indicated a high gene diversity in H. falconeri at 
population level (Ho = 0.637; He = 0.714; Ar = 5.05). Despite the larger proportion of genetic variation (88%) confined 
within the populations, a moderate level of genetic differentiation (FST = 0.121) was detected with relatively lower gene flow 
(Nm = 1.891). Furthermore, clustering and STRU​CTU​RE analysis displayed high genetic heterogeneity in a metapopulation, 
where populations in both the spatially disconnected regions of the Uttarakhand state, Garhwal and Kumaon, were clustered 
in different groups. Whereas, nested sub clustering and between-population genetic admixing were not correlated to their 
physical proximity. Also, the Mantel test supports the isolation by distance model showing a significant correlation between 
genetic and horizontal geographic distances. For conservation implications, diverse hotspots with high allelic richness were 
also identified in both the geographical regions of Uttarakhand state. To the best of our knowledge, it is a pioneer study 
presenting in depth knowledge of metapopulation in any Indian temperate bamboo, which will be of paramount importance 
to the researchers, foresters, and policymakers for guiding future conservation decisions of H. falconeri in the Indian Hima-
layan Regions (IHRs).
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SSRs	� Simple sequence repeats
STMS	� Sequence-tagged micro satellite

Introduction

Bamboos are imperative non-wood forest produce occurring 
in the forest as well as non-forest areas, and play a significant 
role in improving livelihoods of people globally (Hogarth 
and Belcher 2013; Kithan 2014; Khanal 2015). As described 
by Kelchner and Bamboo Phylogeny Group (2013), Bamboo 
Genetic Resources (BGRs) in India falls under two line-
ages, paleotropical (tribe Bambuseae) and temperate (tribe 
Arundinarieae) woody bamboos. Former occupied tropical 
and subtropical zone of the country from alluvial plains to 
hills up to the altitude of 1500 m AMSL. Whereas, later are 
dominating at high hills above 1500 m AMSL in the sub-
tropical and temperate zone of Indian Himalayan Regions 
(IHRs). Among the temperate woody bamboos, four shrubby 
taxa (commonly called “ringal”), namely Drepanostachyum 
falcatum, Himalayacalamus falconeri, Thamnocalamus 
spathiflorus, and Yushania anceps, are naturally occur-
ring in the NW Himalayas at the altitudinal range 1800 to 
3600 m AMSL. Ringal forms a dense thicket or moderately 
dense undergrowth in the evergreen forest of the Himalayas, 
ubiquitously grown on steep slopes of riverbanks, and aids 
in soil stabilization with their fibrous root system (Kumari 
and Tewari 2009; Banik 2016). They serve as an impor-
tant source of fodder in time of scarcity during winter and 
provide food for wild animals, such as red panda (Ailurus 
fulgens) and bears (Yonzon 1991).

Among the four hill bamboos of the NW Himalayas, 
culms of Himalayacalamus falconeri are most preferred by 
artisans for craft and weaving purposes due to their flexibil-
ity, strength, and smoothness. Beside the IHRs, it has also 
been reported to occur in the temperate zone of the Nepal, 
western Bhutan, and southwest China or Tibet (Banik 2016). 
Moreover, it has been introduced in New Zealand which 
was naturalized later in 1935 (Sykes 1996). In the western 
Himalayas, it is commonly known as “Dev (meaning God) 
ringal” due to its traditional utilization for making temple-
related basketry or decorative articles. Socio-economically, 
ringal plays a crucial role in livelihood generation and offers 
employment opportunities for the people inhabiting at high 
hills of the Himalayas (Kumar 2009). About 451 villages 
have been identified in the Uttarakhand where artisans are 
involved in bamboo or ringal-based occupation. Dejectedly, 
the communities involved in this profession do not own the 
resources and about 93% of the raw material is directly 
harvested from the natural forest (Sundriyal and Sundriyal 
2011). As a result, local populations nearby human settle-
ments are severely deteriorating and people are struggling 
hard to collect the raw material illegally from protected 

forest areas. Awfully, selective and indiscriminate extraction 
from the natural forest may put the species in a miserable 
situation in long term. To ensure the sustainable utilization 
of this valuable genetic resource, baseline information and 
genetic characterization need to be derived for its natural 
populations, which is inevitable to frame a sound conserva-
tion and management plan.

