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Abstract Growth, osmotic adjustment, antioxidant enzyme
defense and principle medicinal component bacoside A was
studied in in vitro raised shoots of Bacopa monnieri under
different concentrations of KCl and CaCl2 (0, 50, 100, 150
or 200 mM). Significant reduction was observed in shoot
number per culture; shoot length, fresh weight, dry weight
and tissue water content (TWC) when shoots were exposed
to increasing KCl and CaCl2 concentrations (50–200 mM)
as compared to control. Minimum damage to the membrane
as assessed by malondialdehyde (MDA) content was no-
ticed in control in contrast to sharp increase in KCl and
CaCl2 stressed shoots. Higher amounts of free proline, gly-
cine betaine and total soluble sugars (TSS) accumulated in
KCl and CaCl2 exposed shoots compared to the controls.
Among different concentrations of KCl and CaCl2, increas-
ing concentration of CaCl2 showed more increase in
osmolyte accumulation. Na+ content decreased with increas-
ing concentrations of KCl and CaCl2. Accumulation of K+

increased significantly in KCl (50–100 mM) stressed shoots
as compared to control, while it decreased in CaCl2 treated
shoots indicating that it prevents the uptake of K+ ions. Ca2+

accumulation significantly increased with increasing con-
centrations of CaCl2 up to 150 mM but decreased at higher
concentrations. Shoots treated with KCl and CaCl2 (0–
100 mM) showed higher antioxidant enzyme (SOD, CAT,
APX and GPX) activities but KCl suppressed the activities

at higher concentrations. Accumulation of bacoside A was
enhanced with an increase in KCl and CaCl2 concentration
up to 100 mM. It appears from the data that accumulation of
osmolytes, and elevated activities of antioxidant enzymes
play an important role in osmotic adjustment in shoot cul-
tures of Bacopa and the two salts tested have a positive
effect on bacoside accumulation.
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Abbreviations
APX Ascorbate peroxidase
BA 6-Benzyladenine
CAT Catalase
GPX Guaiacol peroxidase
MDA Malondialdehyde
MS Murashige and Skoog
NBT Nitroblue tetrazolium chloride
SOD Superoxide dismutase
TSS Total soluble sugars
TWC Tissue water content

Introduction

The stress factors such as salt, drought, low temperature,
flooding, heat, oxidative stress, heavy metal toxicity and
pathogenic stress adversely affect the plant growth and
productivity. These stresses affect almost every aspects of
plants physiology which leads to a series of morphological,
physiological, biochemical and molecular changes. It is
estimated that every year about 6 million arable lands are
lost from agriculture use. On the other hand existing agri-
cultural land fails to fulfill the food, feed, fodder and
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industrial raw material requirement of ever growing popu-
lation. The new land is becoming unavailable for the culti-
vation of crops. Rapid increase in population pressure are
leading to greater utilization of remaining meager fresh
water supplies for drinking, living, and even less for agri-
culture. In this complex scenario, it has become crucial to
consider development of non-conventional technologies
which might more effectively utilize degraded, marginal
and saline lands for agriculture by using the ‘so-called’ poor
water. Despite advances in increasing plant productivity and
resistance to a number of pests and diseases, improving salt
tolerance in crop plants remains elusive. Furthermore, lim-
ited success in increasing the yield stability of crop plants
grown in saline soil might be due to lack of understanding
about salinity and other abiotic stresses that affect the cell
division, differentiation and expansion which have a sus-
tainable impact on plant growth and development. Salinity
is one of the major abiotic stresses affecting more than 800
million hectares of arable land throughout the world (Munns
and Tester 2008). Depletion of cellular water content due to
abiotic stresses such as drought, high soil salinity and tem-
perature extremes is responsible for the greatest agricultural
losses (Jaleel et al. 2007; Lokhande et al. 2011). Upon
exposure to stresses many plants show changes in chla/chlb
ratio (Lin and Kao 1998; Lutts et al. 1996); membrane
permeability and/or increase in lipid peroxidation (Dhindsa
and Matowe 1981). There are many cellular mechanisms by
which plants ameliorate the effects of environmental stresses
such as accumulation of compatible osmolytes, most com-
monly amino acids and quaternary ammonium compounds
(Bohnert and Jensen 1996; Kavi Kishor et al. 2005). The
increase in cellular osmolarity resulted due to accumulation
of osmolytes is accompanied by the influx of water into, or
reduced efflux from cells which helps to provide the neces-
sary turgor for cell expansion (Cuin and Shabala 2005;
Meloni and Martínez 2009). Both K+ and Ca2+ are involved
in photosynthesis and in protein synthesis regulation and
their depletion may lead to serious inhibition of these pro-
cesses (Santos et al. 2001). Similarly, if they are accumulat-
ed in higher concentrations, they may inhibit photosynthesis
and other vital activities. Maintenance of membrane integ-
rity and the selective uptake of essential ions like K+ and
Ca2+ are related with the acquisition of salt tolerance
(Salama et al. 1994).

