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Abstract
Pigeonpea sterility mosaic emaraviruses (PPSMVs) cause sterility mosaic disease in pigeonpea which significantly reduce the

crop yield. Currently there are no effective management strategies available for the control of these emaraviruses or their vector

eriophyid mites. Here, for the first time, we demonstrate double stranded RNA based control of PPSMV in an open field

experiment. Three genes of PPSMV, namely, the RNA dependent RNA polymerase, nucleo-capsid protein and movement

protein were targeted by dsRNA-based strategy. DsRNAs for these genes were successfully produced in vitro and exogenously

applied on pigeonpea plants in the field providing protection against PPSMV. Of these, the dsRNAs targeting RNA dependent

RNA polymerase and movement protein gave relatively better protection when compared to the dsRNAs targeting nucleo-capsid

protein. This is the first demonstration of dsRNA-mediated protection against a negative sense plant RNA virus.
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Abbreviations
dsRNA Double stranded RNA

MP Movement Protein

NP Nucleocapsid Protein

PPSMV Pigeonpea sterility mosaic emaravirus

PPSMV-1 Pigeonpea sterility mosaic emaravirus 1

PPSMV-2 Pigeonpea sterility mosaic emaravirus 2

RdRp RNA dependent RNA polymerase

RNAi RNA interference

siRNA Small interfering RNA

SMD Sterility mosaic disease

Sterility mosaic disease (SMD) of pigeonpea is one of the

major constraints for cultivation of pigeonpea in

India (Patil and Kumar 2015, 2017) . SMD is also known

to occur in other South-East Asian countries, such as

Nepal, Bangladesh and Myanmar (Jones et al. 2004). Two

distinct emaravirus species, Pigeonpea sterility mosaic

emaravirus 1 (PPSMV-1) and Pigeonpea sterility mosaic

emaravirus 2 (PPSMV-2) are associated with sterility

mosaic disease (SMD) of pigeonpea (Patil et al. 2017).

Both PPSMV-1 and PPSMV-2 were shown to be present

across India and exhibit sequence variability (Patil et al.

2017). The genus Emaravirus (family Fimoviridae, order

Bunyavirales) consists of about 15 distinct species that

infect pigeonpea, alfalfa, perilla, wheat, corn and other

flower and fruit trees (Mielke-Ehret and Mühlbach 2012;

Tatineni et al. 2014). Emaraviruses are present as double

membrane-bound bodies (DMBs) in the cytoplasm of the

virus-infected cells and are transmitted to plants by erio-

phyid mite (Aceria cajani) vectors (Kormelink et al. 2011;

Kulkarni et al. 2002). The genome of PPSMV-1 and -2

consist of six RNA segments that are linear, negative-sense

and single-stranded (Patil et al. 2017). The largest of all is

referred to as RNA1, with a length of 7022 nucleotides,

encoding the RNA-dependent RNA polymerase (RdRp,

2295 amino acids). The other four segments are referred to

as RNA2 (2223 nt) encoding the glycoprotein (GP); RNA3

(1442 nt) encoding the nucleocapsid protein (NP); RNA4

(1563 nt) encoding the putative movement protein p4

(MP); RNA5 (1689 nt) encoding the p5 (474 amino acids)
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and RNA6 (1194 nt) encoding the p6 proteins with

unknown function (Elbeaino et al. 2014 2015).

Currently there are no effective strategies for the man-

agement of SMD in pigeonpea and therefore there is an

urgent need of intervention employing biotechnological

approaches. The discovery of RNA-interference (RNAi)

has heralded a new revolution in the area of biotechnology

or molecular biology (Baulcombe 1996; Waterhouse et al.

1998; Smith et al. 2000). RNAi-technology is being suc-

cessfully employed for developing transgenic crop plants

with desirable traits, particularly for the management of

plant viral diseases (Patil et al. 2011; Patil 2018). To

alleviate the concerns of environmental impact and food

safety, plant biotechnologists are exploring alternative

technologies that can induce robust viral resistance without

engineering plants containing viral transgenic DNA.

