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Protein phosphatases: a genomic outlook to understand
their function in plants
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Abstract Protein phosphatases are the vital regulatory com-
ponents of various signal transduction pathways in eukar-
yotes. Signaling pathways triggered during stress and
development have been regulated by different classes of pro-
tein phosphatases in plants. Recently, genome-wide expres-
sional analysis in Arabidopsis and crop plant such as rice
revealed differential expression pattern for several protein
phosphatases under different abiotic stresses, in various tis-
sues and at different developmental stages. This expression
pattern could be extrapolated to the possible function of
protein phosphatases in abiotic stress signaling and tolerance,
and during plant development. Here, we discuss organisation
and expression patterns of members of the protein phospha-
tase gene family, and their potential functional role in plants.
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Introduction

Reversible protein phosphorylation is one of the major
events in various signal transduction networks and regulates
a number of biological processes in eukaryotes. The balance
in the phospho-regulation is critical to maintain a normal
cell survival state. Protein kinases and phosphatases are the
key players, which maintain the phospho-regulation in nor-
mal conditions and modulate this balance in adverse con-
ditions as per the requirement of the cell. The protein
kinases have been investigated extensively in terms of their
structure and evolution in a number of eukaryotes (Manning

et al. 2002a, b; Caenepeel et al. 2004; Champion et al. 2004;
Kerk et al. 2008) and most of the kinases share a highly
conserved functional domain. In contrast, protein phospha-
tases display a great degree of diversity and harbour differ-
ent catalytically important signature motifs and domains
(Luan 2003; Moorhead et al. 2007; Lee et al. 2010). Based
on the amino acid residue they dephosphorylate, protein
phosphatases have been classified into two major categories
namely serine/threonine phosphatases and tyrosine phos-
phatases. Cloning, sequence analysis, biochemical and ge-
nomic analysis revealed that ser/thr phosphatases can be
divided into two major families: phosphoprotein phospha-
tases (PPP), which includes PP1, PP2A, PP2B phosphatases
and other distantly related phosphatases (PP4, PP5, PP6 and
PP7) with unique domains of unknown function whereas
PPM includes PP2C group of phosphatases and other Mg2+

dependent phosphatases (Luan 2003; Schweighofer et al.
2004; Moorhead et al. 2007; Lee et al. 2010; Singh et al.
2010). However PP2B, which is a Ca2+ dependent phospha-
tase and is also known as calcineurin A (CNA), has not been
identified so far in plants (Moorhead et al. 2007; Kerk et al.
2008; Singh et al. 2010). Similarly, the presence of a signature
motif CX5R characterised protein tyrosine phosphatases
(PTPs), which are also composed of two groups namely-
tyrosine specific phosphatases (PTP), which specifically act
on phosphotyrosine and dual specificity phosphatases (DSPs),
which can dephosphorylate phosphotyrosine as well as phos-
phoserine/phosphothreonine (Stone and Dixon 1994; Tonks
and Neel 1996).

In the post-genomic era, availability of complete se-
quence of a number of plant genomes, shared databases
and softwares and analysis tools have made it feasible to
carry out genome-wide analysis to decipher the genomic
and functional diversity among various gene families, as
demonstrated by the identification of many gene families
in plants (Kerk et al. 2002; Jain et al. 2007; Agarwal et al.
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2007; Arora et al. 2007; Li et al. 2007; Xue et al. 2008;
Singh et al. 2010, 2012). Whole complements of protein
phosphatase encoding genes of important plant species such
as model eudicot plant Arabidopsis and monocot crop plant
rice (Kerk et al. 2002; Singh et al. 2010) have been identi-
fied and their structural and expression analyses have been
carried out.

Here, we provide an overview of the genomic organisa-
tion of protein phosphatase gene family in plants, their
phylogenetic and evolutionary relationship, expression anal-
ysis and discuss their role in important processes such as
abiotic stress signaling and plant development.

