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Abstract Colletotrichum truncatum is one of the most eco-
nomically important fungal pathogen causing anthracnose dis-
ease in pre and post-harvest stages of many crops worldwide.
Little information is available in the literature on the genetic
analysis and demographic history of this fungal pathogen. In
the present study nucleotide sequence data of internal tran-
scribed spacer (ITS) region were analyzed for C. truncatum
isolates infecting chili and other crops worldwide to determine
a metageographic pattern of distribution and evolution of the
species. Levels of differentiation (genetic distances and FST
values) among sequences of C. truncatum from 23 countries
were minimal suggesting the global occurrence of a large and
geographically undifferentiated population. Only 11 haplo-
types were detected among 98 isolates from 24 geographically
distant populations of C. truncatum. Predominant haplotype
H1 which occupied a central position in the median joining
network was inferred to be ancestral haplotype as it was de-
tected at a high frequency and was shared by multiple popula-
tions. Phylogeographic pattern of the species with worldwide
presence and predominance of single haplotype suggests

human mediated dispersal through domestication and in-
troduction of host plants in different parts of the world,
and might have played a significant role in structuring
the populations of this devastating pathogen.
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rDNA Ribosomal deoxyribonucleic acid
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MEGA Molecular evolutionary genetics analysis
cTAB Cetyl trimethylammonium bromide
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Introduction

The genus Colletotrichum is an important plant path-
ogenic fungus associated with anthracnose disease of
crops including cereals, legumes, vegetables, perennial
crops and tree fruits grown in tropical, subtropical
and temperate regions of the world (Sutton 1992;
Ca i e t a l . 2009 ; Hyde e t a l . 2009 ) . Among
Colletotrichum species, Colletotrichum truncatum
(capsici) (Syd.) Butler & Bisby first reported from
the Coimbatore of Madras Presidency [now Tamil
Nadu] , Ind ia on ch i l i (Caps icum annum va r.
frutescens Kuntze,Solanaceae) as Vermicularia capsici
by Sydow (1913) is the most aggressive and common-
ly infects chili and papaya (Rampersad 2013; Than
et al. 2008). The fungus takes heavy toll of the crop
as it attacks chili plants at different growth stages
causing seedling rot in nursery and die back and fruit
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rot at adult plant stage. The pre and post-harvest pathogenic
behavior of the pathogen accounts for huge economic losses
incurred by the growers and affect chili and papaya production
world over (Bosland and Votava 2003; Hadden and Black
1989; Rampersad 2013). Anthracnose disease has been report-
ed to cause significant losses to the tune of 491.67 million US
dollars in India, whereas these estimates are 100 million US
dollars in Korea (Garg et al. 2013; Park and Kim 1992) on
chili and other solanaceous crops though it also infects a wide
range of other broad-leaved plants. Presently, it is widely dis-
tributed in different regions of the world and has been record-
ed on 121 plant genera distributed in 45 plant families from
different parts of the world (Farr et al. 2007).

The internal transcribed spacers (ITS) region of the nuclear
rDNA repeat unit is by far the most commonly studied region
of the genome to resolve taxonomy at the genus and species
levels in fungi (Nilsson et al. 2009). The ITS1 and ITS2
spacers show a high rate of evolution and have proved to be
robust evolutionary markers for determining intra- and inter-
specific relationships (Glass and Donaldson 1995). The rDNA
sequences exhibit variation within species (Ganley and
Kobayashi 2007), which can manifest itself by difference in
length due to insertion or deletion (indels of single or several
bases) or by nucleotide substitutions with no change in overall
number of base pairs. Several workers have used rDNA se-
quences to reconstruct phylogeny between distantly related
taxa (Berbee and Taylor 2001; James et al. 2006; Karol et al.
2001; Medina et al. 2001; Soltis and Soltis 2000; Woese et al.
1990). The sequence analysis of ITS regions has proved useful
in studying phylogenetic relationships and also accepted as a
universal DNA barcode marker for fungi including
Colletotrichum species (Photita et al. 2005; Schoch et al.
2012; Sreenivasaprasad et al. 1996).

C. truncatum possesses wide host range and different host-
limited populations of the pathogen display high pathologic
variability (Afanador-Kafuri et al. 2003; Than et al. 2008,
Torres-Calzada et al. 2013, Montri et al. 2009). Sharma et al.
(2005) have shown existence of five races in chili infecting
populations of C. truncatum in Himachal Pradesh. The popu-
lation structure of C. truncatum has not so far been explored
properly with reference to its pathogenic variability due to
absence of well-defined differential set. Its wide host range
is indicative of selection pressure on the different hosts rather
than pathogen which seem to evolve much easily due to pres-
ence of diverse populations on different hosts. The analysis of
genetic diversity among various host-limited populations of
the pathogen from different parts of the world could yield
useful information on their evolutionary behaviour as well as
facilitate the formulation of effective management strategies
based on host resistance.