Table 1 Primer names and their

sequences used in this study
Primer Name Primer Sequence (50 to 30) Target gene/

sequence

Primers used for cloning of PPSMV-1 sequences in pGemT easy vector

PPSMV1-1-aSF GCTCTAGATTGTCGACTACAATAGTTGN RNA-1

(3989–4008 nt)

PPSMV1-1-aSR CCCAAGCTTCCCTTGTTTAGACTAATGAN RNA-1

(4574–4593 nt)

PPSMV1-3-aSF GCTCTAGAATGTTCTGTCATTCAATAAAN RNA-3 (503–523

nt)

PPSMV1-3-aSR CGGGATCCTATATTTTTAATTAAACACACN RNA-3

(1096–1117 nt)

PPSMV1-4-aSF GCTCTAGAAGTCTGGAAGAATATCTTATCN RNA-4 (212–233

nt)

PPSMV1-4-aSR CGGGATCCAACTTTTTCATACACACCAN RNA-4 (688–707

nt)

Primers used in first PCR amplification

PPSMV1-RdRp-F GGG GAT CCT TGT CGA CTA CAA TAG TTG PPSMV1 RdRp

PPSMV1-RdRp-F GGG GAT CCC CCT TGT TTA GAC TAA TGA

PPSMV1-NP-F GGG GAT CCA TGT TCT GTC ATT CAA TAA A PPSMV1 NP

PPSMV1-NP-R GGG GAT CCT ATA TTT TTA ATT AAA CAC AC

PPSMV1-MP-F GGG GAT CCA GTC TGG AAG AAT ATC TTA TC PPSMV1 MP

PPSMV1-MP-R GGG GAT CCA ACT TTT TCA TAC ACA CCA

Primers used for PPSMV detection in pigeonpea plants by RT-PCR

PPSMV1&2-F CCTCCTAAGAGATCANTCAGN RNA-1 (105–125

nt)

PPSMV1&2-R ATGAATCCTGTTCATTTTCN RNA-1 (845–826

nt)

Fig. 1 Agarose gel electrophoresis of the first PCR (lanes 1) and

second PCR (lanes 2) amplification products and the in vitro

transcription dsRNA products (lanes 3) for the target sequences of

the PPSMV-1 RdRp (606 bp), NP (621 bp) and MP (499 bp) genes of

the PPSMV-1 Kalaburagi isolate. In the 1st PCR the T7 linker

sequences were attached by using gene specific primers and the

amplicon of this PCR was subjected to second PCR to incorporate the

T7 promoter sequence, which helps in in vitro transcription of the

gene sequence. M: Low Molecular Weight DNA Ladder (New

England Biolabs, USA). Numbers at the left designate molecular

weights in bp
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Interestingly, in contrast to transgene derived viral resis-

tance, RNAi can be readily induced by the topical/foliar

spray application of dsRNA molecules (Tenllado and Dıaz-
Ruız 2001; Yin et al. 2009; Voloudakis et al. 2018). The

dsRNA molecule is central to the induction of the RNAi

pathway in both transgenic and naturally virus-infected

plants. Thus the progress in the area of dsRNA expression

systems and the application of dsRNA as a ‘spray-on’

technology for non-transgenic induction of virus resistance

is very important and promising for the control of plant

viral diseases (Mitter et al. 2017b; Voloudakis et al. 2018).