Genetic variability among individuals ensures the long-
term survival of metapopulation, bestows the evolutionary 
and adaptive potential against changing environment, and 
serves as a resource for future breeding programmes (Booy 
et al. 2000; Porth and El-Kassaby 2014; Godhe and Rynear-
son 2017; Nonić and Šijačić-Nikolić 2021). Explicitly, the 
spatial genetic structure is defined as the non-random distri-
bution of genetic variation among individuals within popula-
tions which may or may not be shaped as per the geographi-
cal proximity of individuals, and some species may display 
a cryptic spatial structure with noticeable genetic heteroge-
neity due to unidentified migrants (Manel et al. 2003). In 
addition, the genetic structure of a metapopulation is also 
influenced by the extent and amount of gene flow across 
the spatially disconnected populations, which is controlled 
by several evolutionary processes and life history traits of 
a species (Porth and El-Kassaby 2014). Hence, estimation 
of gene diversity and understanding of the genetic structure 
is immensely important to elucidate the threat status of the 
species, vulnerability to extinction, and guiding precise con-
servation decisions (Andelman and Willig 2002; DeSalle 
and Amato 2004).

As phenotypic evaluation in natural populations is more 
laborious and error-prone, molecular markers are the most 
favoured tools for performing genetic analysis in wild plant 
populations (Nadeem et al. 2018). However, due to lim-
ited sequence information, earlier genetic studies in most 
bamboo taxa employed markers based on random primers, 
such as RAPD, AFLP, and ISSR (Yang et al. 2012; Ma et al. 
2013; Nag et al. 2013; Nilkanta et al. 2017). Comparatively, 
sequence-based markers, such as STMS or SSR markers 
and SNPs, are more informative, robust, reproducible, and 
codominant (Nadeem et al. 2018). Unlike random primer-
based markers, STMS is derived from the unique flanking 
sequence of repeat loci which share a high level of homol-
ogy among taxonomically related taxa (Saha et al. 2004; 
Sharma et al. 2008). Hence, cross-transferability is a fast 
and cost-effective approach for identifying STMS markers 
in related taxa (Barbara et al. 2007), which has been success-
fully utilized in several bamboo species also (Barkley et al. 
2005; Sharma et al. 2009; Mason 2015; Meena et al. 2019). 
Moreover, microsatellite markers have been developed in 
several bamboo taxa using different methodologies (Abreu 
et al. 2011; Peng et al. 2013; Bhandawat et al. 2015; Cai 
et al. 2019; Meena et al. 2021), which could be further uti-
lized in other bamboo species through cross-transferability. 
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The present study aimed to quantify and map the genetic 
diversity, and determine the spatial genetic structure of the 
natural populations of H. falconeri in the western Himalayas 
using SSR markers.

Materials and methods

Study area, population sampling, DNA extraction 
and marker genotyping

The study was carried out in Uttarakhand (India) state which 
is represented by biographic zone 2B western Himalaya and 
7B Shivalik consisting of Kumaon and Garhwal regions 
(Rodgers and Panwar 1988). Geographically, a major por-
tion of the state is constituted by the Himalayan Mountain, 
which is one of the youngest mountain systems of the world 
(∼40 million years in age compared to peninsular mountains 
of ∼1500–2500 million years old); hence, ecologically very 
fragile (Uttarakhand Biodiversity Board, Dehradun; https://​
sbb.​uk.​gov.​in/). The flora of the state ranges from tropical 
deciduous to alpine vegetation, and the key dominant tree 
species occurring in the temperate zones of the state are 
Quercus leucotrichophora, Q. floribunda, Q. semecarpi-
folia, Rhododendron arboreum, Myrica esculenta, Lyonia 
ovalifolia, Ilex dipyrena, Pinus roxburghii, P. wallichiana, 
Cedrus deodara, Abies pindrow, Picea smithiana, Taxus 
wallichiana, Betula utilis, etc. Ringal is a group of under-
story shrubby bamboos that are naturally interspersed with 
above trees species and connect the different forest types.