Knowledge of population genetic structure, levels of intra
species divergence, gene flow among wide geographic popu-
lations of the species help in the understanding of

biogeographic history, evolutionary and adaptive potential of
the pathogenic species (McDermott and McDonald 1993;
McDonald 1997; Rampersad et al. 2013). Information on var-
iation in the species at wide geographical level is a prerequisite
for the development of disease management strategies i.e.
identification of resistance sources, pesticide use, predicting
resistance breakdown, development and deployment of dis-
ease resistant varieties and in streamlining cultural practices
(McDonald and Linde 2002; Rampersad et al. 2013). Present-
ly, metageographic population study of Colletotrichum and
related pathogen in the literature is scanty. The objective of
the present study was to (i) compare the genetic and phyloge-
netic relationships between C. truncatum isolates from 23
countries and (ii) elucidation of demographic history based
on ITS -locus sequence data.

Materials and methods

Collection of diseased samples, isolation of Colletotrichum
isolates and their maintenance

Diseased fruits of chilies with ripe fruit rot symptoms were
collected from different locations of nine districts of Himachal
Pradesh during 2007–08 (Table S1). Pure culture of each isolate
was raised from disease samples using standard methodology
on Mathur’s medium (Sharma et al. 2005). Small bits of infect-
ed tissues were surface sterilized in 0.1 % solution of mercuric
chloride for 10–15 s and washed thrice in sterilized water under
laminar air flow. The bits were dried under two folds of steril-
ized filter paper and transferred toMathur’s medium slants. The
tubes were incubated in BOD Incubator at 23±1 °C for 7–
8 days. Fungal cultures were purified by single spore isolation
technique and colonies arising from single spores were multi-
plied on Mathur’s medium for further studies. Each isolate was
transferred to live host after 3–4 sub-cultures to avoid loss of
virulence. In all 20 isolates originating from diverse chili pro-
duction areas of Himachal Pradesh were used in the study.

DNA extraction

Total genomic DNA of twenty C. truncatum isolates was ex-
tracted using CTAB method (Murray and Thompson 1980)
with minor modifications. Fungal mycelium was grown in
conical flasks containing 150 ml of potato dextrose broth in-
oculated with mycelium from 7 day old cultures and incubated
at 25 °C in an orbital incubator shaker (100 rpm) for 6–7 days.
Mycelia were harvested by filtration through double layers of
filter paper, dried between two layers of sterilized filter paper
in laminar air flow cabinet and stored at −20 °C for further use.
The amount of DNA was quantified by recording the absor-
bance at 260 nm wavelength using UV/VIS spectrophotome-
ter (Bio rad SmartSpec 3000) and stored at −80 °C (Deep
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Freezer Labtech®, Daihan Labtech Co. Pvt. Ltd.) for further
use.

PCR amplification and rDNA sequencing

The rDNA amplification was carried out in 0.2 ml PCR tube
with 50 μl reaction volume containing 5 μl of 10× buffer
(20 mM Tris HCl, pH 8.0, 50 mM KCl ) and 3 μl of
1.5 mM MgCl2, 4 μl dNTP mix (0.2 mM each) (MBI
Fermentas), 0.4 μl of Taq polymerase (Merck Biosciences,
India, 5 U/μl), 4 μl of DNA template (20 ng), 1 μl each of
ITS1 and ITS4 primers (10 μM) (ITS1: 5’-TCCGTAGGTG
AACCTGCGG-3’, ITS4: 5’-TCCTCCGCTTATTGATATGC
-3’; (White et al. 1990) and 31.6μl of sterilized distilled water.
Amplifications were performed in Gene-Amp PCR system
9700 (Applied Biosystems, USA) programmed for initial de-
naturation at 95 °C for 2 min followed by 30 cycles at 95 °C
for 1 min, 60 °C for 30 s, 72 °C for 1 min and a final extension
at 72 °C for 10 min. The PCR product was separated in 2 %
(w/v) agarose gel using TAE buffer (40 mM Tris-acetate,
1 mM EDTA) and visualized using ethidium bromide
(0.5 μg/ml) staining. The gel images were captured using
Alphaimager 2200 gel documentation system (Alphaimager,
USA). Amplified PCR products (~500 bp) were freeze dried
and were custom sequenced using same upstream and down-
stream primers (Xcelris Labs Limited, India).