Protein phosphatase gene family in plants

Examination of the Arabidopsis genome has revealed the
existence of 126 protein phosphatases belonging to the
major classes of protein phosphatase i.e. 26 members of
PPP family, 76 of PPM family, which comprised of PP2C
class of phosphatases and 24 members of protein tyrosine
phosphatases including a single PTP, 22 DSPs and a single
gene of low molecular weight PTP (LMWPTP) (Kerk et al.
2008). However, a later study of protein phosphatases
claimed 80 PP2C genes in the Arabidopsis genome (Xue
et al. 2008). We carried out a genome wide survey of protein
phosphatases in rice genome and found 132 protein phos-
phatase encoding genes, which like Arabidopsis could be
distributed into different categories (Singh et al. 2010). As
in other plants, PP2C is the major class of protein phospha-
tase in rice and includes 90 members and is subdivided into
11 subfamilies, followed by DSP and PP2A, which are
comprised of 23 and 17 members, respectively. Further,
similar to Arabidopsis, PTP and LMWP class contain one
member each. As mentioned earlier, PP2B phosphatase was
not identified in any of these studies. It is surprising that
Arabidopsis and rice genome contain much higher number
of protein kinases than the humans (Dardick et al. 2007; de
la Fuente van Bentem and Hirt 2007), but protein tyrosine
phosphatases (PTPs) in plants are much less than in humans
where more than 100 PTPs are present including approxi-
mately 60 DSPs (Kerk et al. 2008). This suggests that either
tyrosine phosphorylation components are less or a single
PTP/DSP may act on multiple sites in a signal transduction
pathway in plants. Moreover, lesser number of protein tyro-
sine kinases have been reported in plants than animals,
which also possibly accounts for the lesser number of pro-
tein tyrosine phosphatases in plants compared to animal
system. Although, whole protein phosphatase complement
is yet to be reported in other major plant species, PP2A
subfamily has been identified in the genome of solanaceae
plants tomato and potato where five and six isoforms, re-
spectively have been reported (He et al. 2004; Pais et al.

2009). Sequence analysis and evolutionary studies have
revealed that various phosphatase classes are highly con-
served in plants (Kerk et al. 2002, 2008; Xue et al. 2008;
Singh et al. 2010). Most of the phosphatase members of
different classes from rice and Arabidopsis aligned together
to form a phylogenetic clade and indicated towards their
common ancestory and similar evolutionary lineage (Singh
et al. 2010). Additionally, a high degree of chromosomal
duplication (both segmental and tandem) has been observed
for protein phosphatases, both in Arabidopsis and rice,
which might have been a potent evolutionary force for the
vast expansion of this gene family in plants (Xue et al. 2008;
Singh et al. 2010). It has been shown that chromosomal
duplication of protein phosphatase genes in rice, apart from
genomic diversity has also lead to the functional diversifi-
cation of this gene family. Several segmental and tandem
duplicated protein phosphatase genes (OsPPs) have retained
their function during the course of evolution as indicated by
their expression profiles under different abiotic stresses and
during different stages of development (Singh et al. 2010).
Importantly, many duplicated phosphatases have attained a
novel function and exhibited neo-functionalization, whereas
few others have lost their function during the evolution and
exhibited pseudo-functionalization (Singh et al. 2010).