Leaf samples were collected from 219 individuals of H. 
falconeri from nine locations in the Garhwal and Kumaon 
Himalayas of Uttarakhand (Table 1), and desiccated with 
silica gel. In accordance with most studies on population 
genetic analysis, we attempted to maintain the sample size 
of about 30 individuals per population; however, it could 

not be accomplished for all due to reduced and deterio-
rated conditions. Within a population, sampling was con-
ducted in compliance with the assumption followed in the 
method of McClure (1966), where each population is pre-
sumed to maintain the random assortment of genetic mate-
rial considering individual clump as a potential genet and 
culms within it as ramets. To minimize the sampling bias, 
the minimum distance between two sampled individuals 
per location was kept at 100 to 300 m. Genomic DNA was 
extracted from silica dried leaf tissues using the protocol 
given by Doyle and Doyle (1987) with slight modification 
as per Krizman et al. (2006).

In a recent study, STMS markers were developed in 
another Himalayan temperate bamboos Drepanostachyum 
falcatum through genome skimming approach, and some 
of these have also been verified for their transferability in 
H. falconeri (Meena et al. 2021). These were re-examined 
for the level of polymorphism through PCR amplification 
in 20 random individuals of H. falconeri. The PCR prod-
ucts of each primer pair were subjected to gel electropho-
resis with 4% high resolution agarose gel. After visual-
izing banding pattern, ten highly polymorphic STMS loci 
were finally selected for further genotyping (Table 2). The 
PCR reaction mixture was prepared by mixing of 2 µL 
genomic DNA (25 ng) with 1.5 µL enzyme buffer (10×), 
1.8 µL MgCl2 (25 mM), 1.2 µL dNTPs (2.5 mM), 0.15 µL 
primers (20 µM) and 0.2 µL Taq DNA Polymerase enzyme 
(3 U µL− 1) (Genei, India). Finally, a total reaction volume 
of 15 µL was made up of nuclease-free sterile water. The 
PCR reactions were run in the thermal cycler machine 
(Eppendorf Mastercycler Nexus) with an initial denaturing 
step (95 °C for 5 min) followed by 35 cycles of 94 °C for 
1 min, 55–62 °C for 1 min and 72 °C for 1 min, and then 
final elongation at 72 °C for 10 min. The PCR products 
were loaded into automated capillary electrophoresis sys-
tem LabChip GX Touch 24 (PerkinElmer, USA), and frag-
ment analysis was carried out with the software LabChip 
GX reviewer ver. 5.8 (PerkinElmer, USA).

Table 1   Geo-spatial detail of sampled populations of H. falconeri 

Sl. no. Pop code Location Districts Number of 
samples

Latitude (N) Longitude (E) Altitude (m)

1 HF01 Munsyari Pithoragarh 30 30° 04′ 02.4″ 80° 13′ 51.9″ 2349
2 HF02 Ghes Chamoli 30 30° 7′ 14.02″ 79° 43′ 15.0″ 2314
3 HF03 Ranachatti Uttarkashi 24 30° 55′ 35.1″ 78° 22′ 52.9″ 1950
4 HF04 Pinswad Tehri Garhwal 10 30° 39′ 37.2″ 78° 39′ 46.1″ 2321
5 HF05 Sunderdhunga Bageshwar 30 30° 10′ 1.3″ 79° 55′ 27.0″ 2602
6 HF06 Mornaula Almora 7 29° 26′ 26.6″ 79° 45′ 51.1″ 2145
7 HF07 Chopta Chamoli 30 30° 27′ 44.1″ 79° 13′ 59.01″ 2538
8 HF08 Triyuginarayan Rudraprayag 28 30° 37′ 3.74″ 78° 58′ 53.59″ 2032
9 HF09 Darma Valley Pithoragarh 30 30° 05′ 33.0″ 80° 37′ 14.60″ 2222

https://sbb.uk.gov.in/
https://sbb.uk.gov.in/
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Marker data analysis for deciphering diversity 
measures and spatial genetic structure

The non-integer allelic data were transformed into the inte-
gers by applying the power function, and the allele sizes 
were binned as per the periodicities of repeat motifs using 
software TANDEM ver 1.07 (Matschiner and Salzburger 
2009). The marker data were analyzed to calculate the 
various diversity measures, such as polymorphic informa-
tion content (PIC), number of different alleles (Na), effec-
tive number of alleles (Ne), observed heterozygosity (Ho) 
and expected heterozygosity (He), etc., using software 

