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Adaptation of plants to salt stress: the role of the ion transporters
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Abstract
Adaptation to high salinity is achieved by cellular ion homeostasis which involves regulation of toxic sodium ion (Na?)

and Chloride ion (Cl-) uptake, preventing the transport of these ions to the aerial parts of the plants and vacuolar

sequestration of these toxic ions. Ion transporters have long been known to play roles in maintaining ion homeostasis. Na?

enters the cell through various voltage dependent selective and non-selective ion channels. High Na? concentration in the

plasma membrane is balanced either by uptake of potassium ion (K?) by various potassium importing channels, by salt

exclusion mechanism or by sequestration of Na? in the vacuoles. Therefore, the role of high-affinity potassium transporter,

the salt overly sensitive pathway, the most well-defined Na? exclusion pathway that exports Na? from cell into xylem and

tonoplast localized cation transporters that compartmentalizes Na? in vacuoles need to be studied in detail and applied to

make the plant adaptable to saline soil. Knowledge on the regulation of expression of these transporters by the hormones,

microRNAs and other non-coding RNAs can be utilized to manipulate the ion transport. Here, we reviewed paradigm of

the ion transporters in salt stress signalling pathways from the recent and past studies aiding transformation of basic

knowledge into biotechnological applications to generate engineered salt stress tolerant crops.
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Introduction

As a consequence of global climate change and irrigational

malpractices, one of the environmental constraints in

agriculture is soil salinity, which reduces crop yield.

According to the FAO (Food and Agriculture organization)

study, saline soil is defined as soil having electrical con-

ductivity of 4 dS m-1 or higher in the saturation extract

(Munns 2005). High salinity affects about 20% of the

world’s agricultural land and half of irrigated lands (Pitman

and Läuchli 2002). Plants or crops are classified into two

groups on the basis of the acclimatization of salt stress, i.e.,

glycophytes which are salt sensitive and halophytes, called

as salt tolerant.

Two major salt stress induced effects are osmotic stress

and ionic stress (Munns et al. 2020; Van Zelm et al. 2020).

Osmotic stress occurs due to reduced level of water

potential in plants (Hasegawa et al. 2000b). Ionic stress

occurs when toxic ions have a detrimental effect on plants

and imbalance of homeostasis of ions causing disruption of

uptake of other ions. These two stresses result in oxidative

stress in plants, i.e., generation of ROS (hydroxyl radicle,

hydrogen peroxide, superoxide anions) (Shen et al. 1997;

Tsugane et al. 1999). High ROS concentration can damage

carbohydrate, protein, lipid and DNA in plant cells. Upon

generation of ROS, compatible osmolytes like mannitol,

proline, sorbitol, glycine betaine etc. are accumulated in

plant cells to protect the plants from the adverse effect of

ROS. Under salt stress osmolytes were produced to cope up

with the stress by scavenging ROS, maintenance of cell

turgor and helps in sequestration of Na? from cytosol to

vacuole (Ismail and Horie 2017). Along with osmolytes,

antioxidant enzymes are also produced for ROS removal.

Enzymatic scavengers include glutathione peroxidase

(GPX), catalase (CAT), superoxide dismutase (SOD),

glutathione reductase (GR), guaiacol peroxidase (GPOX),

ascorbate peroxidase (APX) (Yang and Guo 2018).

Phytohormones also play important role in plant growth

and development in salt stress (Ali et al. 2020). ABA has a

multifaceted role in stress tolerance in plants by delaying
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senescence, delaying transpiration and regulating various

metabolic processes. ABA promotes Dehydrin gene

expression which was shown to confer salt stress tolerance

(Martı́nez-Andújar et al. 2020). Auxin also plays role in

plant growth and development. Expression of various

auxin-responsive genes like auxin/indoleacetic acid (Aux/

IAA), small auxin-up RNA (SAUR) and GH3 family of

genes are upregulated to confer salt tolerance (Sun et al.

2018). Brassinosteroids were reported to play essential role

in pollen tube growth, germination, photosynthesis and

reproduction in salt stress. Expression of Brassinoisteroid

insensitive 1-aasociated receptor kinases (BAK1) family of

genes is upregulated causing tolerance in plants (Siddiqui

et al. 2019).

Salt stress for prolonged period can cause ion toxicity in

plants disrupting ion homeostasis maintenance, generating

oxidative stress and ultimately suppressing plant growth

and development (Basu et al. 2021). Ion exclusion is one of

the main approaches to confer salt resistance in plants. Na?

ion is considered cytotoxic at cytosolic concentrations of

100 mM or above (Serrano et al. 1998). The competition

between Na? and K? ions is the main critical factor

determining Na? ion toxicity in plants (Maathuis and

Amtmann 1999; Zhu 2001). Low Na?:K? in cytosol is

achieved by excluding Na? from cytosol to apoplast and by

vacuole sequestration of Na? ions. K? is a necessary

macronutrient for a number of physiological and bio-

chemical activities in plants (Hasanuzzaman et al. 2018).

Plants adopt a very sophisticated ion transport network to

cope up with salt stress (Tang et al. 2020). A variety of

membrane proteins regulate the absorption and efflux of

inorganic ions including Na?, K?, Ca2? and so on (Amin

et al. 2021). Hence, a thorough understanding of ion

homeostasis maintenance under salt stress and the function

of related transporters is very much required for making

strategies to achieve salt tolerance. The various mecha-

nisms involving salt uptake and exclusion along with ion

homeostasis maintenance are discussed in this article. In

addition to this, transgenic approaches to modify the

expression of ion transporters for improving salt tolerance

are also addressed here.

Salt uptake mechanism

Voltage-dependent non-selective cation channels (NSCC)

At high NaCl levels in the soil, this is the main route of

Na? entry into the roots (TESTER 2003; Horie 2004).

There are two types of nonselective cation channels

(NSCC), i.e. CNGC (cyclic nucleotide gated channels) and

GLR (glutamate activated channel) (Leng et al. 2002;

Demidchik et al. 2004). CNGC channels have been found

in all domains of life, including plants (Duszyn et al. 2019).

