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ABSTRACT

For decades, topical corticosteroids have been
the mainstay of treatment for mild-to-moderate
inflammatory skin diseases, even though only
short-term use is approved for these agents and
systemic inflammation is not addressed.
Increased understanding of the immunopatho-
genesis of these conditions, especially for pso-
riasis and atopic dermatitis, has facilitated the
development of antibody-based drugs that
neutralize single key cytokines or their associ-
ated receptors, such as interleukin (IL)-17A/F,

IL-23, and IL-17RA in psoriasis and IL-13 and IL-
4Ra in atopic dermatitis. However, oral therapy
is still preferred by many patients owing to the
ease of use and needle-free administration.
Phosphodiesterase 4 (PDE4) inhibitors have
been approved for both oral and topical use for
inflammatory skin diseases. In this review, we
present a summary of an emerging class of
selective PDE4B/D inhibitors under clinical
development and compare the differences in
selectivity of this new generation of PDE4
inhibitors with the less selective currently
approved PDE4 inhibitors.
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Key Summary Points

Chronic inflammatory skin diseases are
estimated to affect 20–25% of the world’s
population and the medical need persists
for new safe and effective oral drugs for
long-term treatment of chronic
inflammatory skin diseases.

A new class of selective
phosphodiesterase 4 subtype B and
subtype D (PDE4B/D) inhibitors is
emerging as four selective PDE4B/D
inhibitor drug candidates (nerandomilast,
zatolmilast, orismilast, and PF-07038124)
are currently in late-stage clinical trials for
diseases of the lung, brain, and skin.

Short isoforms of PDE4B/D—in particular
PDE4B2 and PDE4D1/D2—are critical
isoforms to block to achieve anti-
inflammatory effects, and selective
PDE4B/D inhibitors may drive higher
efficacy than previously approved pan-
phosphodiesterase 4 (pan-PDE4)
inhibitors.

Next generation PDE4B/D inhibitors also
have potential to affect comorbidities that
are associated with chronic inflammatory
skin diseases, including cardiometabolic
disease.

INTRODUCTION

Chronic inflammatory skin diseases, including
atopic dermatitis (AD), psoriasis, and
hidradenitis suppurativa, are estimated to affect
20–25% of the world’s population [1]. Beyond
the burden of living with a life-long chronic
skin disease, these patients also often have
increased risk for comorbidities such as cardio-
vascular risk, and increased mortality [2].

Although biologic therapy for chronic inflam-
matory skin diseases has revolutionized the field
of dermatology, from a patient perspective, safe
and effective oral drugs are preferred by most
[3]. Several orally available immunosuppressive
drugs are available today for psoriasis and atopic
dermatitis, including methotrexate, cyclospor-
ine, and Janus kinase (JAK) inhibitors (e.g., JAK1
and TYK2 inhibitors such as upadacitinib,
abrocitinib, and deucravacitinib); these medi-
cations, however, require monitoring for hepa-
totoxicity (methotrexate) [4, 5], nephrotoxicity
(cyclosporine) [6], and/or serious adverse events
such as infections, tuberculosis, thrombosis,
cancer, and major adverse cardiovascular events
(e.g., JAK1 and TYK2 inhibitors) [7]. While the
development of apremilast, a pan-phosphodi-
esterase 4 (PDE4) inhibitor, offered patients
with psoriasis a safer option than previous oral
options, efficacy of this drug is limited.
Accordingly, the medical need persists for new
safe and effective oral drugs for long-term
treatment of chronic inflammatory skin dis-
eases. This review describes a new generation of
oral PDE4B/D selective inhibitors under devel-
opment and compares their PDE4 subtype pro-
file with the approved PDE4 inhibitors currently
used for treatment of psoriasis and atopic der-
matitis. This article is based on previously con-
ducted studies and does not contain any new
studies with human participants or animals
performed by any of the authors.

PDE4: AN IMMUNOMODULATORY
TARGET LINKED TO CAMP

Cyclic adenosine monophosphate (cAMP) is a
pivotal second messenger that regulates various
cellular functions, including cell trafficking,
release of inflammatory mediators, and
immune cell proliferation. Drugs that elevate
intracellular cAMP levels suppress immune
functions of T cells, monocytes, macrophages,
and neutrophils, by reducing the production of
pro-inflammatory cytokines and by increasing
the production of anti-inflammatory mediators
(Fig. 1).