PowerMarker ver 3.25 (Liu and Muse 2005) and GenAlex 
ver. 6.5 (Peakall and Smouse 2012). Whereas, the software 
Arlequin ver. 3.1 (Excoffier et al. 2005) was used to perform 
AMOVA and estimation of Wright’s fixation index (FST). In 
order to quantify the distribution of variance among different 
levels, the AMOVA was performed with and without assum-
ing hierarchical structuring. The hierarchical structuring was 
carried out by considering three levels, i.e., among regions 
(Garhwal and Kumaon), among populations within groups, 
and within populations. Further, the measures of allelic 
diversity, such as allelic richness (Ar) and private allelic 
richness (PAr), were calculated using software HP-Rare 

Table 2   Characteristics of 10 polymorphic SSR markers used for genotyping the sampled populations of H. falconeri 

Sl. no. Locus name Primer sequence (5'-3') Repeat motif Ta (°C) Expected 
product size 
(bp)

Observed 
product size 
(bp)

No. of 
alleles per 
loci

Polymorphism infor-
mation content (PIC)

1 DfStm1292 F: TGC​CCG​ATC​CTC​CAA​
AAC​TC

R: TAG​CCA​CTC​TCC​TCA​
GAC​GG

(AG)6 62 190 169–265 49 0.894

2 DfStm732 F: AGG​TAG​CTA​AGG​CGC​
TAA​GC

R:GCC​GAC​CGC​GAT​GTA​
ATA​GT

(GGT​GGA​)6 62 191 151–376 15 0.857

3 DfStm1461 F: CAG​TAC​ACT​CGC​CTC​
ATC​GT

R: TTG​CTC​TAG​GCT​CTA​
GCG​TG

(CT)15 62 206 171–341 52 0.945

4 DfStm1445 F: TAG​TAC​TGT​TAC​CCC​
GCT​GC

R: AGT​AGG​TCA​TCA​TGC​
ATG​CTTG​

(TTCC)6 62 189 175–300 14 0.798

5 DfStm1712 F: CTC​GTT​CCT​CTC​GCG​
TTG​TA

R: TGT​CTC​CTC​TGG​TGT​
AGG​CA

(TC)6 62 191 161–273 43 0.922

6 DfStm307 F: TCC​TCT​TAC​GGA​GTT​
CAT​CCCT​

R: GCC​ACT​TCA​TCT​CTT​
TTG​CCG​

(ATAA)5 56 197 196–218 7 0.418

7 DfStm1651 F: ATC​CTT​GTT​GGC​CCC​
CTA​TG

R: GCT​TGT​ACT​CCT​CGG​
TGA​CC

(GTG)5 57.2 212 145–250 16 0.650

8 DfStm1800 F: CCG​GTA​ACT​GCA​TGC​
ATT​GT

R: CGA​GCT​ATA​GTG​CCT​
GCT​CC

(AG)9 55 209 180–330 31 0.842

9 DfStm586 F: AAT​TGG​CTT​GGT​GGG​
GAG​AG

R: TTC​TCC​TGC​TCC​GCT​
CAT​TG

(TC)…(TC)6 62 210 174–278 39 0.934

10 DfStm1303 F: TCA​TGC​TTC​CTT​GCT​
CCA​GC

R: GCG​TGA​CTT​CGA​CCA​
GAG​AA

(CT)8 58.3 179 163–293 33 0.863
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ver. 1.0, which gives an unbiased estimate of allelic rich-
ness by compensating sampling disparity using statistical 
technique of rarefaction (Kalinowski 2005), and spatially 
overlaid over distribution map after interpolating with IDW 
algorithm used in ArcGIS (Shepard 1968; Hengl 2009; Chi-
occhini et al. 2016).

The genetic relationship among sampled populations was 
studied through the neighbour-joining (NJ) clustering and 
the principal coordinate analysis (PCoA) using software 
POPTREE2 (Takezaki et al. 2009) and GenALEx, respec-
tively. In order to test the isolation by distance model, the 
Mantel test (Mantel 1967) was performed between genetic 
and geographical distances. Herein, genetic distances were 
correlated with horizontal as well as vertical altitudinal 
distances between the sampled populations. To unravel the 
population genetic structure, the Bayesian model-based 
clustering method was implemented in the software STRU​
CTU​RE ver. 2.2 (Pritchard et al. 2000), where the posterior 
probability of K [Pr(K)] was calculated using an ancestry 
model with admixture under the assumption of correlated 
allele frequencies. The model was replicated ten times for 
each K value (2 to 9) with 3,00,000 MCMC sampling runs 
after a burn-in period of 3,00,000 iterations. Finally, an opti-
mal number of subpopulations were determined using the 
web-based program Structure Harvester 0.6.92 (Earl and 
vonHoldt 2012).