Plants prevent the damaging effects of free radicals by
evolving several non-enzymatic and enzymatic mechanisms
that efficiently scavenge ROS (Irigoyen et al. 1992; Shalata
and Tal 1998). Enzymatic protection is partly performed by
SOD that eliminates superoxide radicals and by catalases
and peroxidases that degrade H2O2 which influence the
levels of lipid peroxidation (Santos et al. 2001). Recent
studies have demonstrated that activities of these antioxidant
enzymes and levels of antioxidant molecules increase and are

correlatable to various environmental stresses (Hernández et
al. 2000; Sekmen et al. 2007). Such a correlation was ob-
served between NaCl induced salt stress tolerance and
antioxidative responses in different plant systems
(Vaidyanathan et al. 2003; Benavente et al. 2004; Jogeswar
et al. 2006; Lokhande et al. 2011). In recent years, medicinal
and aromatic plants or products are on an increasing demand
in agro alimentary, perfumes, pharmaceutical and natural cos-
metic industries (Baatour et al. 2010; Tarchoune et al. 2012).
As in cultivated species, growth and yield of medicinal and
aromatic plants are affected by environmental constraints such
as salinity and drought (Baatour et al. 2010). However, little
information is available about the physiological basis and
effects on secondary metabolite accumulation under different
abiotic stress conditions in medicinal plants.

In Indian medicine, certain herbs have been used tradition-
ally as brain or nerve tonics. Bacopa monnieri (L.) Pennell
(Scrophulariaceae) is commonly known as ‘Brahmi’ or ‘Nir
Brahmi’. It is one of the sources of the medhya rasayan drugs
(that counteracts stress and improves intelligence and memo-
ry) of Ayurveda. Recently, B.monnieriwas placed second in a
priority list of the most important Indian medicinal plants
evaluated on the basis of their medicinal importance, com-
mercial value and potential for further research and develop-
ment. According to the National Medicinal Plant Board
(NMPB), Government of India, annual demand of Bacopa is
increasing day by day due to the popularity of the Bacopa
based drugs.

Efforts were made earlier to induce the stress in vitro
using NaCl (Ali et al. 1999; Debnath 2008), mannitol
(Debnath 2008), heavy metals like copper (Ali et al.
1998a), cadmium, zinc (Ali et al. 2000) and aluminium
(Ali et al. 1998b). But these authors did not identify the
stress tolerance mechanisms, antioxidative enzyme re-
sponses and accumulation of bacoside in Bacopa monnieri.
While some plants accumulate only proline and sugars
under stress, others accumulate glycine betaine in addition
to proline. Our results indicate that Bacopa accumulates
glycine betaine also. Potassium (K+) plays an important role
in the regulation of osmotic potential of plant cells and
calcium (Ca2+) is the structural element essential in the
synthesis of cell wall. The calcium is said to antagonize
the uptake of excess K+. Many soils have an excess of
certain elements, particularly sodium (Na+), K+ or Ca2+

(Taiz and Zeiger 2010) which results in severe stress and
subsequently decline in productivity. Detailed understand-
ing of the basic mechanisms involved in plant salt tolerance
is an important prerequisite to improve the performance of
plants in saline soils (Binzel and Reuveni 1994). Since
plants are affected not only by Na+ salts but also by K+

salts, in the present study, the effects of KCl and CaCl2
stress on growth of shoot cultures and nutritional imbalance
were studied in Bacopa monnieri. The effect of KCl and
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CaCl2 stress on lipid peroxidation, osmolyte accumulation,
antioxidant enzyme activities (SOD, CAT, APX, GPX) and
accumulation of medicinally active component bacoside A
in in vitro shoot cultures were carried out.

Materials and methods

Plant material, establishment of in vitro cultures and salt
stress treatment

The shoot cultures of B. monnieri were established using
nodal explants and were maintained in liquid Murashige and
Skoog’s (MS 1962) medium containing 1 mg/l 6-
benzyladenine (BA) (Ahire et al. 2012a). For analysis of
in vitro stress studies, shoots of Bacopa were subjected to
the treatment of different concentrations of KCl and CaCl2
separately in liquid MS medium supplemented with 1 mg/l
BA. About 4 shoots (5 nodes each/bottle) were inoculated in
glass bottles containing 50 ml of MS liquid medium forti-
fied with 1 mg/l BA and respective KCl and CaCl2
(0–200 mM) concentrations separately. Cultures were incu-
bated under controlled conditions at 25±2 °C temperature,
60±10 % relative humidity and 8 h photoperiod (PFD
40 μmol m−2 s−1) provided by white fluorescent tubes
(Philips, India).

Determination of mineral nutrients

Shoots were washed with distilled water and excess water
was soaked on blotting paper followed by drying at 60 °C
for 48 h in an oven. Dried shoots were ground to powder
and 200 mg powder from each treatment was soaked in
10 ml of 35 % (v/v) HNO3 (Qualigens, Mumbai, India)
overnight at room temperature followed by acid digestion
at 100 °C till the acid was evaporated and finally the residue
was dissolved in 30 ml of distilled water. Samples were
filtered using Whatman filter paper No. 1 (Whatman
International Ltd., Maidstone, England). Cations such as
Na+, K+ and Ca2+ were measured by atomic absorption
spectrophotometer (AA-7000, Labindia Analytical
Instruments Pvt. Ltd., Mumbai, India). Standard solutions
of Na+, K+ and Ca2+ were purchased from Qualigens,
Mumbai, India and were used for quantification of ion
content.