Data analysis

Twenty ITS sequences of C. truncatum generated in the pres-
ent study were merged with 78 ITS sequences ofC. truncatum
retrieved from NCBI GenBank for combined analysis
(Table 1). All 98 sequences were first aligned using ClustalW
as implemented in MEGA 5.1 (Tamura et al. 2011) and ana-
lyzed for genetic and phylogenetic relationships between
C. truncatum isolates inMEGA 5.1, including Colletotrichum
fructi (GU227844), Colletotrichum lineola (GU227838) and
Colletotrichum lindemuthianum (GU227800) as out groups.
Genetic distances within and between populations of
C. truncatum were calculated using the Kimura two-
parameter (K2P) method (Kimura 1980). The neighbour-
joining (Saitou and Nei 1987) procedure was used for phylog-
eny reconstruction and confidence levels for the groups were
computed by bootstrap analysis with 1000 replications
(Felsenstein 1985). Median joining network among sequence
variants of C. truncatum was constructed using NET-
WORK ver. 4.6 (Bandelt et al. 2000) to study the evo-
lutionary relationships among the haplotypes. Descriptive
statistics (number of haplotypes, haloptype and nucleo-
tide diversity) were calculated in DNASP ver. 5.0
(Librado and Rozas 2009).

Demographic history

In order to determine whether C. truncatum populations
underwent recent population expansions, we calculated mis-
match distributions and compared these with predicted distri-
butions from models of population expansion (Rogers 1995).
Mismatch distributions were calculated in DNASP ver. 5.0
(Librado and Rozas 2009). All parameters were tested against
the expected values under the hypothesis of a recent popula-
tion expansion based on 1000 bootstrap replicates. Tajimas’D
ad Fu’s FS were calculated to test for neutrality (Tajima 1989;
Fu 1997).

Results

Nucleotide information

The 98 ITS sequences comprising of test isolates and available
in the Genbank used in the genetic analysis of C. truncatum
were trimmed to 461 bp before analysis. The average nucleo-
tide composition of the ITS sequences of C. truncatum was
25.2 % T, 23.4 % A, 25 % G, 26.5 % C and 51.5 % G+C
content with 13 variable sites including 12 singleton sites and
1 parsimony informative sites at which more than one isolates
showed mutation at same the locus.

Genetic diversity and Phylogenetic analysis

A total of 11 haplotypes were identified in 98 ITS gene se-
quences. The most common and predominant haplotype H1
was found in sequences from 21 countries except Bangladesh
and Nepal. The number of haplotypes per population ranged
from 1 to 4. Whereas, overall haplotype diversity (Hd) and
nucleotide diversity (π) was 0.297±0.060 and 0.00090±
0.00021, respectively. The analyses suggest that overall
C. truncatum populations retain a very low level of haplotypes
and nucleotide diversity in the ITS region of rDNA.
C. truncatum isolates did not form any group based on haplo-
types and nucleotide diversity. Population pairwise FST anal-
ysis (only analyzed for populations with atleast two sample
sequences) revealed that most populations did not differ ge-
netically (Table 2). Genetic analysis showed no sign of popu-
lation differentiation in C. truncatum, thus no population
structure was evident in isolates representing 23 countries.

The phylogenetic analysis clustered all the C. truncatum
sequences from different countries in one clade irrespective
of origin and host of the isolates (Fig. 1). The genetic distance
(K2P) between in-group ranged between 0.000–0.005 (within
C. truncatum isolates) and in outgroup species it varied from
0.057–0.062, 0.065–0.070 and 0.093–0.096 between
C. truncatum/ C. fructi, C. truncatum/ C. lineola and
C. truncatum/ C. lindemuthianum, respectively (Table S2),
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though C. fructi was more closely related to C. truncatum on
the phylogenetic tree.

Median joining network of haplotypes and Demographic
history

A median joining (MJ) network reconstructed from 98
sequences of ITS region of rDNA revealed no major
divergence lineage (Fig. 2) in C. truncatum. All 10
(H2-H11 except H1) haplotypes were connected with
predominant haplotype (H1) by single or maximum of
two mutation steps. MJ network reconstructed for evolu-
tionary relationships among haplotypes showed a star-
like shape, characteristic of population expansion
(Slatkin and Hudson 1991). Haplotype H1 positioned in
the center of the network was found at higher frequency
and was shared by all geographically widespread popu-
lations of C. truncatum (Fig. 2) except those from
Bangladesh and Nepal. Haplotype H5, H6, H9, H10
and H11 showed maximum two step mutational diver-
gence among haplotypes from the ancestor or original
haplotype (H1). Three missing haplotypes were detected
in the present analysis including two in South India and
one in Mexico.