Results

Marker polymorphism and gene diversity 
in sampled populations

Polymorphism of successfully transferred STMS markers 
of D. falcatum was reconfirmed in H. falconeri through 
PCR amplification in 20 random samples. Based on the 
polymorphism and distinctness of the banding pattern 
on agarose gel (Supplementary Fig. S1), ten marker loci 
were selected for further genotyping. A total of 299 alleles 
were generated by genotyping with ten STMS markers, 
where highest 52 alleles were displayed by the marker 
DfStm1461 while lowest seven alleles were obtained with 
DfStm307. By analysing allelic polymorphism across the 
populations, a mean of different and effective number 
of alleles per population were recorded as 9.9 and 5.2, 
respectively. Accordingly, all marker loci demonstrated a 
high level of polymorphism with PIC value ranging from 
0.418 for DfStm307 to 0.945 for DfStm1461 (Table 2).

Calculated diversity indices revealed a high level of 
gene diversity in the sampled populations of H. falconeri 
(Table 3). For instance, observed heterozygosity (Ho) was 
ranged from 0.540 (HF04_Pinswad) to 0.727 (HF01_Mun-
syari) with a mean of 0.637, and expected heterozygosity 
(He) was ranged from 0.591 (HF06_Mornaula) to 0.810 
(HF08_Triyuginarayan) with a mean of 0.714. Also, the 
population HF08 from Triyuginarayan exhibited highest 
allelic richness (Ar = 5.77), whereas it was recorded as 
lowest (Ar = 4.43) for the population HF02 from Chopta. 
Further, spatial overlaying of allelic diversity has enabled 
to distinguish the populations or regions of conservation 
importance, where the values of diversity measures are 
depicted in hypsometric scale (Fig. 1a, b). Decisively, the 
populations or the regions capturing high allelic richness 
were designated as diversity hotspots, and one diversity 

Table 3   The calculated 
measures of gene diversity 
for sampled population of H. 
falconeri 

 N, Number of sampled individuals; Na, Number of different alleles; Ne, Effective number of alleles; Ho, 
Observed heterozygosity; He, Expected heterozygosity; Ar, Allelic richness; PAr, Private allelic richness

Pop code Location detail N Na Ne Ho He Ar PAr

HF01 Munsyari 30 12.2 5.9 0.727 0.748 5.10 1.19
HF02 Ghes 30 12.1 6.2 0.700 0.785 5.32 0.87
HF03 Ranachatti 24 10.0 4.9 0.583 0.695 4.90 0.87
HF04 Pinswad 10 6.6 3.9 0.540 0.700 4.79 0.76
HF05 Sunderdhunga 30 11.1 5.9 0.657 0.729 5.10 1.34
HF06 Mornaula 7 5.5 4.2 0.571 0.591 5.45 1.30
HF07 Chopta 30 9.1 4.1 0.610 0.681 4.43 0.63
HF08 Triyuginarayan 28 12.7 7.4 0.689 0.810 5.77 1.05
HF09 Darma Valley 30 9.7 4.5 0.653 0.690 4.59 0.97

Overall mean 24 9.9 5.2 0.637 0.714 5.05 1.00
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Fig. 1   Overlaying of allelic richness (a) and private allelic richness (b) over distributing map of H. falconeri in the Uttarakhand Himalayas. The 
area shaded with warmer and cooler colours in map reflects high and low diversity indices, respectively
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hotspot has been recognized in both the geographical 
regions of Uttarakhand Himalayas, i.e., HF08 (Triyugi-
narayan) in Garhwal and HF06 (Mornaula) in Kumaon, for 
their in-situ conservation. Importantly, most populations 
distributed in Kumaon region were identified to possess 
significant number of private alleles, and therefore, entire 
region can be considered important for conservation.

Genetic relationship, divergence and structuring 
in sampled populations

The results of AMOVA without hierarchical structure have 
demonstrated that the major proportion of genetic variance 
(87.90%) existed within the populations, and only 12.10% 
was observed among populations (Table 4a). Accordingly, 
a moderate level of genetic differentiation (FST = 0.121) was 
recorded with relatively lower gene flow (Nm = 1.891). How-
ever, AMOVA with hierarchical structuring showed that the 
87% of the total variance was contained by the individuals 
within populations, 11% was existed among populations and 
only 3% was between the regions (Table 4b). Based on the 
pairwise FST and Nm values (Supplementary Table S1), the 
highest genetic distance was recorded between the popula-
tion HF06 (from Mornaula) and HF09 (from Darma valley), 
whereas it was observed as lowest between the population 
HF01 (from Munsiyari) and HF02 (from Ghes). Plausibly, 
an inverse trend of gene flow was displayed among the popu-
lations, i.e., the gene flow was highest between populations 
which are least genetically distant, and vice-versa.