Growth analysis and tissue water status

Growth analysis was carried out after 28 days of incubation.
Morphological observations like number of shoots per cul-
ture and shoot length (cm) were recorded. Tissue water
status was determined by measuring fresh (FW) and dry
weights (DW). Shoots were harvested and excess medium

was soaked on blotting paper and FW of shoots was mea-
sured. Shoots were kept in an oven at 60 °C separately till
constant weight was obtained and noted as DW. FW and
DWof the shoots obtained from each treatment were used to
determine the water status, which is expressed as percentage
tissue water content (TWC %) calculated using the equation
as described by Lokhande et al. (2011).

TWC% ¼ FW� DWð Þ FW=½ � � 100

Determination of chlorophyll, lipid peroxidation
and osmolyte content

Chla, Chlb and total chlorophyll contents in the control and
treated shoots were estimated as per the standard method
described by Arnon (1949). The level of lipid peroxidation
was measured in terms of malondialdehyde (MDA) content
as described by Heath and Packer (1968), with some mod-
ifications as described by Lokhande et al. (2011). Glycine
betaine was estimated by the periodide colorimetric method
according to Grieve and Grattan (1983) as described by
Lokhande et al. (2010) and proline content was estimated
as per Bates et al. (1973).

Determination of antioxidant enzyme activities

Treated and control fresh samples (500 mg) were homoge-
nized in 5 ml of ice cold 50 mM sodium phosphate buffer
(pH 7.0) containing 0.1 mM EDTA and 1 % (w/v)
polyvinylpyrrolidone with chilled mortar and pestle. The
homogenate was filtered with single layered cheese cloth
and centrifuged at 10,000 rpm for 20 min at 4 °C.
Appropriate aliquot/dilution of the supernatant was used as
a crude enzyme(s) for determination of antioxidant enzyme
activities. Soluble protein content in the enzyme extract was
determined according to Lowry et al. (1951) using bovine
serum albumin as standard. Total superoxide dismutase
(SOD) enzyme (EC 1.15.1.1) activity was assayed
according to Becana et al. (1986) by inhibition of the pho-
tochemical reduction of nitroblue tetrazolium (NBT). The
reaction mixture (1 ml) containing 50 mM phosphate buffer
(pH 7.0) and 0.1 mM EDTA to which an oxygen-generating
system containing 14.3 mM methionine, 82.5 μM NBT, and
2.2 μM riboflavin, prepared freshly in situ, was added.
Reaction was initiated by adding 25 μl of crude enzyme.
The entire system was kept 30 cm below the light source
(six 15 W fluorescent tube light) for 30 min. Reaction was
stopped by switching off the tube light. For light blank, all
the reactants without enzyme extract was incubated in light
as for the samples, whereas all the reactants along with 25 μl
enzyme extract were incubated in dark for dark blank.
Reduction in NBT was measured by monitoring the change
in absorbance at 560 nm. SOD activity is expressed as μKat
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of SOD mg−1 protein. Catalase (CAT) enzyme (EC 1.11.1.6)
activity was measured by following the decomposition of
hydrogen peroxide (H2O2) as described by Cakmak and
Marschner (1992) with minor modifications. Activity was
measured in a reaction mixture (1 ml) containing 50 mM
phosphate buffer (pH 7.0) and 300 mM H2O2. The
reaction was initiated by adding 50 μl enzyme extract
and the activity was determined as a result of H2O2

decomposition by monitoring the decrease in absorbance
at 240 nm (ε=36 mM−1 cm−1) for 2 min at an interval
of 15 s. The slope of readings between the time interval
considered as ΔA and enzyme activity is expressed as μ
Kat of CAT mg−1 protein. Ascorbate peroxidase (APX)
enzyme (EC 1.11.1.11) activity was determined according
to Nakano and Asada (1981). The reaction mixture
(1 ml) contained 50 mM phosphate buffer (pH 7.0),
0.5 mM ascorbate and 0.1 mM H2O2. Reaction was
started by adding 50 μl of crude enzyme. Ascorbate
oxidation was monitored for 1 min by measuring the
decrease in absorbance at 290 nm at every 15 s (ε=
2.8 mM−1 cm−1). Enzyme activity is expressed as μKat
of APX mg−1 protein. Guaiacol peroxidase (GPX) en-
zyme (EC 1.11.1.7) activity was assayed according to
Hemeda and Klein (1990). The reaction mixture (1 ml)
contained 50 mM phosphate buffer (pH 7.0), guaiacol,
200 mM H2O2 and 10 μl enzyme extract. The reaction
was started by adding 200 mM H2O2. The increase in
absorbance due to oxidation of guaiacol (ε=26.6 mM−1

cm−1) was monitored at 470 nm. Enzyme activity is
expressed as μKat mg−1 protein.