These channels belong to non-selective cation channels

which uptake Na?, K? and Ca2? (Demidchik and Maathuis

2007; Mian et al. 2011; Hanin et al. 2016). Four amino acid

residues (WRTW) in the calmodulin-binding domain of

CNGC are responsible for its interaction with calmodulin

(Duszyn et al. 2019). Although the downregulation of this

channel can avert the toxic Na? influx, it can cause harm to

the plants as uptake of other beneficial ions can be inhib-

ited. For an example, in rice the downregulation of

OsCNGC1 contributes to confer salt stress tolerance

whereas in Arabidopsis, Atcngc10 mutant was found to

exhibit enhanced growth in salt stress and Atcngc3 mutant

showed increased tolerance after being exposed to high

level of NaCl and KCl in comparison with wild type (Jin

et al. 2015). There are twenty members of CNGC family in

Arabidopsis (Talke et al. 2003). Among them many CNGC

channels have been characterized in Arabidopsis like

AtCNGC1, 2, 3, 4 and 10 etc. (Leng et al. 2002; Balagué

et al. 2003; Li et al. 2005; Gobert et al. 2006). AtCNGC1

and 4 are equally permeable to Na? and K? (Leng et al.

2002; Balagué et al. 2003). AtCNGC2 only permits the

entry of K?, not Na? entry (Leng et al. 2002). AtCNGC3 is

primarily expressed in cortical and epidermal root cell

(Gobert et al. 2006). Na? uptake in root by non-selective

cation channels has been shown to be inhibited by

increased level of Ca2? ions.

Potassium channels

Na? interferes with K? uptake by binding to the trans-

porters present in root plasma membrane. The non-voltage-

gated and voltage-gated K ? channels are the two types of

high-affinity K? transporters found in plants (Ragel et al.

2019). In Arabidopsis, the Shaker-like family of voltage-

gated channels consists of nine members that are all found

at the plasma membrane (Ragel et al. 2019). Potassium

channel in Arabidopsis thaliana 1 (KAT1) and AKT1 are

the most common shaker type inward K? channels (Jegla

et al. 2018). They have a high selectivity for K? than Na?

and do not have much impact in Na? uptake (Amtmann

and Sanders 1998). There may be electrophysiological

variations regarding the uptake of these two ions. In the

halophyte Suaeda maritima, low affinity Na? uptake

pathway is similar to the mechanism of K? ion uptake by

AKT1 channel (Wang et al. 2007). It has been shown that

K? channels also have a substantial role in Na? influx in

the susceptible rice cultivar but not in the tolerant one.

Such findings suggest that K? channels are one of the

pathways for Na? entry in root cells.
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Carrier type transporters

High affinity K? transporters (HKT) mediate the transport

of both Na? and K? ions. The HKT family is K? trans-

porter superfamily HKT/Trk/Ktr-type present in microor-

ganisms and plant (Yamaguchi et al. 2013). These

transporters either selectively transport Na? ions or carries

out Na? and K? symport. Two types of HKT transporters

have been discovered in plants. Na? selective transport is

mediated by Class I HKT transporters while Na?/K?

transport is generally mediated by class II HKT trans-

porters (Uozumi et al. 2000; Mäser et al. 2002). It is

determined by the presence of highly conserved residue

present in the first pore loop forming motif in the

polypeptide or the extracellular Na? and K? concentration

(Yao et al. 2010). If the conserved residue is serine (sub-

family 1) the transporter prefers higher Na?/K? uptake and

if it is glycine HKT has a lower affinity for Na?/K? influx.

Monocots have several HKT isoforms, whereas Ara-

bidopsis only has one class I HKT member (Ali et al.

2019). Although AtHKT1;1 has been shown to play role in

root development increased expression of AtHKT1;1 cau-

ses harm to the plants (Julkowska et al. 2017). When

AtHKT1;1 is expressed in yeast strains lacking the Na?

efflux mechanism, it makes them more sensitive to Na?

(Locascio et al. 2019).The hypersensitivity of sos3 mutants

is suppressed by mutations in the AtHKT1 gene, indicating

that wild type SOS3 and other components of the SOS

regulatory pathway can limit AtHKT1 activity as Na?

uptake transporter.

If the ratio of Na?/K? is high, some members of the

HAK/KUP/KT family of high affinity K? uptake trans-

porters have been reported to transport Na? with low

affinity (Pardo and Quintero 2002). In yeast expression

studies, K? uptake by HAK/KUP/KT (high affinity K?

uptake) was shown to be competitively inhibited by Na? as

these two monovalent cations share the common transport

pathaway (Santa-Marı́a et al. 1997; Fu and Luan 1998).

Salt stress has been shown to cause significant transcrip-

tional regulation of different isoforms of HAK/KUP/KT

(Chao et al. 2005; Walia 2005; Walia et al. 2007).

AtHAK5, PhaHAK2 and PhaHAK5 have been reported to

be permeable to Na? also and their expression is increased

by low K? and decreased by salt stress (Takahashi et al.

2007a, b; Alemán et al. 2009; Nieves-Cordones et al. 2010;

Wang et al. 2015). Reduced expression of HAK was pro-

posed to be one of the key mechanisms to minimise

harmful Na? absorption by these transporters.

Salt exclusion mechanism

It is essential for plants to have a functional efflux system

in order to remove potentially harmful ions from the

cytosol, such as Na?. In salt stress thermodynamically

active transport is required for exclusion of Na? from the

cytosol. The mechanisms of exclusion of Na? into the

apoplast or vacuole is an energized process which is cou-

pled with H?-ATPases activity that establishes a H?

electrochemical potential gradient (Blumwald et al. 2000;

Zhu 2001). Early studies showed that pumping capacity of

tonoplast antiporters is upregulated after exposure to salt

stress. The evidences of presence of Na?/H? antiporters in

plasma membrane too suggest the relevance of such sys-

tems in salt tolerance in plants (Katz et al. 1986).

Role of SOS (Salt Overly Sensitive) pathway in plasma
membrane in maintaining ion homeostasis

The Na? exclusion mechanism at the root-soil interface has

been well studied after the discovery of SOS pathway and

the plasma membrane localized Na?/H? exporter or SOS1

(Qiu et al. 2002; Shi et al. 2002). In Arabidopsis, SOS1

facilitates the maintenance of Na? homeostasis by exclu-

sion of the ion from root epidermis to rhizosphere. SOS1 is

expressed primarily in root epidermal cells, particularly at

root tip and xylem parenchyma cells. SOS1 expression has

been shown to be regulated by class-I histone deacetylation

in salt stress and salt tolerance is improved by suppression

of the histone deacetylation mediated process (Sako et al.