Expression analysis under abiotic stresses

Protein phosphatases are important signal transduction
components, and induction of their gene expression by
various stress stimuli is crucial for the plants to regulate
the stress triggered signaling pathways. Therefore, knowl-
edge of their transcript level will help to understand the
signaling networks at critical stages. In our recent genome
level expression analysis by microarray, a large proportion
of rice protein phosphatase genes (46 out of 132) was
found to be differentially expressed under different abiotic
stresses such as drought, cold and high salinity (Singh et al.
2010). The spatial and temporal expression might reflect
the involvement of protein phosphatases in some special-
ized function. More genes (66 %) were up-regulated than
down-regulated under one or multiple abiotic stresses.
Most of the differentially expressed genes belonged to
PP2C class, which is also the largest phosphatase group
in plants. This suggests that PP2C genes are involved in
multiple cellular processes, especially those influenced by
abiotic stresses. Drought stress emerged as the major stress
responsible for perturbation in expression level for most of
the differentially expressed genes. Several OsPP genes
were specifically up- and down-regulated under drought
stress and an overlap in the expression was observed under
drought and salt stresses together for a subset of OsPP
genes. Previously, it has been well established that same
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gene can be induced or activated by multiple triggers in
different signal transduction pathways (Shinozaki and
Yamaguchi-Shinozaki 2000; Knight and Knight 2001).
This type of overlapping expression could be because of
a common component such as calcium acting as a “Hub” in
various stress triggered pathways and results in the cross-
talk of signaling networks. A high degree of cross talk in
the signaling network triggered by various abiotic stresses
has been observed in plants (Knight and Knight 2001).
Interestingly, expression of several members of rice PP2C
group A was highly induced under abiotic stresses and this
was consistent with another study where this group of rice
phosphatases was found to be induced by ABA, salt,
mannitol and cold treatment (Xue et al. 2008; Singh et al.
2010). In Arabidopsis also, the expression of nine members
of PP2C group was elevated by ABA, which is known as a
stress hormone and mediates abiotic stresses in plants (Xue
et al. 2008). Also, five members of this Arabidopsis PP2C
group (ABI1, ABI2, HAB1, HAB2 and AtPP2CA) have
been well studied and characterised as the negative regu-
lators of ABA mediated signaling (Merlot et al. 2001;
Tahtiharju and Palva 2001; Saez et al. 2004; Yoshida et
al. 2006). These findings fit appropriately in the recently
developed model of ABA signaling, which emerged after
the discovery of novel ABA receptors in plants (Ma et al.
2009; Park et al. 2009; Fujii et al. 2009). In this break-
through discovery, it has been established that 14 members
of Arabidopsis PYR/PYL family of START protein act as
ABA receptors and they interact with PP2C protein phos-
phatase to remove the inhibitions of a protein kinase such
as SnRK2 in the presence of ABA and regulate the down-
stream ABA signaling to generate stress and development
mediated responses in plants (Fujii et al. 2009; Umezawa et
al. 2009). Also, this novel paradigm has brought a new
impetus in plant stress biology and the protein phospha-
tases have been recognised as the critical enzymes to
genetically engineer the plants for imparting stress toler-
ance. Although PP2C is the most studied class of phospha-
tases, other important classes such as PP2A have also been
implicated in abiotic stress signaling in different plant
species. Various isoforms of tomato and potato PP2A were
highly induced by cold and salt stresses, as determined by
the northern blot analysis (Pais et al. 2009). Recently, a
dual specificity protein tyrosine phosphatase OsPFA-DSP1
has been characterised in rice as well as in tobacco (Liu et
al. 2012). Expression level of OsPFA-DSP1 was elevated
under different stress treatments such as NaCl, ABA and
PEG. In addition, OsPFA-DSP1 has been found to nega-
tively regulate the drought stress responses in transgenic
plants. Thus, a substantial proportion of large protein phos-
phatase gene family appears to be significantly involved in
abiotic stress and ABA mediated signaling in plants and
regulates stress responses.