The genetic divergence revealed by AMOVA and F-sta-
tistics was further validated with the cluster and structure 
analysis. Unrooted NJ dendrogram showed two major 
groups, where populations of both the regions, i.e., Garh-
wal and Kumaon, were clustered in distinct groups in 
accordance with their geographical distribution (Fig. 2). 
Similar pattern was also displayed by the spatial clustering 
in the PCoA plot (Fig. 3), where all the three coordinates 

cumulatively accounted for a substantial level of genetic 
variance (69.35%). Individually, first, second, and third 
coordinates, were accounted for 25.4, 22.57, and 21.36% 
of the genetic variance, respectively. Conclusively, overall 
genetic divergence was well supported by the cluster analy-
sis but the structuring among geographical regions was 
not evident in AMOVA with hierarchical structuring. The 
genetic divergence among spatially separated populations 
were further supported by the Mantel test, where the cor-
relation of genetic distance was significant with horizontal 
geographical distance (R2=0.332; P value = 0.001) (Fig. 4) 
and non-significant with vertical altitudinal distances (R2 = 
0.025; P value = 0.213) (Supplementary Fig. S2).

Surprisingly, structure analysis has revealed five opti-
mum numbers of subpopulations (Fig. 5a, b), indicating 
considerable amount of heterogeneity among the geographi-
cally disconnected populations (Fig. 2). The proportional 
membership coefficient of each population was calculated 
for five inferred clusters, and pattern of genotypic admix-
ing is displayed in the form of a bar plot (Fig. 5c). As per 
the population Q-matrix, seven sampled populations were 
clearly defined by one of the five inferred clusters with a 
proportional membership coefficient of more than 0.70. 
Whereas, two populations of the Garhwal region, namely 
HF04 (from Pinswad) and HF08 (from Triyuginarayan), 
exhibited admixed ancestry from other inferred clusters 
(Supplementary Table S2). As evident in supplementary 
table S1, the high genotypic admixing in both the popula-
tions would have been resulted due to significantly high gene 
flow with other populations.

Discussion

The fitness of individual population and spatial distribu-
tion of the genetic variation are mainly controlled by the 
gene flow, i.e., exchange of genetic material between the 

Table 4   Analysis of molecular 
variance (AMOVA) for five 
populations of H. falconeri 

 The variance estimated with 1023 permutations between the individuals within populations were statisti-
cally significant (P < 0.001)

Source of variation Degree of 
freedom

Sum of Square Estimated 
variance

Percent variation Genetic differentiation

(a) Partitioning of the variance assuming no hierarchical structure
Among populations 8 225.571 0.511 12.10 FST = 0.121
Within populations 429 1593.705 3.715 87.90
Total 437 1819.276 4.226 100
(b) Partitioning of the variance assuming hierarchical structure
Among regions 1 51.800 0.112 3%  FST = 0.131
Among populations 7 174.209 0.450 11%
Within populations 429 1594.938 3.718 87%
Total 437 1820.947 4.280 100%
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populations (Porth and El-Kassaby 2014; Xie et al. 2019; 
Bontrager and Angert 2019; Luo et al. 2021; Morente-López 
et al. 2021), which itself controlled by multitude of factors 
like topography, environmental, geographical, biological 
characteristics of species, etc. (Wu et al. 2015; Ghareha-
ghaji et al. 2017; Bontrager and Angert 2018; De Kort et al. 
2021;). Among biological attributes, breeding behaviour 
and life cycle characteristics are the major factors affect-
ing genetic composition of the populations. In general, an 
open-pollinated species with widespread distribution tends 
to capture more genetic diversity than a self-pollinated and 
narrowly distributed species (Hamrick et al. 1992; Hamrick 
and Godt 1996). For instance, a high level of genetic dif-
ferentiation and heterogeneity were recorded in a metap-
opulation of Ochlandra travancorica, an endemic bamboo 

of Western Ghat, India (Nag et al. 2013). Being the open-
pollinated breeding behaviour and wide distribution in the 
Himalayan ranges, high gene diversity with low genetic dif-
ferentiation was expected in H. falconeri metapopulation. 
In congruence, this study has recorded high gene diversity 
(He = 0.714; Ar = 5.05) in the sampled population of H. fal-
coneri from the western Himalayas. However, high genetic 
heterogeneity detected herein has indicated the noticeable 
hindrance in gene flow and substantial genetic changes 
adopted by the populations.