2016). Intracellular Ca2? level is increased by sensing the

high concentration of Na ? ions in cytoplasm. It facilitates

the binding of Ca2? ions with SOS3 (myristoylated mem-

brane bound protein), a E-loop-helix-F (EF- hand) calcium

binding protein which is also known as Calcineurin B-like

protein (CBL). SOS3 protein then interacts with the SOS2

protein. Interaction between SOS3 and SOS2 results in

releasing regulatory domain of SOS2 from its catalytic site

thereby activating SOS2 (Halfter 2000; Lin et al. 2009). In

the C-terminal regulatory domain of SOS2 protein, also

known as NAF domain, there is a FISL motif in which A,

F, I, S, L and F residues are conserved. The motif is a

21-amino-acid sequence that acts as an interaction site for

the SOS3 protein when it is coupled to calcium ions (Guo

2001; Chaves-Sanjuan et al. 2014). The SOS2 protein

belongs to the serine/threonine kinase of SnRK3 or CIPK

(CBL-interacting protein kinase) family. SOS3-SOS2

complex is then transported to plasma membrane and

phosphorylates the SOS1 protein, known as Na?/H? anti-

porter (Shi et al. 2000; Qiu et al. 2002; Lin et al. 2009).

SOS2 activates SOS1 by phosphorylating the C terminal

autoinhibitory domain of SOS1 at serine 1044 (Quintero

et al. 2011). Na ? ion efflux from cytoplasm to apoplast by

SOS1 protein is governed by gradient of proton generated

by plasma membrane associated H?-ATPase. Mitogen

activated protein kinase (MPK6) also activates SOS1 via

phosphatidic acid mediated signalling pathway (Yu et al.
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2010). Abscisic acid (ABA) may regulate SOS pathway

through SOS2. SOS2 protein binds to ABAINSENSI-

TIVE2 (ABI2) and abi2 and abi2 seedlings showed more

sensitiveness to salt stress (Ohta et al. 2003).

Arabidopsis thaliana genome encodes twenty six CIPKs

as well as ten CBLs (Kolukisaoglu et al. 2004). Multiple

CBLs can interact and activate individual CIPKs depend-

ing on the cellular conditions (Kim et al. 2000). CBL10

(SCaBP8), like SOS3 (CBL4) can sense the calcium signal

in cytosol due to high concentration of Na? ions. It also has

a role in vacuolar Na? partitioning by associating with

SOS2 (CIPK24) protein in the vacuole (Kim et al. 2007).

CBL4 protein functions primarily in the root whereas

CBL10 functions in the shoot (Quan et al. 2007; Zhu

2016). CBL10 has a key function also in vegetative growth

and reproduction in salt stress. It functions independently

of SOS pathway. CBL10 inhibits the Arabidopsis K?

transporter AKT1 (Ren et al. 2013). In salt stress, the

CIPK24 phosphorylates CBL10 at the C-terminus of this

protein to stabilize the localization of SOS2 protein at

plasma membrane (Lin et al. 2009; Du et al. 2011). It has

been considered that phosphorylation of CBL10 by

CIPK24 dissociates CBL10 from the AKT1 channel,

thereby, promoting K? uptake in the cytosol. Interaction

between CIPK24 and CBL10 results in the kinase complex

being localized at tonoplast where it regulates Na? accu-

mulation in shoot by controlling Na?/H? exchange at the

vacuolar membrane. In absence of CBL proteins, CIPK24

has been shown to regulate tonoplast V-ATPase. The

annexin AtANN4, a putative Ca2? transporter mediates

elevation of Ca2? in response to salt stress, whereas its

subsequent phosphorylation by SOS2 repress Ca2? tran-

sients, resulting in salt specific Ca2? wave (Ma et al.

2019b). CIPK6 also plays role in salt stress tolerance apart

from its function in auxin transport and root growth (Tri-

pathi et al. 2009).

Under salt stress ROS molecules are generated and

results in oxidative damage to plant cells (Miller et al.

2010). The expression pattern of ten Respiratory Burst

Oxidase homologs (RBOH) genes, i.e., RBOHA-RBOHJ is

changed in response to salt stress followed by generation of

ROS molecules within a 24-h period of salt stress (Xie

et al. 2011). Previous report demonstrated that under salt

stress, crosstalk between ROS and Ca2? signals is required

in order to distribute Ca2? signals between cells (Evans

et al. 2016). Furthermore, AtRbohF has been shown to be

phosphorylated by the Ca2? signaling complex CBL1/9-

CIPK26 (Drerup et al. 2013).

Orthologs of SOS1 were identified in different crops like

rice, durum wheat, bread wheat and tomato and shown to

function in exclusion of Na? in yeast complementation

assay (Martı́nez-Atienza et al. 2007; Xu et al. 2008; OlÍas

et al. 2009; Feki et al. 2011). Expression of OsSOS1 in

Arabidopsis mutant atsos1-1 has been shown to comple-

ment the salt hypersensitivity phenotype of the mutant

(Martı́nez-Atienza et al. 2007). Furthermore, silencing of

SlSOS1 in tomato plants showed salt hypersensitive phe-

notype (OlÍas et al. 2009). Inhibition of ThSOS1 has been

shown to increase Na? accumulation in root tip and stele in

Thellungiella salsuginea, an Arabidopsis relative (Oh et al.

2009). These findings indicate that SOS1 mediated Na?

exclusion mechanism for salt stress tolerance is highly

conserved among the plants.

Sodium sequestration in vacuole

Na?/H? exchangers (NHXs), tonoplast localized cation/H?

antiporters mediate compartmentation of Na? in vacuole to

counter its accumulation in cytosol. The activity of this

protein is governed by the electrochemical gradient of

proton generated by H?-ATPses and H?-pyrophosphatases

which are H? translocating enzymes present in vacuole.

Previously, NHXs were considered to play role in

sequestration of excess cytosolic Na? into vacuole for

osmotic adjustment under salt stress. Later they were

shown to function in vacuolar K? influx under low Na?

concentration with no transport of Na?. NHX mediated

Na? transport is only occurred when Na? concentration is

high. In salt stress excessive Na? influx into the cytoplasm

is occurred causing membrane depolarization followed by

K? efflux from cytosol. Two-pore K? 1 (TPK1) channel,

localized in tonoplast mediates transport of K? from vac-

uole to cytosol to replace cytosolic K? that has been lost

due to Na? influx in excess. In Arabidopsis, eight isoforms

of NHX have been found till now. Among them AtNHX7

is known as SOS1. AtNHX1-AtNHX4 are localized in the

vacuole (Li et al. 2009). NHX5 and NHX6 are located at

golgi apparatus, trans-golgi network as well as prevacuolar

compartment. Constitutive overexpression of AtNHX1 was

shown to improve salt tolerance in yeast, Arabidopsis,

cotton, tomato, Brassica napus and soybean (Zhang and

Blumwald 2001; Zhang et al. 2001, 2017b; Chakraborty

et al. 2016; Nguyen et al. 2019). Moreover, constitutive

overexpression of NHX1 homologs in different plants has

been shown to improve salt tolerance in rice, wheat and

barley (Zhao et al. 2006). The cation selectivity between

Na? and K? is determined by hydrophilic C-terminus of

NHX1 and binding of calmodulin-like protein (Yamaguchi

et al. 2003, 2005). The function of AtNHX1 and AtNHX2

is redundant whereas the Na?/K? selectivities of AtNHX3

and 4 are different. (Bassil et al. 2011b, 2019; Barragán

et al. 2012). In nhx1 nhx2 double mutant, significant

reduction in both Na?/ H? and K?/ H? activity, decreased

ability to retain K? in vacuole have been demonstrated.