Expression analysis during development

Plant development is a complex process and regulated at
different steps by the networks of signaling cascades. Pro-
tein phosphorylation and dephosphorylation have been rec-
ognised as regulatory mechanism in various aspects of plant
growth and development. Recent studies in rice and Arabi-
dopsis have shown that transcript levels of a number of
protein phosphatase encoding genes were differentially reg-
ulated in different tissues and at various stages of develop-
ment (Xue et al. 2008; Singh et al. 2010). In Arabidopsis, by
different expression detection techniques such as microar-
ray, MPSS and EST datasets, high expression level was
observed for a large set of 49 PP2C genes in various tissues
and at different developmental stages including vegetative
tissues such as leaf, root and reproductive stages such as
inflorescence and siliques (Xue et al. 2008). In rice, micro-
array based expression profiling has been done for the
protein phosphatases at the whole genome level during a
wide spectrum of vegetative (leaf, root and seedling) and
reproductive developmental (panicle and seed) stages
(Singh et al. 2010). High percentage of rice protein phos-
phatases (~63 %, including all the classes) was found to be
differentially expressed during developmental stages P1-P6
(from floral transition stage to mature pollen) and seed
stages S1–S5 (early globular embryo to dormancy and des-
iccation tolerance) and approximately equal number of pro-
tein phosphatases were up- and down-regulated with a
significant change in expression level. Overlap was also
observed in the expression of OsPPs during panicle and
seed developmental stages, and a subset of genes was com-
monly expressed during the two phases of reproductive
development, while very few were exclusively expressed
during panicle and seed stages. Similar to abiotic stresses,
during development also PP2C class had major share of
differentially regulated genes. These expression based find-
ings emphasize the significant role of protein phosphatase in
reproductive development of plants. Interestingly, an over-
lapping expression was detected for a few OsPP genes
during developmental stages and abiotic stresses. All the
protein phosphatase genes, which were commonly up-
regulated in stresses and developmental stages belonged to
PP2C class whereas down-regulated genes included PP2C,
PP2A and DSPs (Singh et al. 2010). Genes with overlapping
expression in seed development and abiotic stresses, sug-
gested an interconnection between abiotic stresses and the
plant development, which has also been established by prior
studies in plants (Schroeder et al. 2001; Vij et al. 2008;
Singh et al. 2010). During later stages of seed development
and seed dormancy, generally a programmed dehydration
event is known to trigger various cellular and physiological
changes in the seed (Hetherington 2001; Schroeder et al.
2001; Agarwal et al. 2007). Previously, two rice genes
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OsPP2A-1 and OsPP2A-3, encoding catalytic subunit of
PP2A were found to exhibit an overlapping expression
under drought and high salinity stresses and in root, leaf
and stem tissues during various stages of development (Yu
et al. 2003). Drought and salt stress resulted in high tran-
script level of both the genes in leaves while heat stress
affected the transcript level negatively for OsPP2A-1 in
stems and resulted in induction of OsPP2A-3 in all the
organs. This overlapping expression could be regulated by
phytohormone ABA, which is the major component for ac-
quisition of dehydration trigger and regulation of seed germi-
nation in plants (Pei and Kuchitsu 2005; Yamaguchi-
Shinozaki and Shinozaki 2006; Holdsworth et al. 2008;
McCourt and Creelman 2008; Nakashima et al. 2009). This
notion has been supported by the presence of ABRE elements
in the promoters of protein phosphatase genes, both in rice and
Arabidopsis (Xue et al. 2008; Singh et al. 2010), which are
responsible for the regulation of ABA mediated signaling and
responses. These observations further support the existence of
recently elucidated ABA-PYR/PYL-PP2C-SnRK2 model, as
several members of SnRK2 kinase family have also been
implicated in ABA mediated abiotic stress signaling, seed
development and dormancy (Boudsocq et al. 2004; Fujii et
al. 2007; Nakashima et al. 2009; Fujii and Zhu 2009).

Functional role in abiotic stress signaling and plant
development

Extensive functional characterization studies of protein
phosphatases in plants have established PP2C group of
phosphatases as the critical components of ABA signaling
and implicated them in the regulation of important ABA
mediated cellular processes. Two of the most studied protein
phosphatases of Arabidopsis, ABI1 and ABI2 (PP2Cs) have
been characterised as the main components of ABA signal-
ing under abiotic stresses and during development, which
function to regulate ABA responses negatively (Leung et al.
1994; Meyer et al. 1994; Merlot et al. 2001; Saez et al. 2006;
Yoshida et al. 2006). The dominant mutant abi1-1 and abi2-
1 harbour Gly to Asp substitution near Mg2+ binding site,
which lead to reduction in phosphatase activity. These muta-
tions resulted in ABA insensitivity, impaired seed dorman-
cy, defects in stomata movement and ultimately poor
drought tolerance (Meyer et al. 1994; Bertauche et al.
1996; Leung et al. 1994, 1997; Rodriguez et al. 1998;
Schweighofer and Meskiene 2008). Studies of the interac-
tors of ABI1 and ABI2, have provided the clue about their
mechanism of operation in ABA mediated responses. It has
been proposed that the phosphatases interaction complex
include a protein kinase CIPK15 and Ca2+ binding protein
CBL1 (Guo et al. 2002; Lee et al. 2010). In yeast two-hybrid
assays, SOS2/CIPK24 and other members of this class of