Estimation of bacoside A

The dried samples (control and treated) were ground to fine
powder and used for estimation. Bacoside-A was extracted
as per Watoo et al. (2007) with some modifications as
described by Parale et al. (2010). One g of powder was
soaked in 10 ml of distilled water for 2 h and the mixture
was squeezed. Plant residue was extracted thrice in 20 ml of
95 % (v/v) ethanol for 24 h on a rotary shaker at 80 rpm at
25 °C. The pooled filtrate was evaporated to dry under
vacuum. Dry residue was dissolved in methanol at a con-
centration of 1 mg/ml and used for HPTLC analysis. The
standard bacoside-A was procured from Natural Remedies,
Bangalore, India and dissolved in HPLC grade methanol at
the concentration of 1 mg/ml and used to plot the standard
curve. HPTLC was performed on 20×10 cm aluminum foil
plates coated with 200 μm layer of silica gel 60 F254
(E. Merck, Germany). Plates were prewashed with methanol
and dried in an oven for 5 min at 105 °C temperature. The
standard and samples were loaded with Linomat 5 semiau-
tomatic applicator (CAMAG, Switzerland) fitted with
100 μl syringe as bands 8 mm in width. The delivery speed

of the syringe was 90 nl/s. HPTLC plates were developed in a
twin-trough chamber (20×10×4 cm; CAMAG, Switzerland).
Chamber saturation was carried out using 20×10 cm
Whatman filter paper for 20 min. The plates were developed
in toluene : ethanol : methanol : glacial acetic acid
(4:3:3:1 v/v), until 80 mm from the lower edge of the plate.
After development, the plates were dried using hair dryer. The
dried developed plates were immersed for 2 s in 5 %
methanolic sulphuric acid. After immersion, the plates were
dried in an oven for 5 min at 100 °C. Documentation of the
plates was carried out using CAMAGTLC Scanner III system
at 500 nm with winCATS software 1.4.3.

Data analysis

A completely randomized design (CRD) was used in all exper-
iments. The experiments were repeated at least thrice. The data
were subjected to analysis of variance (ANOVA) followed by
Duncan’s multiple range tests (DMRT) at P ≤ 5 %.

Results

Effect of KCl and CaCl2 stress on growth

In the present investigation, shoots of Brahmi were exposed
to different salt (KCl and CaCl2: 0, 50, 100, 150 and
200 mM) concentrations. Significant reduction in number
of shoots per culture was observed with increasing salt
concentrations. Maximum number of shoots (138.0±5.7)
was observed in control after 28 days of incubation and
least number of shoots per culture (15.9±1.8) was recorded
at 200 mM KCl stress. Similarly, shoot length, shoot fresh
and dry weights decreased significantly with increasing
concentrations of KCl and CaCl2 (Table 1). Tissue water
content (TWC %) decreased with increasing KCl and CaCl2
concentrations followed by fresh and dry weights of tissues
(Fig. 1; Table 1). Among KCl and CaCl2, higher concentra-
tion of KCl showed more pronounced effect on the number
of shoots per culture.

Influence of KCl and CaCl2 stress on chlorophyll content
and lipid peroxidation

Decrease in chla, chlb and total chl was observed with
increasing KCl and CaCl2 concentrations (Table 2).
Maximum chla (9.16±0.68 mg g−1 FW), chlb (3.96±
0.31 mg g−1 FW) and total chl (13.61±0.97 mg g−1 FW)
were recorded in control shoots. A sharp decrease was
noticed with increasing KCl and CaCl2 concentrations.
Considerable reduction in chla (3.63±0.5 mg g−1 FW), chlb
(1.36±0.2 mg g−1 FW) and total chl (4.99±0.7 mg g−1 FW)
was noticed at 200 mM CaCl2 concentration. Progressive
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decrease in chlorophyll content was observed with increas-
ing concentrations of KCl and CaCl2 more so with CaCl2.
Lipid peroxidation in terms of MDA content was enhanced
significantly with increasing KCl and CaCl2 concentration
from 0 to 200 mM (Fig. 2). In shoots treated with KCl,
MDA content increased up to 150 mM level but decreased
thereafter (Fig. 2). About 1.51 times more MDA content
was observed in the shoots treated with 150 mM KCl
(Fig. 2). At lower CaCl2 concentrations (50 and 100 mM),
MDA content was not high. Concentration of MDA in-
creased at higher CaCl2 concentrations (150 and 200 mM).
Higher lipid peroxidation (2.16 times more MDA content
over control) was observed at 200 mM CaCl2 (Fig. 2) indi-
cating more damage of membrane at higher KCl and CaCl2
concentrations due to lipid peroxidation.