Furthermore, the nhx1 nhx2 double mutant exhibited severe

defects in growth and development in both vegetative and
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reproductive stages. NHX1 and NHX2 were found to be

more abundant in leaf guard cells than in leaf epidermis as

well as in mesophyll cells, to help K? compartmentation in

the vacuole for stomata regulation and thereby increasing

transpiration rates (Andrés et al. 2014). Altogether, these

studies suggest that NHX1 and NHX2 confer salt stress

tolerance in plants by increasing K? content, enhancing

ratio of K?/ Na? and reducing oxidative damage. In nhx5

nhx6 double mutant, vacuolar trafficking was shown to be

disturbed causing severe reduction in plant growth and

development and rendering plant hypersensitive to Na?

(Bassil et al. 2011a). It has been demonstrated that over-

expression and knockout of AtNHX1 significantly and

differentially change the expression of salt stress respon-

sive genes. These studies suggest that proteins of NHX

family play role in salt stress tolerance.

H? pumps, located at plasma membrane and vacuolar

membrane create electrochemical gradient thereby pro-

viding energy for secondary active transport of other

cations (Morsomme and Boutry 2000). H?-ATPase and

H?-PPase are such H? pumps located at the tonoplast

(Drozdowicz and Rea 2001; Katschnig et al. 2015; Assaha

et al. 2017; Dabbous et al. 2017). Salt stress increases the

activity of these two H? pumps(Hasegawa et al. 2000a).

OVP1 and OVP2 were reported to be known as H?-PPase

proteins located at vacuole in rice (Sakakibara et al. 1996).

Overexpression of H?-PPase AVP1 was shown to improve

salt stress tolerance in Arabidopsis and increase Na?

accumulation in vacuole (Gaxiola et al. 2001; Jisheng et al.

2005; Yang et al. 2007). These studies suggest that over-

expression of AVP1 enhances the Na?/ H? activity.

TNHX1, a Na?/H? antiporter and TVP1, a vacuolar

pyrophosphatase were functionally characterized in wheat

(Brini et al. 2005). TNHX1 or TVP1 overexpression Ara-

bidopsis transgenic lines were found to survive better in

comparison with wild type plants under both salt stress and

drought stress (Brini et al. 2007). In barley, expression of

HVP1, H?-PPase protein and NHX1, Na?/H? antiporter

localized in vacuole was shown to be upregulated in salt

stress (Fukuda and Tanaka 2006). In rice it has been dis-

covered that simultaneous expression of NHX and AVP

genes increases salt tolerance more than expression of the

genes separately (Zhao et al. 2006). AVP1 interacts with

the auxin transporter PIN1, resulting in an increase of auxin

transport which causes better survival of plants in salt

stress (Li et al. 2005). A schematic overview of the ion

transport mechanism has been summarised in the Fig. 1.

Long distance sodium transport regulation

After Na? uptake in the root, it is transported into the stele

radially and then loaded Na? into xylem and moved to the

transpirational stream to reach to the shoot. So, controlling

Na? loading into the xylem is very much important to

reduce the transfer and accumulation of Na? in shoot.

Studies by cryo-scanning electron microscope and X-ray

microanalysis revealed that radial Na? transport in root is

occurred through the cortical cells, pericycle and xylem

parenchyma cells where Na? concentration is very high in

comparison with the other cell layers (Läuchli et al. 2008).

AtHKT1;1 mainly expresses in the vasculature and

regulates the distribution of Na? ions between root and

shoot (Essah 2003; Rus 2004; Sunarpi et al. 2005; Rus

et al. 2006; Demidchik and Maathuis 2007; Horie et al.

Fig. 1 Schematic overview of ion transport mechanism in salt stress

signalling pathway. Na? ions enter the cell through NSCCs under salt

stress followed by increased cytosolic Ca2? concentration which

activates SOS pathway. The proteins involved in SOS pathway are

CBL and CIPK. Calcium signalling activates CDPKs also. NHX,

V-ATPase and V-PPase are involved in Na? sequestration in vacuole.

K? uptake in root is occurred by mainly AKT and HAK. The

candidate proteins for loading Na? to the xylem are KORC and

retrieval of Na? from xylem are occurred by HKT. Abbreviations:

nonselective cation channels (NSCCs), SALT OVERLY SENSITIVE

(SOS), Calcineurin B-like protein (CBL), CBL-interacting protein

kinase (CIPK), Na?/H? exchangers (NHX), vacuolar H?-ATPase (V-

ATPase) and vacuolar H?-PPase (V-PPase), Inward-rectifying K?

channel (AKT) and High-affinity K? transporter (HAK), Outward-

rectifying K? channels (KORC), High affinity K? transporters (HKT)
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2009; Yao et al. 2010). OsHKT2;1 was found to restrict

radial transport of Na? at the cortex region of root pre-

venting Na? reaching the xylem (Horie et al. 2007).

OsHKT2;1 was also found to localize in the vascular

bundle in the shoot where it facilitates Na? loading in the

phloem for its translocation in root (Golldack et al. 2002;

Laurie et al. 2002). Similarly, AtHKT1;1 has been shown

to retrieve Na? from xylem and sequester in cortex (Plett

and Møller 2010). HKT homologs in other plants have

been shown to act in stele to retrieve Na? from xylem into

xylem parenchyma cells. For an instance, OsHKT1;5 in

rice has been reported to localize at xylem parenchyma

cells retrieving Na? from xylem into xylem parenchyma

cells (Cotsaftis et al. 2012).

Both HKT and SOS1 are localized in the xylem region

where Na? loading into the xylem is occurred (Shi et al.