kinases interact with ABI1/ABI2 through a protein kinase
interaction motif (PKI) within the catalytic phosphatase
region (Schweighofer and Meskiene 2008). This interaction
was disrupted in abi2-1 mutants due to mutation in PKI
motif and led to enhanced salt tolerance in plants (Ohta et al.
2003). It was observed that mutant plants of CIPK15 and
CBL1 display hypersensitivity to ABA during seed germi-
nation and seedling growth, whereas abi1 and abi2 muta-
tions supressed this sensitive phenotype (Guo et al. 2002;
Lee et al. 2010) indicating that this complex is responsible
for negative regulation of ABA signaling in calcium depen-
dent manner. ABI1 also interacts with another protein kinase
SnRK2E/SnRK2.6/OST1, which is also ABA and osmotic
stress activated protein kinase, and abi1-1 mutation results
in decreased interaction (Mustilli et al. 2002; Yoshida et al.
2002; Yoshida et al. 2006). Mutant plants of both srk2e/ost1
and abi1-1 exhibited a wilty phenotype, indicating that
ABI1 regulates the activation of SnRK2E. Similarly, inter-
action has also been established for ABI1 with ATHB6; an
ABA and drought inducible transcription factor and with
phospholipase D (PLD) derived phosphatidic acid (PA)
(Himmelbach et al. 2002; Zhang et al. 2004). ATHB6 was
found to be the negative regulator of ABA signaling and
ABI1 acts upstream of this transcription factor in ABA
signaling and interaction of this phosphatase with PLD
derived PA has been found responsible for tethering ABI1
to plasma membrane (Himmelbach et al. 2002; Zhang et al.
2004). Based on these findings, a model has been proposed,
which suggests that ABI1 translocates to the nucleus and
interacts and activates ATHB6 to regulate ABA signaling
negatively. On the other hand, PLD derived PA prevents
ABI1 translocation to the nucleus by tethering it to the plasma
membrane (Lee et al. 2010). Similarly, closely related mem-
bers of Arabidopsis PP2C family; HAB1 and HAB2 are
proposed to be the negative regulators of ABA signaling
(Rodriguez 1998; Leonhardt et al. 2004; Saez et al. 2004;
Yoshida et al. 2006). From the mutant analysis of HAB1, it
was inferred that HAB1 mutants showed hypersensitivity to
ABA during seed germination and enhanced stomata closure,
whereas overexpression of HAB1 resulted in ABA insensitiv-
ity and impaired stomata closure, ABA resistant root growth.
Moreover, abi1-2/hab1-1 and abi1-3/hab1-1 double mutants
exhibited enhanced responsiveness to ABA, suggesting an
overlapping function of ABI1 and HAB1, which together
might act in negative regulatory loop of ABA signaling (Saez
et al. 2006). Another member of Arabidopsis group-A, PP2C;
AtPP2CA or AHG3, has been found to be highly induced
under ABA, cold salt and drought stresses (Sheen 1998) and
was found to be a strong negative regulator of ABA signaling
mainly regulating seed germination and stomatal closure
(Kuhn et al. 2006; Yoshida et al. 2006). Apart from PP2C,
PHS1 a dual-specificity protein phosphatase from Arabidop-
sis has also been implicated in ABA signaling, since the
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mutant of PHS1 revealed ABA hypersensitivity during seed
germination and reduction in stomatal aperture (Quettier et al.
2006). Apart from ABA signaling, Arabidopsis PP2C genes
have been involved in other pathways to regulate plant growth
and development. Kinase associated protein phosphatase
(KAPP) and poltergeist (POL) are two different types of
PP2C phosphatases, which negatively regulate CLAVATA1,
which mediates SAM (shoot apical meristem) development
and also regulates flower development in Arabidopsis
(Williams et al. 1997; Stone et al. 1998; Yu et al. 2000; Lee
et al. 2010). CLAVATA1 is a receptor like kinase (RLK) and
KAPP can bind to the kinase domain of RLKs through
forkhead-associated domain (FHA) and leads to a clv1mutant
like phenotype (Stone et al. 1998; Shah et al. 2002), whereas
reduced KAPP expression reversed this phenotype. POL reg-
ulates the CLV1 pathway by modulating the activity of WUS,
a target protein in CLAVATA pathway (Yu et al. 2000). Protein