Osmolyte accumulation in response to salt stress

A progressive increase in free proline content was recorded
in KCl treated shoots as compared to control (Fig. 3).
Elevation in proline content was 3.77 times higher at
200 mM KCl concentration (Fig. 3). In CaCl2 treated shoots,
proline content increased up to 150 mM (6.21 times more

over control) but decreased at 200 mM concentration.
Accumulation of glycine betaine in the shoots of Brahmi
was low in control, whereas a steep increase was recorded
with an increase in 50–200 mM KCl and CaCl2 stresses
(Fig. 4). About 3.46 and 4.04 times more glycine betaine
content was observed over control in shoots treated with
200 mM KCl and CaCl2 respectively. Treatment of KCl and
CaCl2 resulted in higher accumulation of total soluble sugar
(TSS) in shoots of Bacopa as compared to the controls
(Fig. 5). Increased TSS content up to 150 mM levels of
KCl was noticed though it declined slightly thereafter.
Similarly, CaCl2 increased the TSS and 3.64 times more
over control was observed at 200 mM (Fig. 5). Among the
different concentrations of KCl and CaCl2, increasing con-
centration of CaCl2 showed more increase in osmolyte
accumulation.

Effect of KCl and CaCl2 on the accumulation of ions

Salt stress (0–200 mM KCl and CaCl2) promoted the accu-
mulation of cations in the shoots of Bacopa in contrast to the
control (Table 3). Decrease in Na+ concentration was ob-
served with increasing KCl and CaCl2 levels (Table 3).

Table 1 Effect of different concentrations of KCl and CaCl2 on shoot number, shoot length, fresh and dry weights in Bacopa monnieri

Concentration (mM) No. of shoots per culture Shoot length (cm) Fresh weight (g) Dry weight (g)

KCl CaCl2 KCl CaCl2 KCl CaCl2 KCl CaCl2

0 138.0±5.7a 138.0±5.7a 13.0±1.4a 13.0±1.4a 13.0±1.4a 13.0±1.4a 0.75±0.03a 0.75±0.03a

50 111.4±7.2b 117.2±6.4b 02.8±0.1b 03.2±0.1b 03.7±0.6b 04.5±0.2b 0.48±0.03b 0.54±0.04b

100 059.3±6.3c 065.7±5.6c 01.9±0.1c 02.3±0.2c 02.2±0.2c 03.6±0.4cd 0.33±0.02c 0.41±0.03c

150 028.1±3.0d 036.3±4.3d 01.5±0.1d 01.7±0.1d 01.7±0.2d 03.2±0.1d 0.28±0.01d 0.36±0.02d

200 015.9±1.8e 019.9±2.1e 00.9±0.1e 00.9±0.1e 01.5±0.1e 01.9±0.1e 0.20±0.01e 0.24±0.01e

Data presented in the table are mean ± SE scored at 28 days after inoculation from 7 replicates. Mean followed by same letters within columns are
not significantly different at P≤0.05 level by DMRT
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Contrary to this, K+ concentration was enhanced significant-
ly in KCl-stressed shoots as compared to the control
(Table 3), while the opposite effect was seen in CaCl2
treated shoots. Accumulation of K+ increased by 1.72 times
at 100 mM KCl level and decreased thereby. Ca2+ accumu-
lation slightly increased in the shoots when they were ex-
posed to 0–100 mM KCl but declined at higher
concentrations. However, Ca2+ accumulated significantly
when exposed to different concentrations (50–150 mM) of
CaCl2 (Table 3), maximum being 7.85 times at 150 mM
CaCl2 (Table 3).

Effect of KCl and CaCl2 stress on antioxidant enzyme
activities

KCl and CaCl2 stresses (0–100 mM) stimulated the antiox-
idant enzyme (SOD, CAT, APX and GPX) activities in
shoots of Bacopa. Increasing concentration of KCl and
CaCl2 suppressed the activities (Fig. 6). Both KCl and
CaCl2 (50–100 mM), increased the SOD activity (Fig. 6a).
SOD specific activity was 1.35-folds higher at 150 mM KCl
while it displayed almost the same activity at 100 mM

CaCl2. Activity of CAT was also enhanced by 1.2-folds at
100 mM KCl and 1.4-folds at 100 mM CaCl2 concentration
(Fig. 6b). The trend declined at higher concentrations of
KCl and CaCl2 (150 and 200 mM). Control shoots (without
KCl and CaCl2 in the medium) displayed lowest APX
activity in contrast to treated tissues. While shoots cultured
on medium containing 100 mM KCl showed 2.63-folds
higher APX activity than controls (Fig. 6c), activity was
1.94-folds higher in 100 mM CaCl2 treated tissues. A steep
increase in GPX activity was also recorded as the KCl and
CaCl2 concentrations increased up to 100 mM (Fig. 6d).
About 1.65-folds and 2.8-folds higher GPX activity was
recorded in shoots treated with 100 mM KCl and CaCl2
respectively (Fig. 6d).