PPSMVs are also known to produce small RNAs of dif-

ferent size classes (Patil and Arora 2018). In this study, for

the first time, we have evaluated the ability of dsRNA

targeting three different genes of the emaravirus infecting

pigeonpea. The target genes were RdRp, NP and MP. The

conserved sequences of these three genes across different

PPSMV isolates were identified and a stretch of 606 nt of

RdRp, 621 nt of NP and 499 nt of MP were amplified by

RT-PCR using primers specified in Table 1. The templates

used were the RNA-1, RNA-3 and RNA-4 clones of

PPSMV-1 Kalaburagi isolate, with GenBank accession

numbers KX363886, KX363888 and KX363889, respec-

tively (Patil and Arora 2018). These amplicons were cloned

in pGem-T Easy vector from Promega (Promega, USA),

using TA cloning strategy and were later sequenced to

Fig. 2 Application of dsRNA on leaf surface of a healthy pigeonpea

plant (a), followed by stapling of PPSMV infected leaf (b) for

transmission of virus to healthy plants; One of the experimental

replication with four treatments (c), Control, dsRNAs targeting NP

(Nucleocapsid Protein), RdRp (RNA dependent RNA polymerase)

and MP (Movement Protein) of PPSMV-1; A dsRNA protected

healthy pigeonpea plant (d) and a SMD affected control pigeonpea

plant (e)
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confirm the sequences. A T7 linker sequence was added at

the 50 end of each gene specific oligo to facilitate in vitro

transcription using T7 polymerase (Table1). The two-step

PCR followed by in vitro transcription were done as

described previously using the above PPSMV-1 clones as

the template DNA (Fig. 1) (Voloudakis et al. 2015; Kaldis

et al. 2018; Vadlamudi et al. 2020). The in vitro tran-

scription was carried out using the T7 RibomaxTM Express

large scale RNA production system (Promega, USA) at

37 �C for 4 h, followed by 85 �C for 10 min and at 25 �C
for 20 min (Vadlamudi et al. 2020). The titre of the dsRNA

transcribed was estimated spectrophotometrically using

Fisher Scientific Multiskan FC Reader (ThermoFisher

Scientific, UK) and their quality was checked by gel

electrophoresis (Fig. 1).

The dsRNA protection study was carried out in the

experimental fields of AICRP on Pigeonpea, University of

Agricultural Sciences, Bengaluru (Karnataka state, India),

in three different replications, with 10 plants in each

treatment in a random block design (Fig. 2). There were

four treatments: (a) Control (No dsRNA),

(b) dsRNA_RdRp, (c) dsRNA_NP, (d) dsRNA_MP of

PPSMV-1. The in vitro produced dsRNA molecules tar-

geting the RdRp, NP and MP genes of PPSMV-1 were

tested for their efficacy of protection against PPSMV by

exogenous application on single leaf of each pigeonpea

plants. For each pigeonpea plant, 2 ll of in vitro produced

dsRNA was rubbed on the leaf surface of each plant and

the same leaf was subjected to PPSMV transmission by

‘‘Leaf stapling technique’’ (Fig. 2a, b) (Nene and Reddy

1976), using a PPSMV-1 infected pigeonpea plant as the

source of inoculum. A popular pigeonpea variety ‘‘Mar-

uthi’’, that is susceptible to SMD was used for the dsRNA

protection experiments and the dsRNA/virus inoculations

were done two weeks after the germination of the

pigeonpea seeds. Symptom scoring was done using a 0–5

scale, wherein a score of ‘‘0’’ indicates absence of symp-

toms, ‘‘1’’ for very mild symptoms, ‘‘2’’ for mild, ‘‘3’’ for

moderate, ‘‘4’’ for severe and ‘‘5’’ for very severe symp-

toms. The SMD symptoms were not visible up to 25 days

after the transmission of PPSMV by ‘‘Leaf stapling tech-

nique’’; hence all the pigeonpea plants were subjected to

‘‘nipping of the terminal bud’’ to enhance branching and

the expression of SMD symptoms. The PPSMV infected

plants exhibited chlorotic rings or mosaic symptoms on the

leaves, sometimes were stunted and with partial or com-

plete cessation of flower production. The symptoms were

scored at three different intervals, i.e. 30, 35 and 40 days’

post application (dpa) of dsRNA and transmission of the

PPSMV.