2000, 2002; Sunarpi et al. 2005). In high saline condition

SOS1 mediates Na? retrieval from xylem whereas in mild

salt stress it causes Na? loading into xylem (Shi et al. 2002;

Yue et al. 2012). In contrast, HKT1 mediates retrieval of

Na? from xylem into xylem parenchyma cells. After

loading of Na? into the xylem it is transported to leaf via

transpirational stream. One of the important salt stress

tolerance mechanisms in plants is Na? exclusion from

shoot. As most of the metabolic processes occur in the leaf

blade it must be safeguarded from Na? damage. So, after

reaching of Na? in the leaf it must be retranslocated to the

basal part of the plant. According to the phloem recircu-

lation model, AtHKT1 plays role in Na? recirculation from

shoot to root. Na? is initially loaded into the shoot phloem

cells and then transported to root by downstream phloem

cells thereby reducing over accumulation of Na? ions in

shoot (Berthomieu et al. 2003). Another pathway of Na?

transport is retrieval of this ion from xylem sap to xylem

parenchyma cells mediated by AtHKT1;1 preventing the

transport of Na? into leaves (Berthomieu et al. 2003;

Sunarpi et al. 2005; James et al. 2006; Davenport et al.

2007). These two mechanisms of Na? transport may be

functionally coupled for the basipetal translocation of Na?

ions in plants inhibiting Na? transport from root to shoot,

thereby enhancing salt tolerance (Pardo 2010). In Ara-

bidopsis, a loss-of-function mutation in HKT1;1 causes

Na? ion accumulation in leaves but not in roots with a very

negligible effect of net Na? ion uptake in plants (Bertho-

mieu et al. 2003; Rus 2004; Sunarpi et al. 2005).

Recent studies in wheat revealed that Nax1 and Nax2

loci which code for HKT1;4 and HKT1;5 respectively

control in retrieval of Na? from xylem into xylem par-

enchyma cells and regulate SOS1 activity in Na? loading

into xylem thereby reducing Na? transport from root to

shoot. Nax1 and Nax2 null mutants showed reduced

expression of SOS1 and Na? is retrieved back to the stele

from xylem thereby increasing Na? accumulation in root

(Zhu et al. 2016). Recent studies revealed that OsHKT1;4

localizes at stem to mediate Na? exclusion thereby

improving salt tolerance (Suzuki et al. 2016). As docu-

mented in maize, pepper and barley, after reaching to the

leaf tissues Na? is translocated into the phloem and then it

goes back to root to decrease its level in shoots (Ketehouli

et al. 2019). EpHKT1;2 of extremophile Eutrema parvula

was also shown to play role in salt tolerance (Ali et al.

2018).

Members of Cation/H? exchangers family (CHX) are

also considered to participate in Na? and K? translocation.

This group of transporters primarily exchange cations

against proton motive force and controls osmotic conditons

(Isayenkov et al. 2020). AtCHX13 and AtCHX17 are K?

transporters (Cellier et al. 2004; Zhao et al. 2008). In

Arabidopsis, AtCHX21 is expressed primarily in root

endodermis. Mutation in AtCHX21 was shown to reduce

Na? in xylem sap without altering concentration of Na? in

phloem (Hall et al. 2006). OsCHX11 expression was found

to be higher in root in tolerant genotype in salt stress

(Senadheera et al. 2009). The differential expression of

OsCHX11 in the rice varieties was reported to correlate

with increased K?/Na? ratio in salt stress tolerant genotype

implying role of CHX11 in long distance Na? transport.

Potassium homeostasis maintenance

K? is the most abundant cation in plant and is a

macronutrient. It accounts for upto 10% of dry mass of

plant (Véry and Sentenac 2003). There is evidence that the

difference in salt stress tolerance mechanism between

halophytes and glycophytes is attributed to post transla-

tional modification of K? transporter (Himabindu et al.

2016). The concentration of cytosolic K? is kept constant

at around 100 mM. Maintaining a steady level of intra-

cellular K? concentration is critical for normal functioning

of plant growth and development. Salt stress causes chan-

ges in the maintenance of cellular K? homeostasis, thereby

affecting all of these physiological and metabolic func-

tions. Hence increase in K?/Na? ratio helps plant to

achieve normal functioning of cellular metabolism, growth

and productivity (Anschütz et al. 2014; Himabindu et al.

2016). Salinity tolerance is determined by the increased K?

concentration inside the cells (Rubio et al. 2020). In salt

stress high K?/Na? ratio can be maintained by root K?

absorption, K? loading in xylem for translocation to shoot

and reduction in cytosolic K? efflux.

Potassium absorption in root

K? is absorbed primarily through two processes at the root-

soil contact. The first one is low affinity K? uptake (LAT)

occurred when the external K? concentration in mM range.
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Shaker family of K? channel, i.e., AKT1 mediates low

affinity K? uptake. CBL1/9 interacts with CBL-interacting

protein kinase 23 (CIPK23), which in turn phosphorylates

AKT1 and causes K? uptake under low K? condition (Xu

et al. 2006). Recent findings suggest that CBL1/CIPK23

complex physically interact with AKT1 in the plasma

membrane to regulate K? transport (Sánchez-Barrena et al.

2020). The second process is high affinity K? uptake when

external K? concentration in lM range. K? transporters

belonging to KUP/HAK/KT family, such as HAK5 and K?

Uptake Permease 7 (KUP7) mediate high affinity uptake. A

crucial factor in salt stress resistance is maintaining a

higher negative potential inside the plasma membrane

facilitating K? uptake (Pottosin and Dobrovinskaya 2014).

Short-term salt stress was shown to cause the negative

membrane potential of barley and pea plants to be same but

in long-term stress barley maintained a higher negative

potential than pea plants making barley more susceptible to

salt (Bose et al. 2014). Negative membrane potential is

achieved by plasma membrane localized H?-ATPase

activity. The fundamental difference in salt tolerance

mechanism between halophytes and glycophytes has been

considered to lie in the difference in pump activity which is

regulated by phosphorylation of the protein (Himabindu

et al. 2016). Pump activity was shown to be higher in

halophyte than glycophyte. The members of HAK family

mediate K? absorption at external concentration below

10 lM (Alemán et al. 2009). When salt stress is combined

with low K? condition the transporter activity becomes

reduced rendering plants very susceptible to salt stress.

HAK activity is reduced when Na? increases the mem-

brane potential resulting in K? efflux by outward rectifier

K? channel (Pottosin and Dobrovinskaya 2014; Bacha

et al. 2015). HAKs are typically K?/H? symporters. Its

activity is also dependent on the proton motive force pro-

duced by H?-ATPase (Falhof et al. 2016). K? absorption

through HAK may be increased by reducing membrane

depolarization and increasing H?-ATPase activity and

thereby increasing resistance to low K? condition in salt

stress. It is still unknown if HAK5 functions in the similar

manner under salt stress as demonstrated by AKT1. A

single amino acid substitution in certain HAKs, such as

AtHAK5 and HvHAK has been demonstrated to increase

K? absorption and confer resistance to salt stress (Man-

gano et al. 2008; Alemán et al. 2014).