Though the overall gene diversity is high, populations 
HF06 from Mornaula in Kumaon and HF07 from Chopta 
in Garhwal region have exhibited relatively lesser gene 
diversity. Population HF06 is located in the reserve forest at 
Champawat forest division, which has demonstrated lesser 
gene diversity and high allelic richness. This disparity in 
both the diversity measures could have been aroused due 
to suboptimal sample size. Whereas, the population HF07 
belongs to the Kedarnath wildlife sanctuary, one of most 
healthy and intact reserve forests of the state, showed rela-
tively low allelic diversity. The reason for poor allelic rich-
ness in this region could be the excessive extraction of ringal 
culms, as this is one of the most popular sites among ringal 
artisans, where all four species are adequately found. How-
ever, the population of Triyuginarayan (HF08) showed the 
highest gene diversity. Further, diversity hotspots demar-
cated in the diversity maps could be prioritized for con-
servation and management. For instance, the populations 
with high allelic richness, namely HF08 (Triyuginarayan) 

Fig. 2   Unrooted Neighbour Joining (NJ) tree showing genetic and spatial clustering between sampled populations of H. falconeri. Pie chart over-
layed over distribution map shows pattern of genetic admixture among five inferred genetic clusters

Fig. 3   Spatial genetic clustering of studied populations through prin-
cipal coordinate analysis
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and HF06 (Mornaula) are designated as diversity hot spots 
and the populations exhibiting lower allelic diversity HF07 
(Chopta) and HF09 (Darma Valley) are considered as geneti-
cally fragile. Interestingly, most populations of the Kumaon 
region contained substantial number of private alleles, and 
therefore, entire region is important from the conservation 
point of view. Based on the current diversity statistics, the 
metapopulation of the studied species is observed to be 
genetically healthy with sufficient evolutionary or adaptive 
potential. The diversity measures observed in the present 
study were found consistent with the Sri Lankan temperate 

woody bamboo Kuruna debilis (He = 0.708; Ar = 4.58; 
FST=0.113), characterized with twelve microsatellite loci 
(Attigala et al. 2017). However, the population genetic stud-
ies in other bamboo taxa, viz., Dendrocalamus membrana-
ceus (Yang et al. 2012), O. travancorica (Nag et al. 2013), 
Melocanna baccifera (Nilkanta et al. 2017), P. edulis (Jiang 
et al. 2017), D. sinicus (Yang et al. 2018), D. hamiltonii 
(Meena et al. 2019; Bhandawat et al. 2019), Oxytenanthera 
abyssinica (Oumer et al. 2020), etc., displayed relatively 
lower genetic diversity with high genetic differentiation. 
Recently, high genetic diversity and differentiation were also 

Fig. 4   Relationship between 
genetic and horizontal geo-
graphic distance for studied 
populations of H. falconeri 
through Mantle test

Fig. 5   Graphical representation 
of the estimated Ln probability 
of data (a) and ΔK (b) for each 
K value, Bar plot (c) illustrated 
the proportional membership 
coefficient for all the genotypes 
at K = 5, where each popula-
tion is separated by a vertical 
line and individual samples are 
represented by coloured bars
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detected in three native Mexican woody bamboo species of 
genus Guadua (Pérez-Alquicira et al. 2021).