Bacoside A accumulation in response to KCl and CaCl2 stress

In the present investigation, effect of KCl and CaCl2 stress
on the accumulation of the principle medicinal compound
bacoside A was studied. Content of bacoside A was en-
hanced with an increase in KCl and CaCl2 concentrations
in the medium up to 100 mM. Highest bacoside A (2.37±

Table 2 Effect of different concentrations of KCl and CaCl2 on chlorophylla, chlorophyllb and total chlorophyll contents in Bacopa monnieri.
Values were taken after 28 days of culture

Concentration (mM) Chla (mg g−1 FW) Chlb (mg g−1 FW) Total Chl (mg g−1 FW)

KCl CaCl2 KCl CaCl2 KCl CaCl2

0 9.16±0.7a 9.16±0.7a 3.96±0.3a 3.96±0.3a 13.61±1.0a 13.61±1.0a

50 5.99±0.2b 5.57±1.0b 2.70±0.2b 2.35±0.4b 8.69±0.3b 7.91±1.4b

100 5.63±0.4bc 5.25±0.6c 2.71±0.1b 1.89±0.1c 8.34±0.5c 7.14±0.5b

150 5.36±0.3c 4.97±0.4d 2.58±0.1c 1.97±0.2c 8.21±0.4c 6.94±0.8c

200 4.53±0.2d 3.63±0.5e 2.40±0.1d 1.36±0.2d 6.93±0.2d 4.99±0.7d

Each value represents mean ± SE of three replications. Means followed by same letters within columns are not significantly different at P≤0.05
level by Duncan’s multiple range test. DMRT was applied to each variety separately
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0.29 mg g−1 DW) was noticed in the shoots cultured on
100 mM CaCl2 (Fig. 7). Higher concentration of KCl and
CaCl2 (150 and 200 mM) resulted in a drastic decline in the
bacoside A content in shoots of Bacopa.

Discussion

Salinity is one of the major environmental constraints in-
ducing a wide range of effects at the cellular and whole-
plant levels. It causes significant yield reductions in differ-
ent plant species (Belkheiri and Mulas 2013). The ability to
maintain turgor induced by salt stress may preserve the
metabolic processes, and thus the growth of a plant
(Martinez et al. 2004). K+ is the only important monovalent
cation, that represents the major inorganic constituent essen-
tial for all higher plants (Tester and Davenport 2003; Lv et
al. 2012). It contributes to many physiological processes
like osmotic pressure and ionic strength, cell elongation,
growth of shoot and root, stomatal movement (Maathuis
and Amtmann 1999; Tester and Davenport 2003); due to
its relatively low charge:mass ratio, resulting in a small
hydration shell and it has a low tendency to modify protein

conformation (Maathuis and Sanders 1996; Rascio et al.
2001). K+ is also essential for enzyme activation, protein
synthesis and photosynthesis (Belkheiri and Mulas 2013).
Calcium on the other hand is an essential plant nutrient
required for structural roles in the cell wall and membranes
as a counter-cation for inorganic and organic anions in the
vacuole. Besides, it is necessary for cell elongation and
known to activate a number of enzymes such as phospholi-
pase D, lecithinase, ATPase and amylase (Hepler 2005). It
plays an important role in various physiological processes
by acting as intracellular messenger in the cytosol and
second messenger in the transduction of exogenous signals
(Marschner 1995). The continuous supply, uptake, transpor-
tation, and metabolism of different ions seem to vary from
the initiation of organs and meristematic tissue towards
plant growth as has been pointed out by Kanashiro et al.
(2009). The increase in Cl− concentration in the medium
leads to a reduction of nitrate levels in tissues of several
plant species (Gratten and Grieve 1994). Similar observa-
tions were made by Santos et al. (2001) in KCl-stressed
sunflower plants and calli.

Like many other abiotic stresses, salt stress inhibits plant
growth. Salt stress may promote the synthesis of several
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osmolytes necessary to combat stress thus relocating the
valuable resources (Sabir et al. 2012). When shoots of
Brahmi were exposed to different concentrations (0, 50,
100, 150 and 200 mM) of KCl and CaCl2, significant
reduction in number of shoots, fresh and dry weight
of shoots per culture and TWC were noticed (Table 1;
Fig. 1). At low concentrations of KCl and CaCl2
(50–100 mM), shoot growth was less affected compared to
150 and 200 mM. Similarly, KCl stress decreased sunflower
plant and calli growth (Santos et al. 2001). CaCl2 dihydrate
(CaCl2 2H2O) also decreased the growth of the plants.
CaCl2 in excess (3.35 mM) decreased both the fresh and
dry mass of Aechmea blanchetiana plantlets (Kanashiro et
al. 2009). Sabir et al. (2012) made identical observations in
in vitro differentiating shoots of Withania somnifera Dunal.
Among the KCl and CaCl2 stresses, CaCl2 showed more
deleterious effect than KCl. Increasing concentration of
KCl displayed more pronounced effect on the number
of shoots per culture. Both growth and relative water
content of salt-treated shoots of Withania somnifera
were decreased with increasing salt concentration
(Sabir et al. 2012). The growth reduction may be due to
the decrease in the turgor. The saline solution establishes a

water potential imbalance between the apoplast and symplast
that leads to decrease in turgor (Sangwan et al. 1994; Bohnert
et al. 1995). When the turgor is reduced below the threshold
level of the cell wall, it results in the reduced growth responses
(Sabir et al. 2012). If the water potential difference is greater
than it can be compensated for by turgor loss, then cellular
dehydration starts. This growth cessation finally leads to the
low dry weight accumulation (Molassiotis et al. 2006; Sabir et
al. 2012).