The hazardous influx of Na? into the cytosol along with

absence of strong Na? efflux mechanism will inhibit K?

absorption by membrane depolarization (Qi and Spalding

2004). H?-ATPase is activated by SOS1 to pump out

protons, resulting in proton motive force that is utilized to

stimulate Na? efflux. It has been reported that sos1 null

mutants exhibited decreased K? uptake (Horie et al. 2012;

Mansour 2014). In comparison with the SOS1

overexpression lines, plants lacking the SOS1 transporter

have been reported to accumulate more Na? and had lower

K? uptake. These findings substantiate the role of SOS

pathway in K? uptake in salt tolerance.

Class II members of HKTs mediate K? absorption in

salt stress (Tada and Ohnuma 2020). Only monocots have

this type of transporter, implying that monocots have a

higher capacity to withstand salt stress than dicots (Plett

and Møller 2010). Some class I members are also K?

selective due to additional amino acid residues SGGG in

the selectivity filter that change their specificity from Na?

to K? (Ali et al. 2012). These mutated HKT homologs are

mostly found in halophytes, such as ThHKT1;2 in Thel-

lungiella, McHKT1 in Mesenbryanthemum and,

EcHKT1;2 in salt resistant glycophytes Eucalyptus (Gierth

and Mäser 2007).

Potassium loading in xylem for translocation in shoot

The major route for K? to reach to shoot is through the

transpirational stream in xylem vessel. In Arabidopsis

xylem loading of K? is mediated by stelar K? outward

rectifying (SKOR) channel and KUP7 to ensure enough K?

supply to shoot (Véry and Sentenac 2003; Ahmad and

Maathuis 2014; Han et al. 2016; Nieves-Cordones et al.

2016). The voltage sensor of SKOR has been found to have

residues that are ROS-sensitive. SKOR mediated K?

loading in xylem is attributed to change by ROS (Demid-

chik et al. 2014). When the residue is replaced with another

amino acid, SKOR sensitivity to ROS is lost indicating the

arrest of K? efflux which in turn affects K? homeostasis in

salt stress. ROS generation is entirely inhibited in Ara-

bidopsis mutants atrbohD1/F1 and atrbohD2/F2 under salt

stress, displaying decreased K? and increased Na? levels.

This condition can be partially recovered by addition of

H2O2.

Potassium efflux prevention

Regulation of K? efflux is one of the most significant salt

stress adaptation mechanisms by maintaining increased

K?/ Na? ratios. K? concentration in cytosol is maintained

at around 100 mM under normal conditions but in salt

stress the concentration drops rapidly due to exclusion of

K? from both root and leaf cells by K? outward rectifying

channel (KORC) (Shabala and Pottosin 2014). To mediate

K? efflux in guard cells OST1/SnRK2.6 interacts with and

phosphorylates particular KAT1 and K? Uptake Permease

6 (KUP6) resulting in stomatal closure under salt and

osmotic stress (Sato et al. 2009; Osakabe et al. 2013).

During salt stress, the Gated Outwardly-Rectifying K?

Channel (GORK) is shown to be responsible for potassium

efflux (Shabala and Cuin 2008). K? concentration in leaf
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mesophyll cells has been found to correlate with salt stress

tolerance and has been used as a marker to distinguish

between salt-tolerant and salt-sensitive varieties of barley

and wheat (Wu et al. 2013, 2015). The ability of root to

store K? corresponds with salt stress tolerance and it can be

considered as a marker in breeding programme of wheat

(Cuin et al. 2008). The K? homeostasis mechanism is

summarised in the Fig. 2.

Role of hormones, microRNAs and long non-
coding RNAs in regulating ion transporters

Plant hormones are shown to indirectly control expression

or activity of the ion transporters. Abscisic acid (ABA)

signal is perceived by PYRABACTIN RESISTANCE/

PYRABACTIN RESISTANCE-LIKE (PYR/PYL) (Ma

et al. 2009; Park et al. 2009). Binding of PYL to ABA is

enhanced by the coreceptors PP2Cs such as ABI1, ABI2,

HAB1 and PP2CA. PP2Cs interact with SnRK2 kinases,

such as SnRK2.2, SnRK2.3 and SnRK2.6. In absence of

ABA, interaction between these two molecules results in

the inactivation of kinases by blocking the catalytic domain

of SnRK2 kinases and also by dephosphorylation of the

activation loop of the kinase (Soon et al. 2012). Catalytic

domain of SnRK2 is released from the binding and inhi-

bition of PP2C due to ABA-PYL-PP2C complex forma-

tion. Then the kinase phosphorylates and activates the

downstream ion transporters such as, SOS1 (Fujii et al.

2009). CIPK23 has been shown to regulate different ion

transporters after releasing from its interaction with PP2C

(Lan et al. 2011).

MicroRNAs (miRNAs) have been identified to control

the expression of ion transporters and their regulatory

proteins under salt stress. In chickpea novmiR2 and

miR5507 has been predicted to target potassium transporter

HAK5 and its regulatory kinase CIPK23, respectively to

reduce their expression. Expression of these two miRNAs

in chickpea root is upregulated in salt stress and that of

their targets is downregulated (Khandal et al. 2017). These

studies suggest the role of miRNAs in potassium transport

mechanism under salt stress. Auxin response factor (ARF2)

has been shown to suppress HAK5 expression by binding

to its promoter. Expression of a novel miRNA which tar-

gets ARF2 is increased in rice root tissues inoculated with

the symbiont Piriformospora indica, an endophytic root

fungus implying the role of this novel miRNA in potassium

uptake mechanism (Kord et al. 2019). It has been shown

that in wild type alfalfa and in its mutant strain miR408

which is known to target NHX is differentially expressed

under salt stress (Ma et al. 2019a). miR172 which targets

CNGC channel has been shown to be upregulated in

mutant strain of alfalfa as compared to the wild type (Ma

et al. 2019a). Expression of miR2590 which reduces the

expression of CHX14/15 has been found to be drastically

reduced upon salt treatment (Jiang et al. 2014; Khandal

et al. 2017).