Intracellular levels of cAMP are tightly con-
trolled on a subcellular level by
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phosphodiesterases (PDEs), which are a super-
family of enzymes that inactivate cAMP and
cyclic guanosine monophosphate (cGMP) [8].
PDEs are grouped into 11 distinct gene members
(PDE1–PDE11), which each demonstrate differ-
ent selectivity for cAMP and cGMP. PDE4
selectively degrades cAMP and accounts for
most of the cAMP-hydrolyzing capacity within
cells. Four subtypes exist (PDE4A/4B/4C/4D),
which are expressed as approximately 20 PDE4
isoforms (splice variants) [9]. These isoforms are
grouped into long isoforms (acting as homo-
and heterodimers) and short/super-short

isoforms (acting as monomers). Importantly, all
PDE4 isoforms are unique proteins and can
differ in their intracellular localization, three-
dimensional structure, and cell type expression.
Consequently, when profiling the affinity of
PDE4 inhibitors against the various PDE4 iso-
forms, a PDE4 isoform fingerprint is displayed
that dictates the effect of the inhibitor on dif-
ferent cell types and potential efficacy in dif-
ferent diseases.

The clinical importance of different PDE4
isoforms is not fully understood and only sparse
information is available regarding the function

Fig. 1 Schematic illustration of how PDE4 inhibitors and
cAMP are involved in resolving inflammation. Increased
level of cAMP inhibits the production of pro-inflammatory
cytokines through simultaneous inhibition of PKA-NFkB
and Epac1/2-NFkB pathways; and promotes the production
of anti-inflammatory mediators by activation of the PKA-
CREB pathway. The intracellular level of cAMP is mainly
controlled by the activity of adenylyl cyclase (AC) and
phosphodiesterase 4 (PDE4). Upon stimulation, AC
increases cAMP levels by converting ATP to cAMP.

PDE4 controls the amplitude and duration of the cAMP
signal by catalyzing the degradation of cAMP to AMP.
Inhibition of PDE4 increases the intracellular levels of
cAMP.Adenylyl cyclase (AC), phosphodiesterase 4 (PDE4),
protein kinase A (PKA), exchange protein 1/2 activated by
cAMP (Epac1/2), phosphorylated cAMP-responsive ele-
ment binding protein (pCREB), nuclear factor kappa-light-
chain-enhancer of activated B cells (NFjB), inhibitor of
PDE4 (PDE4i) The figure was created with assistance from
Erik Nylund, VisualizeThat AB
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of the specific isoforms in human tissues. Inhi-
bition of PDE4B and PDE4D subtypes is con-
sidered the main driver of the anti-
inflammatory effects of PDE4 inhibitors, as
these two subtypes are the only subtypes
expressed in high levels in immune cells, e.g.,
human CD4? T cells and peripheral blood
mononuclear cells (PBMCs). Conversely, PDE4C
is largely absent in immune and blood cells
(Table 1) [10–12].

Upon CD3/CD28 stimulation of primary
human CD4? T cells, the PDE4B2 short isoform
is transiently upregulated, whereas PDE4D1/D2
short isoforms are increasingly upregulated over
time. By contrast, PDE4B long isoforms
(PDE4B1/B3) are downregulated and PDE4A/
PDE4D long forms (PDE4A4/A10 and PDED3/
D4/D5/D7/D8/D9) are unaffected. The upregu-
lation of short PDE4 splice variants was reported
to account for the induction of PDE4 activity in
stimulated CD4? T cells [10]. In human neu-
trophils and monocytes, the short PDE4B2 iso-
form is the predominant PDE4 isoform [13]. On
the basis of these data, we propose that the
short isoforms of PDE4B/D—in particular
PDE4B2, PDE4D1, and PDE4D2—are critical
isoforms to block to achieve anti-inflammatory
effects (Fig. 2). Additional studies, however, are
needed to fully establish the functional roles of
the various PDE4 isoforms across different
immune and tissue cell types.

Of note, PDE4D protein expression was
reported as significantly increased in both the
epidermis and dermis of patients with psoriasis
and atopic dermatitis compared to healthy
controls, whereas a more complex expression

pattern was reported for the other subtypes [14].
Interestingly, recent evidence suggests that
inhibition of PDE4D5 improves diabetes-asso-
ciated cardiac dysfunction [15]. PDE4 inhibition
has also been shown to reduce inflammation in
human vascular endothelial cells [16]. These
findings highlight an important opportunity for
next generation PDE4B/D inhibitors to not only
positively impact chronic inflammatory skin
disease but to also affect comorbidities that are
associated with these diseases including car-
diovascular diseases.

APPROVED PDE4 INHIBITORS

Roflumilast was the first PDE4 inhibitor to be
approved in 2010 for oral treatment of severe
chronic obstructive pulmonary disease. This
drug is rapidly metabolized to an active
metabolite (roflumilast-N-oxide), which drives
90% of the efficacy and was reported to be a
PDE4 inhibitor, without any particular selec-
tivity for the various PDE4 isoforms (i.e., a pan-
PDE4 inhibitor) [17]. Apremilast was the second
PDE4 inhibitor to enter the market. Apremilast
was initially approved for oral treatment of
psoriasis in 2014, and later for psoriatic arthritis
(2014) and Behcet’s disease (2019). Apremilast is
also reported to be a pan-PDE4 inhibitor with-
out any PDE4 isoform selectivity [18].