Decrease in chla, chlb and total chl was observed with
increasing KCl and CaCl2 concentrations (Table 2). Salinity
induces various biochemical and physiological responses in
plants and affects almost all plant functions including chlo-
rophyll content, photosynthesis, growth and development
(Aghaleh et al. 2009). Chlorophyll content is directly related
to the growth and productivity of the plant. High salt con-
centration results in decreased chlorophyll pigments; and
this might be due to the interference of salt ions in chloro-
phyll biosynthesis. High salt concentration creates an im-
balance in ion homeostasis which restrains the iron to the
protoprophyrin molecule. This results in decreased synthesis
of chlorophyll pigments (Agastian et al. 2000; Sabir et al.
2012). Lipid peroxidation as measured by MDA content
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Table 3 Effect of different concentrations of KCl and CaCl2 on Na+, K+ and Ca2+ ion concentration in shoots of Bacopa monnieri. Values were
taken after 28 days of culture

Concentration (mM) Na+ (mmol g−1 DW) K+ (mmol g−1 DW) Ca2+ (mmol g−1 DW)

KCl CaCl2 KCl CaCl2 KCl CaCl2

0 0.90±0.03a 0.90±0.03a 09.13±0.2d 9.13±0.2a 0.34±0.02b 0.34±0.02e

50 0.74±0.03b 0.34±0.01b 12.34±0.2c 9.54±0.2a 0.39±0.02ab 1.36±0.04c

100 0.58±0.02c 0.28±0.02bc 15.69±0.3a 8.52±0.3b 0.42±0.02a 1.86±0.04b

150 0.54±0.02c 0.24±0.02c 14.73±0.3b 3.53±0.3c 0.37±0.01ab 2.67±0.12a

200 0.37±0.03d 0.15±0.01d 14.48±0.2b 2.41±0.1d 0.10±0.02c 0.73±0.0n

Each value represents mean ± SE of three replications. Means followed by same letters within columns are not significantly different at P≤0.05
level by Duncan’s multiple range test. DMRT was applied to each variety separately
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increased with increasing KCl and CaCl2 concentration
from 0 to 200 mM (Fig. 2). At higher KCl and CaCl2
concentrations (150 and 200 mM), membrane damage was
severe due to lipid peroxidation. These observations are in
agreement with the hypothesis that the amount of MDA
content is a direct sign of oxidative stress caused by damage
to the lipid molecules of the cell membrane (Erturk et al.
2007). Similar results were recorded by Santos et al. (2001)
in the KCl treated sunflower plants and calli. An increase in
lipid peroxidation was recorded in suspension cultures of C.
roseus under salt stress (Elkahoui et al. 2005). Increase in
MDA content was also noticed in KCl and CaCl2 treated in
vitro differentiating shoots and calli of Withania somnifera
(Sabir et al. 2012).

The first response of cells during salt stress is the imbal-
ance of osmotic potential due to excess salt. To adjust the
osmotic potential of the cell, a suitable osmolyte or
osmoprotectant molecules are required, which accumulate
in cytosol. In the present study, a progressive increase in free
proline content, glycine betaine and TSS were observed
(Figs. 3, 4, and 5). Proline serves as a storage sink for
carbon and nitrogen and as a free-radical scavenger
(Chinnusamy et al. 2005; Flors et al. 2007). It stabilizes
sub-cellular structures (membranes and proteins) and
buffers cellular redox potential under stress (Kavi Kishor
et al. 2005; Chinnusamy et al. 2005). Glycine betaine and
trehalose act as osmoprotectants by stabilizing quaternary
structures of proteins and highly ordered states of mem-
brane. Hence, these organic osmolytes are known as
osmoprotectants and thus may alleviate salt induced dam-
ages (Bohnert and Jensen 1996; Chen and Murata 2002).
Sugar is also considered as an osmoprotectant and reported
to accumulate during salinity stress (Kovacik et al. 2009).
Soluble sugars that are altered by abiotic stresses may also
act as signaling molecules (Chaves and Oliveira 2004) and
also interact with hormones as part of the sugar-sensing and
signaling network in plants (Sabir et al. 2012). Synthesis of

proline, glycine betaine and other osmolytes is an energy
dependent process and consumes large number of ATP
molecules (Raven 1985), thus their synthesis affect the plant
growth (Lokhande et al. 2011).