Long non-coding RNAs (lncRNAs) play crucial role in

regulating gene expression in response to stresses. In the

model legume Medicago truncatula, 10,785 lncRNA has

been identified under phosphate deficiency. Two of those,

PDIL2 and PDIL3 was reported to regulate phosphate

transport by regulating the transcription of PHO2, a ubiq-

uitin conjugating enzyme that target phosphate transporter

(Wang et al. 2017). There are a few genome-wide surveys

of lncRNA expression under stress conditions and predic-

tion of putative targets including ion transporters (Li et al.

2014; Tian et al. 2016; Zou et al. 2020). In a non-model

plant Pistacia vera L., the coding targets of the top five salt

Fig. 2 Diagrammatic representation of potassium homeostasis mech-

anism during salt stress. Major potassium transporters as an integral

part of plasma membrane are AKT1, HAK5, HKT and KORC. The

potassium transporters present in tonoplast are NHX and TPK.

Abbreviations: Inward-rectifying K? channel (AKT1), High-affinity

K? transporter (HAK5), High affinity K? transporters (HKT) and K?

outward rectifying channel (KORC), Na?/H? exchangers (NHX) and

Two-pore K? 1 (TPK)
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responsive lncRNAs participate in the cation transmem-

brane transporter, kinase, UDP-glycosyltransferases and

ATPase activity, coupled to transmembrane movement of

substances (Jannesar et al. 2020).

Future perspectives

Generation of transgenic plants

As the basic mechanism of plant responses in salt stress is

similar between the model plant Arabidopsis and other

crop plants, identification of orthologs of ion transporter

and ion-homeostasis related candidate genes for salt tol-

erance followed by the introduction of these genes into

crop plants under control of 35S promoter or stress/tissue

specific promoter can generate salt tolerant engineered

plants whereas downregulation of the ion transporter genes

responsible for toxic ion entry into plant cells by the

approach of RNAi or gene editing can improve to mitigate

salt stress in plants. Recently miRNAs have been shown to

target some ion transporters in salt stress (Khandal et al.

2017; Bai et al. 2018). Although transgenic approaches

have been extensively used for functional characterisation

of ion transporters in salt tolerance but there is lack of

reports mentioning the role of transgenic plants overex-

pressing miRNAs which target ion transporters in salt

stress. miRNA targeting the ion transporters which help in

conferring salt tolerance can be considered for genetic

engineering by different approaches like target mimicry

(TM) and short tandem target mimicry (STTM) to achieve

salt acclimatization (Teotia et al. 2016; Zhang et al. 2017a).

With the introduction of gene editing technology in several

crops, this technology can be deployed to crop plants to

understand the roles of the ion transporters and manipulate

their functions. Recent reports of engineered salt tolerant

crops for maintaining ion homeostasis under salt stress is

summarized in Table 1.

Comparative gene expression analysis

Another less explored area in this study is the identification

and expression analysis of novel ion transporters or their

regulatory proteins under salt stress in crop species.

Investigations on differential gene expression analysis can

be done between stressed and unstressed plants of same

species, tolerant and sensitive genotypes of same species.

Expression analysis of a particular family of ion trans-

porters or their master regulators in organisms of different

but related species or such analysis between glycophytes

and halophytes can unravel the key components of ion

homeostasis signaling network during salt stress. Because

RNA sequencing has several benefits over other existing

techniques it is becoming the method of choice for dif-

ferential gene expression analysis. Studying salt tolerance

in plants by these tools can bridge the gap in knowledge

about ion sensing, transport, signaling and homeostasis

maintenance during salt stress opening the new avenues in

generating salt acclimatized crop varieties. All these

Table 1 Genetic engineering of ion transporters genes to confer salt tolerance

Name of the gene Source plant Transgenic plant References

HvHKT1;1 Hordeum vulgare Arabidopsis thaliana Han et al. (2018)

AtSOS1/AtNHX1 Arabidopsis thaliana Arabidopsis thaliana Pehlivan et al. (2016)

OsHKT1;1 Oryza sativa cv. indica Oryza sativa cv. japonica Campbell et al. (2017)

LeNHX2 Solanum lycopersicum Solanum lycopersicum Huertas et al. (2013)

AsNHX1 Arachis hypogaea Nicotiana tabacum Zhang et al. (2017c)

MdNHX1 Malus domestica Arabidopsis thaliana Sun et al. (2017)

AlNHX1 Aeluropus littoralis Soybean Liu et al. (2014)

OsHAK5 Oryza sativa cv. Nipponbare Nicotiana tabacum cv. BY2 cells Horie et al. (2011)

AjSOS1 Artemisia japonica Chrysanthemum morifolium Gao et al. (2016)

SbNHXLP Sorghum bicolor Solanum lycopersicum Kumari et al. (2017)

GmNHX1 Soybean Arabidopsis thaliana Sun et al. (2019)

AtNHX1/AtAVP1 Arabidopsis thaliana Soybean Nguyen et al. (2019)

AtNHX1/AtAVP1 Arabidopsis thaliana Cotton Shen et al. (2015)

MdNHX1 Malus domestica Malus domestica Sun et al. (2017)

AtSOS1/AtSOS2/AtSOS3 Arabidopsis thaliana Festuca arundinacea Ma et al. (2014)

StNHX1 Solanum torvum Glycine max Chen et al. (2014)

VrNHX1 Vigna radiata Arabidopsis thaliana Mishra et al. (2014)

HKT, High affinity K? transporters; NHX, Na?/H? exchangers; HAK5, High-affinity K? transporter; SOS, Salt Overly Sensitive; NHXLP, Na?/

H? antiporter-like protein; AVP1, Arabidopsis vacuolar H?-pyrophosphatase
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strategies can improve plant growth and development as

well as crop productivity against global salt crisis for food.

Conclusions

The importance of ion transporters in salt tolerance has

been described in this review. The regulatory mechanism

of these transporters has to be studied by different tools to

gain insights into the difference in salt tolerance between

glycophytes and halophytes. Change in a particular amino

acid or post translational modifications (PTMs), mainly

phosphorylation, fine tunes the activity of these trans-

porters. The amino acid residues essential for transporter

activity as well as PTM sites targeted by the regulatory

protein of the transporters have been identified in some of

the ion transporters mainly in the model plant Arabidopsis

by site directed mutations along with mass spectrometry

analysis. More studies by such tools are required to shed

light on the regulatory mechanism of the other ion trans-

porters involved in salt stress signalling pathway both in

Arabidopsis and the crop species. To study the transporter

activity, patch clamp analysis in Xenopus oocytes have

been done for some potassium transporters but such

information about other ion transporters is scarce. Rubid-

ium ion (Rb?)content has been determined by inductively

coupled plasma (ICP) mass spectrometry to measure K?

uptake in some Arabidopsis transgenic lines but there is

lack of reports of such investigations in the crop plants.