The mean symptom scores were calculated for each

treatment and replication and the data were analyzed using

the statistical analysis software GraphPad Prism (Graphpad

Software, USA) for all the three time points (Fig. 3). On 40

dpa, the mean symptom score for control plants without

any dsRNA protection was 2.27, while it was 0.93, 1.03

and 0.66 for dsRNA-RdRp, dsRNA-NP and dsRNA-MP,

respectively. The P-values were 0.009, 0.0039 and\
0.0001 for first, second and third replications, respectively.

The analysis clearly indicated a significant level of pro-

tection by PPSMV-based dsRNAs when compared to the

negative control (no dsRNA), except for dsRNA-NP in the

first replication. The levels of protection offered by

dsRNA_MP was the highest of all the three genes, fol-

lowed by dsRNA_RdRp and dsRNA_NP.

On the 40th day, randomly selected 3–4 pigeonpea plants

from each of these four treatments were screened by RT-

PCR using PPSMV specific primers (Table 1) to check the

presence of virus in those plants. All the plants without

SMD symptoms were negative for the presence of virus as

screened by RT-PCR and the symptomatic plants were

positive for the presence of PPSMV (Fig. 4).

With several regulatory hurdles in release of transgenic

plants, exogenous application of dsRNA is a promising

non-transgenic technology for control of plant viruses.

Hitherto, significant number of publications have been

made where plant viruses with both DNA (Namgial et al.

2019) and RNA (Tenllado et al. 2004; Gan et al. 2010;

Konakalla et al. 2016, 2019; Kaldis et al. 2018; Borah et al.

2018; Vadlamudi et al. 2020), as their genetic material,

have been controlled by dsRNA non-transgenic technol-

ogy. However, all the plant RNA viruses that have been

controlled using dsRNA-based technology are all positive

sense RNA viruses, such as the papaya ring spot virus

(PRSV; genus Potyvirus) (Konakalla et al. 2016, 2019;

Kaldis et al. 2018; Borah et al. 2018; Vadlamudi et al.

2020; Worrall et al. 2019). Here for the first time, we

Fig. 3 Graphical representation of different levels of PPSMV

infection as analysed by symptom score on 0–5 scale at three

different time points for Control and dsRNAs targeting NP (Nucle-

ocapsid Protein), RdRp (RNA dependent RNA polymerase) and MP

(Movement Protein) of PPSMV-1. Symptoms were scored on 0–5

scale at 30, 35 and 40 days’ post application of dsRNA and

transmission of the PPSMV-1
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demonstrated at the field level that a negative sense RNA

virus, such as PPSMV, can be managed by using dsRNA-

based technology. Although there was no 100% protection

offered by the dsRNA technology against PPSMV, rea-

sonable level of protection was observed in the field

experiments. One of the reasons for lower levels of

dsRNA-based protection obtained against PPSMV-1, in

contrast to the other positive sense RNA viruses, could be

that there might be subsequent infection by PPSMV-2,

another distinct virus that infects pigeonpea in some of the

plants since it was an open field experiment. The dsRNAs

targeting movement protein gave relatively better protec-

tion against PPSMV followed by RdRp when compared to

levels of protection offered by dsRNA targeting Nucleo-

capsid protein. This apparent difference in levels of pro-

tection could be because of cell-to-cell movement and

silencing suppression roles played by the movement pro-

tein (Patil and Kumar 2015). This warrants for future

experiments wherein a cocktail of dsRNAs targeting the

genes of both PPSMV-1 and PPSMV-2 can be evaluated to

investigate a broad spectrum protection against both the

emaravirus species infecting pigeonpea. Further use of

nanoparticles to increase the stability and durability of the

dsRNA molecules may help in commercialising this tech-

nology for the management of emaraviruses infecting

pigeonpea (Mitter et al. 2017a).
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