Salt stress is associated with complex traits, which in-
clude osmotic stress, specific ion effect, ion imbalances and
nutrient deficiency. Accordingly, salt stress affects various
physiological and biochemical mechanisms related to plant
growth and development (Pitman and Lauchli 2002; Ahire
et al. 2012b). In the present study, Na+ accumulation de-
creased with increasing concentrations of KCl and CaCl2 in
the medium (Table 3). K+ concentration increased signifi-
cantly in the KCl-stressed shoots as compared to the control
up to 100 mM KCl level. High Ca2+ accumulation was
noticed when cultures were treated with 150 mM CaCl2.
At still higher concentrations of both KCl and CaCl2, K

+

and Ca2+ ion accumulations declined. Thus, this study in-
dicates that the shoots of Bacopa accumulate the K+ and
Ca2+ at low concentrations of salt stress but may exclude
them at higher KCl and CaCl2 concentrations in the medi-
um. Different plant species develop different adaptive mech-
anisms either to exclude salt from their cells or to tolerate it
within the cells by sequestering in the vacuoles (Kozlowski
1997; Munns 2002; Parida and Das 2005). The uptake of
large amounts of salt by the plant leads to the increase of
osmotic pressure in the cytosol.

Salt stress leads to oxidative stress through an increase in
reactive oxygen species (ROS), such as hydrogen peroxide
(H2O2), superoxide (O2

•−) and hydroxyl (OH•) radicals.
ROS can modulate normal cellular metabolism through
oxidative damage to lipids, proteins and nucleic acids
(Imlay 2003). Plants have developed defensive antioxidative
system, including low-molecular mass antioxidants as well
as antioxidative enzymes such as SOD, CAT, APX
and GPX. In the present study, KCl and CaCl2 stresses
(0–100 mM) significantly increased the antioxidant enzyme
(SOD, CAT, APX and GPX) activities in shoots of Bacopa
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(Fig. 6a, b, c, d). Higher activity of SOD is an indication of
efficient detoxification of superoxide radical (Abraham and
Dhar 2010) and results in formation of H2O2. The excess
H2O2 produced by SOD in response to salt stress is removed
by both CAT, and APX (Parida et al. 2004; Lokhande et al.
2011). The removal of H2O2 in microbodies is mainly
carried by the catalases (Scandalios et al. 1997) and cata-
lyzes either the direct decomposition of H2O2 or the oxida-
tion by H2O2 of substrates. APX catalyzes the dismutation
of H2O2 through the ascorbate-glutathione cycle (Shigeoka
et al. 2002; Jithesh et al. 2006). Ascorbate is the most
important reducing substrate for H2O2 detoxification in the
plant cells and APX uses ascorbate to reduce H2O2 to water
(Noctor and Foyer 1998; Sergio et al. 2012). SOD generated
H2O2 is eliminated by GPX (Rios-Gonzales et al. 2002).
Similar increase in the antioxidative enzyme activities
under increased salt stress was reported in several other
plants like rice seedlings (Kumar et al. 2009), Sesuvium
protulacastrum shoot cultures (Lokhande et al. 2011),
brinjal seedlings (Ahire et al. 2012b); shoot and callus
culture of Withania somnifera (Sabir et al. 2012). The
study indicates that Bacopa has efficient antioxidative
defensive mechanism to ameliorate the salt stress induced
damages at lower salt concentrations.

Accumulation of bacoside A was enhanced with an in-
crease in KCl and CaCl2 concentrations in the medium up to
100 mM (Fig. 7). Treatment of 100 mM CaCl2 resulted in
higher accumulation of bacoside A. But, KCl and CaCl2 at
higher concentrations suppressed its accumulation (Fig. 7).
Salt stress exerts an unfavorable effect on the growth (Jaleel
et al. 2007), but increases secondary metabolite accumula-
tion during biotic and abiotic stress conditions (Wahid and
Ghazanfar 2006; Cheng et al. 2007; Ghorpade et al. 2011).
Increase in bacoside A content might be due to increased
water stress which can regulate large number of transcripts
including phenylpropanoid metabolic pathway genes.
Calcium may act as a second messenger and thus trigger
the expression of several genes associated with the biosyn-
thetic pathway of bacoside A. Bacopa might synthesize the
triterpene saponin to prevent the membrane damage. The
low amount of saponins at higher concentrations of Cu
provided an intrinsic defense to resist Cu-induced oxidative
damage in P. ginseng plants (Ali et al. 2006). Similarly, the
decrease in bacoside A accumulation at higher concentra-
tions of salts might be due to inhibition of the metabolic
pathway enzymes associated with its biosynthesis.

In conclusion, the findings presented here demonstrate
that KCl and CaCl2 induced salt stresses affected the num-
ber of shoots per culture, shoot length, shoot fresh and dry
weights, tissue water content and lipid peroxidation (MDA
content). Increased K+ and Ca2+ ions were observed under
KCl and CaCl2 stresses respectively. Antioxidant enzyme
activities (SOD, CAT, APX and GPX) increased in shoots of

Bacopa with enhanced salt levels (up to 100 mM). Bacoside
A content increased but only under moderate stress
(100 mM KCl and CaCl2). The studies presented in this
investigation provide an impetus for conducting growth
adaptability responses of Bacopa monnieri in field condi-
tions under different salt stress conditions and also to en-
hance bacoside A concentration.
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