phosphatases also interact with the mitogen activated protein
kinases (MAPKs) and regulate several important signaling
cascades. Studies have revealed that PTPs and DSPs are the
main phosphatases, which dephosphorylate MAPKs and
hence, regulate MAPK signaling pathways (Keyse 1995,
1998; Wurgler-Murphy and Saito 1997; Zhan et al. 1997). In
Arabidopsis, it has been shown that PTP1 can deactivate
MAPK4 by de-phosphorylation (Huang et al. 2000). More-
over, the activation of MAPKs appeared to be stronger in ptp1
mutant plants whereas reverse was observed for PTP1 over-
expressing plants (Lee et al. 2010). In addition, a few PP2Cs
have also been implicated in the MAPK signaling. MP2C
(PP2C) from alfalfa could deactivate stress induced MAPK
(SIMK) by dephosphorylation of threonine residue (Meskiene
et al. 1998, 2003). AP2C1, another PP2C from Arabidopsis
has been found to deactivate stress responsive MAPK4 and
MAPK6 and regulate plant defense responses (Schweighofer
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Fig. 1 A hypothetical model
depicting different types of
protein phosphatases in a plant
cell and their involvement in the
signal transduction pathways
triggered by abiotic stresses and
developmental signals. Most of
the abiotic stresses and
developmental events are
mediated by phytohormone
ABA, which is sensed by novel
ABA receptors at the plasma
membrane. In response to
stresses and developmental
triggers, the expression of
members from different
phosphatase classes is
differentially regulated. Protein
phosphatases interact with
several signaling components
such as ser/thr protein kinases
i.e. SnRK2s, CBL-interacting
protein kinases (CIPKs), mito-
gen activated protein kinases
(MAPKs), receptor like kinases
such as CLAVATA1 and tran-
scription factors such as ATBH6
in different signaling pathways
and regulate their activity.
These components act upon
other downstream signaling
elements to generate a cellular
response by modulation of ex-
pression of stress genes leading
to stress adaptation and toler-
ance, and regulation of devel-
opmental processes such as
flower development and seed
germination
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et al. 2007). AtPP2C5, which is a MAPK phosphatase, direct-
ly interacts with the stress induced MAPK3, MAPK4 and
MAPK6 in the nucleus and positively regulates seed germi-
nation, stomatal closure and ABA-mediated gene expression
(Brock et al. 2010). Similarly, AP2C3 acts upon these
MAPKs and regulates stomata development in Arabidopsis
(Umbrasaite et al. 2010). A model showing the involvement
of different types of protein phosphatases in signal transduc-
tion pathways triggered by abiotic stress and developmental
signals is presented in Fig. 1.

Thus, recent expression based information and prior stud-
ies show the regulation of various signaling pathways by
protein phosphatases in plants and emphasize on their im-
portant role in abiotic stress responses and adaptation, plant
growth and development. Further molecular dissection of
signal transduction pathways involving protein phospha-
tases might provide information for engineering crop plants
to tolerate high degree of abiotic stress and thereby lead to
better agricultural productivity.

Future perspectives

Protein phosphatases have been identified at the level of
whole genome, especially in model plants Arabidopsis and
rice, and their expression profiles under various abiotic stress
conditions and developmental stages are now available in
public databases. Various molecular, cellular, biochemical
and genetic approaches can be adopted for the detailed
functional characterization of several novel phosphatase can-
didate gene(s). And it would be very interesting to find out
whether protein phosphatases mediate stress and develop-
mental signaling through interaction with ABA receptors or
other signaling molecules like calcium and other phytohor-
mones such as cytokinin, auxin, GA, ethylene. Once the role
of a particular candidate phosphatase is functionaly known,
it is important to establish a link towards upstream and
downstream of this phosphatase in signaling pathway.
Hence, downstream interacting partners (such as proposed
SnRK2) can be identified for the candidate phosphatases by
yeast two-hybrid library screenings and a novel signaling
pathway can be reconstituted. In the hunt for downstream
target of phosphatases, it is important to identify the physi-
ological substrates, which will relate their function in a
particular physiological or gene expression process. Promot-
er characterization studies can be undertaken for develop-
mentally regulated phosphatases. Moreover, localization of
various protein phosphatases to various organelles at subcel-
lular level will provide the clue about their site of action and
type of process they regulate. Ultimately, by genetic ap-
proach, the loss-of-function mutant and gain-of-function
transgenic plants can be generated to evaluate the functional
role of phosphatses in planta.
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