Furthermore, unique life cycle characteristics of bam-
boo such as the long vegetative phase of 3 to 150 years 
and strong capability of asexual reproduction (Zheng 
et al. 2020), make them different from other forestry spe-
cies where general principles of population genetics may 
not be obeyed. When the conditions of Hardy-Weinberg 
Equilibrium (HWE) do not fulfil, populations may undergo 
genetic differentiation over the period. In the case of 
bamboo in general, a key HWE condition, i.e., random 
mating, not always be ensured in the metapopulation due 
to their indistinct breeding behaviour. Though the floral 
biology and breeding behaviour is not studied in H. fal-
coneri, most woody bamboo taxa are reproduced through 
open pollination (Ruiz-Sanchez et al. 2017; Chen et al. 
2017), and flowered either, sporadically or gregariously 
or both, at different time intervals (Banik 2016; Zheng 
et al. 2020). The ringal bamboo species flowers gregari-
ously with a periodicity of 28 to 35 years (Troup 1921; 
Campbell 1988). However, few flowering culms may be 
spotted in a population almost every year. Both sporadic 
and gregarious flowering has also been reported in H. fal-
coneri, and a recent event of gregarious flowering in this 
taxon was recorded in 2002 at some cohorts in Uttara-
khand Himalayas (Naithani et al. 2003). The longer and 
unsynchronized flowering cycle within and across the 
population act as a temporal barrier, and only the simulta-
neously flowered populations get a chance of intermating. 
In an open-pollinated plant taxon, the flowering synchrony 
increases reproductive success while asynchronous or spo-
radic flowering negatively affects the population’s fitness 
(Rodríguez-Pérez 2016; Bogdziewicz et al. 2020; Pérez-
Alquicira et al. 2021). As a result, a high level of genetic 
heterogeneity was observed in structure analysis, where 
the entire variability was divided into five subpopulations.

Remarkably, the genetic clustering derived through NJ 
dendrogram and PCoA plot revealed two major clusters, 
where the overall clustering was appeared in accordance to 
their spatial distribution, i.e., the populations of Garhwal and 
Kumaon regions of Uttarakhand Himalayas were categorised 
into different groups (Fig. 2). Further, Mantel test also sup-
ports the isolation by distance model, signifying the impera-
tive role of physical distance in distribution of the genetic 
diversity across the range. As per the surveyed area in this 
study, species distribution has been recorded from 29° 26′ 
to 30° 55′ in north and 78° 22′ to 80° 37′ in east, and altitu-
dinally from 1950 m at Ranachatti to 2600 m AMSL at Sun-
derdhunga. Thus, both horizontal and vertical distances were 
analysed against the genetic distances, where only horizontal 
distance displayed significant relationship. It suggests that 
the geneflow is adequate across the altitudinal gradient but 
limited on longitudinal range due to various topographical, 

environmental or biological constraints. A similar clustering 
pattern and correlation were also observed in D. hamiltonii, 
where the populations of different regions were clustered in 
different groups (Meena et al. 2019). However, the nested 
sub clustering, i.e., clustering among the populations of 
smaller areas was not appeared to be correlated with their 
physical proximity, possibly due to asynchronous flowering 
among populations.

Conclusions and conservation implications

The present study has demonstrated a high gene diversity 
in the natural populations of H. falconeri of Uttarakhand 
Himalayas with a moderate level of genetic differentiation, 
indicating substantial evolutionary and adaptive potential 
of the species. However, the populations with suboptimal 
size and diversity like DH06 need special conservation 
attention. If the natural habitat continues to deteriorate, the 
alleles of such populations could be rescued by infusing 
into a large healthy population with a wide genetic base, 
such as protected areas. As evident by the diversity map 
of private alleles, the populations located in the Kumaon 
region harboured most private alleles, and require suit-
able conservation measures. Viewing the pattern of genetic 
clustering and structure analysis, it is appeared that the 
ecological or geographical factors played a crucial role in 
the structuring of metapopulation at a large distribution 
range. Whereas, the genetic make-up of closely located 
subpopulations in smaller geographical area, is appears to 
be controlled by synchronized flowering episodes. Further 
understanding of genetic structure demands an up-to-date 
record of past flowering data, and therefore, the recording 
of flowering episodes is very crucial in bamboo. Also, 
the detailed analysis of phenology, mating system, and 
contemporary gene flow, is important to understand the 
reason behind high genetic heterogeneity.

Considering a high level of genetic heterogeneity in 
H. falconeri metapopulation, conservation of any one 
population alone would not serve the purpose, and for ex-
situ conservation, germplasm must be pooled from all the 
major clusters depicted in structure analysis. In addition, 
populations, namely HF04 (Pinswad) and DH08 (Triyugi-
narayan) displaying significant genetic admixture may be 
treated as natural gene banks and recommended for in-situ 
conservation. The knowledge base generated here will be 
of paramount importance to the researchers, foresters, and 
policymakers for guiding future conservation and manage-
ment plans of H. falconeri in IHRs.
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