Mismatch distribution analysis revealed a unimodal mis-
match graph (Fig. 3), characteristic of recent demographic
expansion for C. truncatum population. This pattern is consis-
tent with the star-like shape of MJ Network observed in the
median joining network (Fig. 2). Recent population expansion
was also supported by highly significant negative values of
both Tajima’s D (−2.2609, P<0.01) and Fu’s Fst (−11.645,
P<0.01) tests indicating that the whole set of C. truncatum
samples studied here does not fit to a simple model of neutral
evolution.

Discussion

Genus Colletotrichum is among the most important
gene r a o f p l an t p a thogen i c f ung i wor ldw ide
and comprises of different species clades possessing species
complex causing disease symptoms commonly known as
anthracnose on a wide range of important crops, fruits
and ornamental plants (O’Connell et al. 2012). The genetic
variation in natural populations is the outcome of a
balance between evolutionary and demographic
processes provides tools for interpreting evolutionary pro-
cesses determining the evolutionary potential of a species
(Li et al. 2013). In this study, intraspecific genetic analysis
of C. truncatum was carried out to understand the evolution
and phylogeography of the species. Phylogenetic study sug-
gests that C. truncatum is a single species with no distinct
lineage as all the isolates originating from 23 countriesT
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clustered together in a single clade. The inference was
also supported by the construction of median joining
network and haplotypic analysis of the ITS data. Only
11 haplotypes were recognized in a group of 98 se-
quences with predominant haplotype H1 comprising of
81 individuals (89.01 % of total isolates) with diverse
geographic origin and host specificities. These results
are indicative of a high level of gene flow occurring
among the geographically distinct populations of the
pathogen.

Median joining network analysis of various C. truncatum
isolates revealed that some of the haplotypes were population
specific and unique whereas some of the populations suggests
their haplotype specific evolution (H1 & H7)) and high gene
flow among populations. The haplotypes H2-H4, H5-H6 and
H8-H9, from North India, South India and Mexico seem to
have originated from the predominant haplotype H1 as the
same was also detected in C. truncatum populations of these
regions. The haplotypes H10 and H11 are specific to the pop-
ulations from Trinidad & Tobago and Bangladesh, respective-
ly. These populations might have originated from haplotype
H7 representing C. truncatum isolates from Nepal, South In-
dia, Thailand, Taiwan and the USA. These results suggest that
haplotype H11 comprising of Bangladesh isolates most likely

were introduced from South India, Nepal or Thailand than
from Taiwan and USA due to geographic proximity of the
these regions to Bangladesh. By contrast, the invasion of
C. truncatum in Trinidad and Tobago seems to be more likely
from USA than the other countries harboring H7 haplotype.

The overall low level of genetic differentiation between
populations could also be due to recent history of the
C. truncatum. Two neutrality (Tajimas’ D and Fu’s Fs) test
statistics were used in this study to examine the sequences
for evolutionary forces acting on the populations of
C. truncatum. The significant and negative values of
Tajimas’ D and Fu’s Fs values indicated that the
C. truncatum populations do not fit a simple model of neu-
trality and reject the null hypothesis of constant population
size. Whereas, mismatch distribution test was applied to de-
termine the pattern of demographic expansion of
C. truncatum and to test the null hypothesis of population
growth. A typical unimodal mismatch distribution (Rogers
and Harpending 1992) indicating a fit to the demographic
expansion model test and further supported by a star like
structure of median joining network. These results also sug-
gest that the deviation from neutrality for constant popula-
tion size (Tajima’s D and Fu’s Fs) was due to recent popu-
lation expansion of the species. Introduction, domestication
and co-cultivation of host plants of C. truncatum could be
the reason for recent population expansion of the species as
C. truncatum presently has pathogenic specialization on sev-
eral wild and domesticated host plants. This kind of range
expansion has also been observed earlier in different fungus

�Fig. 1 Phylogenetic tree based on ITS sequences of C. truncatum with
C. fructi, C. lineola and C. lindemuthianum as out groups using the
neighbor-joining method and confidence level calculated with the
bootstrap (1000 replicates)

Fig. 2 Median joining network of rDNA haplotypes of C. truncatum populations. Size of the circle is related with frequency of haplotypes. Colours
indicate the proportion of individuals sampled in different populations within the study area
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and insects species (Agostini et al. 1993; Buchwaldt et al.
1996; Chen et al. 2007; Meyer et al. 2007; Prabhakar et al.
2012; Prabhakar et al. 2013; Wan et al. 2011).

In conclusion, with respect to metageographic population
genetic study of C. truncatum, recent population expansion
was detected in the species. Study also suggests that
C. truncatum may have expanded its distribution in the past
with the co-migration of the host plants as one of the haplo-
types found predominant across the host and geographical
regions. C. truncatum management strategies to target most
predomint haplotypes for the development of durable resis-
tance would prove to be the most practical.
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