Apremilast is widely used and it is relatively
easy to manage this drug for both patients and
prescribers, largely owing to its oral dosing and
benign safety profile. However, at times, adverse
reactions, in particular diarrhea, nausea, emesis,

Table 1 Expression of PDE4 subtypes in primary human CD4? T cells and psoriatic PBMCs

Gene expression in primary human
CD41 T cellsa

Protein expression in primary human
CD41 T cellsa

Gene expression in
psoriatic PBMCsb

PDE4A 1 1 1

PDE4B Eight-fold higher levels Two-fold higher levels Five-fold higher levels

PDE4C Not detected Not detected Not detected

PDE4D 12-Fold higher levels Three-fold higher levels Two-fold higher levels

aExpression levels of each PDE4 subtype are shown relative to PDE4A
bExpression levels of each PDE4 subtype are shown relative to healthy donors
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and headache, can be challenging. In addition,
efficacy is limited [19, 20]. A recent link
between cAMP and cystic fibrosis transmem-
brane conductance regulator (CFTR) has been
reported which may, in part, explain the diar-
rhea [21]. CFTR is a chloride ion channel at the
apical membrane of epithelial cells, including
the intestine, and has a critical role in transep-
ithelial chloride transport and intestinal fluid
secretion/homeostasis. Upregulation of intra-
cellular cAMP levels activate the CFTR channel,
causing excessive fluid secretion and secretory
diarrhea. To circumvent this potentially limit-
ing adverse reaction, topically applied PDE4
inhibitors have been developed and approved.
Topical roflumilast was approved in 2022 for
treatment of psoriasis, and topical crisaborole

and topical difamilast for treatment of atopic
dermatitis in 2017 and 2022, respectively.

NEXT GENERATION PDE4
INHIBITORS BASED ON SELECTIVE
INHIBITION OF THE PDE4B/D
SUBTYPES

Following the approval of pan-PDE4 inhibitors,
development of compounds that selectively
inhibit PDE4B/D subtypes has received renewed
attention. Indeed, four selective PDE4B/D inhi-
bitor drug candidates are currently in late-stage
clinical trials for diseases of the lung, brain, and
skin (Table 2). Clinical data across several indi-
cations support the hypothesis that PDE4B/D
inhibitors can achieve high clinical efficacy,

Fig. 2 Schematic illustration of the regulation of PDE4
isoforms in stimulated T cells and the importance of
inhibiting short isoforms to prevent production of
inflammatory cytokines in skin. The figure is based on
PDE4 isoform data obtained using anti-CD3/CD28
stimulation of CD4? T cells [10]. The key findings were
as follows: (i) The upregulation of short PDE4 splice
variants was reported to account for the induction of
PDE4 activity in stimulated CD4? T cells; (ii) PDE4B2

was transiently upregulated; (iii) PDE4D1/D2 were
upregulated in a time-dependent manner; (iv) PDE4B1/
B3 were downregulated over time; (v) Long PDE4A/4D
isoforms were unchanged; and (vi) Short isoforms of
PDE4A/PDE4C and long isoforms of PDE4C were not
detected. Inhibition of PDE4B2 and PDE4D1/D2 leads to
increased levels of cAMP and reduced levels of disease
driving cytokines in the skin The figure was created with
assistance from Erik Nylund, VisualizeThat AB

Dermatol Ther (Heidelb) (2023) 13:3031–3042 3035



T
ab
le
2

O
ve
rv
ie
w
of

ap
pr
ov
ed

PD
E
4
in
hi
bi
to
rs
an
d
ne
xt

ge
ne
ra
ti
on

PD
E
4B

/D
se
le
ct
iv
e
in
hi
bi
to
rs
in

la
te
-s
ta
ge

cl
in
ic
al
de
ve
lo
pm

en
t

C
om

po
un

d
In
di
ca
ti
on

P
ha
se

Is
of
or
m

da
ta

Se
le
ct
iv
it
y
ra
ti
oa

P
D
E
4
pr
ofi

le
b

R
ofl
um

ila
st
(o
ra
la
nd

to
pi
ca
l)