Studies in yeast mutant deficient in uptake of ion of interest

could pave the way for functional characterisation of the

ion transporters. As yeast is an easy and fast experimental

system and has less members in a protein family, com-

plementation assay in yeast for the analysis of the function

of ion transporters could provide valuable information in

this regard. So heterologous expression of plant genes in

yeast provides platform to investigate the role of ion

transporters in salt tolerance in plants. Although some

reports are available in this regard for functional charac-

terisation of ion transporters of Arabidopsis and rice, such

experimental tools could be employed for ion transporters

of other crop species too. Despite using all these tools, our

understanding of ion sensors, ion transporters and the

regulatory proteins of these proteins is still quite limited.

The research of molecular interactions, PTMs affecting the

activity of the transporters and identification of the specific

residues in the transmembrane proteins is crucial for

understanding the transport system involved in salt stress

response and such studies should be a priority in the future.
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Berthomieu P, Conéjéro G, Nublat A et al (2003) Functional analysis

of AtHKT1 in Arabidopsis shows that Na? recirculation by the

phloem is crucial for salt tolerance. EMBO J 22:2004–2014.

https://doi.org/10.1093/emboj/cdg207

Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant

cells. Biochim Biophys Acta 1465:140–151. https://doi.org/10.

1016/S0005-2736(00)00135-8

Bose J, Shabala L, Pottosin I et al (2014) Kinetics of xylem loading,

membrane potential maintenance, and sensitivity of K?-perme-

able channels to reactive oxygen species: physiological traits that

differentiate salinity tolerance between pea and barley. Plant,

Cell Environ. https://doi.org/10.1111/pce.12180

Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning

and characterization of a wheat vacuolar cation/proton antiporter

and pyrophosphatase proton pump. Plant Physiol Biochem.

https://doi.org/10.1016/j.plaphy.2005.02.010

Brini F, Hanin M, Mezghani I et al (2007) Overexpression of wheat

Na?/H? antiporter TNHX1 and H?-pyrophosphatase TVP1

improve salt- and drought-stress tolerance in Arabidopsis

thaliana plants. J Exp Bot 58:301–308

Campbell MT, Bandillo N, Al Shiblawi FRA et al (2017) Allelic

variants of OsHKT1;1 underlie the divergence between indica

and japonica subspecies of rice (Oryza sativa) for root sodium
content. PLoS Genet. https://doi.org/10.1371/journal.pgen.

1006823
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OlÍas R, Eljakaoui Z, Li J et al (2009) The plasma membrane Na?/

H? antiporter SOS1 is essential for salt tolerance in tomato and

affects the partitioning of Na ? between plant organs. Plant Cell

Environ. https://doi.org/10.1111/j.1365-3040.2009.01971.x

Osakabe Y, Arinaga N, Umezawa T et al (2013) Osmotic stress

responses and plant growth controlled by potassium transporters

in Arabidopsis. Plant Cell. https://doi.org/10.1105/tpc.112.

105700

680 Journal of Plant Biochemistry and Biotechnology (October–December 2021) 30(4):668–683

123

https://doi.org/10.1111/j.1365-313X.2007.03249.x
https://doi.org/10.1111/j.1365-313X.2007.03249.x
https://doi.org/10.1104/pp.103.033068
https://doi.org/10.1007/s10142-019-00671-6
https://doi.org/10.1007/s10142-019-00671-6
https://doi.org/10.3389/fpls.2016.02027
https://doi.org/10.3389/fpls.2016.02027
https://doi.org/10.1093/mp/ssr031
https://doi.org/10.1111/j.1365-3040.2008.01864.x
https://doi.org/10.1111/j.1365-3040.2008.01864.x
https://doi.org/10.1046/j.1365-313X.2002.01410.x
https://doi.org/10.1046/j.1365-313X.2002.01410.x
https://doi.org/10.1104/pp.010832
https://doi.org/10.1126/science.1115711
https://doi.org/10.1016/j.bbrc.2009.03.091
https://doi.org/10.1016/j.bbrc.2009.03.091
https://doi.org/10.1186/gb-2014-15-2-r40
https://doi.org/10.1105/tpc.109.066217
https://doi.org/10.1105/tpc.109.066217
https://doi.org/10.3390/ijms20092133
https://doi.org/10.3390/ijms20092133
https://doi.org/10.1126/science.1172408
https://doi.org/10.1007/s00709-013-0540-9
https://doi.org/10.1007/s00709-013-0540-9
https://doi.org/10.1139/cjps-2018-0327
https://doi.org/10.1016/j.devcel.2019.02.010
https://doi.org/10.1016/j.devcel.2019.02.010
https://doi.org/10.1006/anbo.1999.0912
https://doi.org/10.1016/j.febslet.2008.10.036
https://doi.org/10.1016/j.plantsci.2019.110268
https://doi.org/10.1104/pp.106.092635
https://doi.org/10.1073/pnas.082123799
https://doi.org/10.1073/pnas.082123799
https://doi.org/10.1111/j.1365-3040.2009.02041.x
https://doi.org/10.1111/j.1365-3040.2009.02041.x
https://doi.org/10.1371/journal.pone.0106678
https://doi.org/10.1371/journal.pone.0106678
https://doi.org/10.1016/S0005-2736(00)00128-0
https://doi.org/10.1016/S0005-2736(00)00128-0
https://doi.org/10.2135/cropsci2018.10.0640
https://doi.org/10.1093/mp/ssp102
https://doi.org/10.1093/mp/ssp102
https://doi.org/10.1104/pp.109.137802
https://doi.org/10.1073/pnas.2034853100
https://doi.org/10.1073/pnas.2034853100
https://doi.org/10.1111/j.1365-3040.2009.01971.x
https://doi.org/10.1105/tpc.112.105700
https://doi.org/10.1105/tpc.112.105700


Pardo JM (2010) Biotechnology of water and salinity stress tolerance.

Curr Opin Biotechnol 21:185–196

Pardo JM, Quintero FJ (2002) Plants and sodium ions: keeping

company with the enemy. Genome Biol 3:1017. https://doi.org/

10.1186/gb-2002-3-6-reviews1017

Park SY, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type

2C protein phosphatases via the PYR/PYL family of START

proteins. Science. https://doi.org/10.1126/science.1173041

Pehlivan N, Sun L, Jarrett P et al (2016) Co-overexpressing a plasma

membrane and a vacuolar membrane sodium/proton antiporter

significantly improves salt tolerance in transgenic Arabidopsis

plants. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcw055
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