C
O
PD

A
pp
ro
ve
d

PD
E
4A

1:
0.
7
nM

PD
E
4A

4:
0.
9
nM

PD
E
4B

1:
0.
7
nM

PD
E
4B

2:
0.
2
nM

c P
D
E
4C

1:
3
nM

c P
D
E
4C

2:
4.
3
nM

PD
E
4D

2:
0.
3
nM

PD
E
4D

3:
0.
4
nM

PD
E
4D

4:
0.
2
nM

PD
E
4D

5:
0.
4
nM

PD
E
4
A
/B

=
1.
8

PD
E
4
A
/D

=
2.
5

PD
E
4
B
/D

=
1.
4

U
ns
el
ec
ti
ve

H
ig
h-
po
te
nc
y,
un

se
le
ct
iv
e

PD
E
4
in
hi
bi
to
r

A
pr
em

ila
st
(o
ra
l)

Ps
or
ia
si
s,
ps
or
ia
ti
c
ar
th
ri
ti
s,

an
d
B
eh
ce
t’s

di
se
as
e

A
pp
ro
ve
d

PD
E
4A

1:
78

nM

PD
E
4A

4:
42

nM

PD
E
4A

10
:
14
0
nM

PD
E
4B

1:
61

nM

PD
E
4B

2:
97

nM

PD
E
4B

3:
11
7
nM

c P
D
E
4C

2:
24
4
nM

PD
E
4D

1:
44

nM

PD
E
4D

2:
54

nM

PD
E
4D

3:
54

nM

PD
E
4D

4:
41

nM

PD
E
4D

5:
61

nM

PD
E
4D

7:
50

nM

PD
E
4
A
/B

=
1.
0

PD
E
4
A
/D

=
1.
7

PD
E
4
B
/D

=
1.
8

U
ns
el
ec
ti
ve

M
ed
iu
m
-p
ot
en
cy
,u

ns
el
ec
ti
ve

PD
E
4
in
hi
bi
to
r

3036 Dermatol Ther (Heidelb) (2023) 13:3031–3042



T
a
b
le
2

co
n
ti
n
u
ed

C
om

po
un

d
In
di
ca
ti
on

P
ha
se

Is
of
or
m

da
ta

Se
le
ct
iv
it
y
ra
ti
oa

P
D
E
4
pr
ofi

le
b

N
er
an
do
m
ila
st
(o
ra
l)

Id
io
pa
th
ic
pu
lm
on
ar
y
fib
ro
si
s
an
d

pr
og
re
ss
iv
e
fib
ro
si
ng

in
te
rs
ti
ti
al

lu
ng

di
se
as
es

3
PD

E
4A

:
24
8
nM

PD
E
4B

2:
10

nM
c P
D
E
4C

2:
87
00

nM

PD
E
4D

2:
91

nM

PD
E
4
A
/B

=
25

PD
E
4
A
/D

=
2.
7

PD
E
4
D
/B

=
9.
1

Se
le
ct
iv
e
fo
r
B

Po
te
nt
,s
el
ec
ti
ve

PD
E
4B

in
hi
bi
to
r

Z
at
ol
m
ila
st
(o
ra
l)

Fr
ag
ile

X
sy
nd

ro
m
e

2b
/3

PD
E
4D

2:
12
7
nM

d P
D
E
4D

7:
10
18

nM
e P
D
E
4D

7:
8
nM

PD
E
4D

3:
7
nM

N
D

Po
te
nt

al
lo
st
er
ic
,P

D
E
4D

m
od
ul
at
or

O
ri
sm

ila
st
(o
ra
l)

Ps
or
ia
si
s
an
d
at
op
ic

de
rm

at
it
is

2b
PD

E
4A

1:
16

nM

PD
E
4A

4:
11

nM

PD
E
4A

10
:
52

nM

PD
E
4B

1:
16

nM

PD
E
4B

2:
6
nM

PD
E
4B

3:
3
nM

c P
D
E
4C

2:
10
4
nM

PD
E
4D

1:
9
nM

PD
E
4D

2:
2
nM

PD
E
4D

3:
2
nM

PD
E
4D

4:
3
nM

PD
E
4D

5:
2
nM

PD
E
4D

7:
3
nM

PD
E
4
A
/B

=
3.
2

PD
E
4
A
/D

=
7.
5

PD
E
4
B
/D

=
2.
5

Se
le
ct
iv
e
fo
r
B
/D

Po
te
nt
,s
el
ec
ti
ve

PD
E
4B

/D
in
hi
bi
to
r

Dermatol Ther (Heidelb) (2023) 13:3031–3042 3037



T
a
b
le
2

co
n
ti
n
u
ed

C
om

po
un

d
In
di
ca
ti
on

P
ha
se

Is
of
or
m

da
ta

Se
le
ct
iv
it
y
ra
ti
oa

P
D
E
4
pr
ofi

le
b

C
ri
sa
bo
ro
le
[3
0]

(t
op
ic
al
)

A
to
pi
c
de
rm

at
it
is

A
pp
ro
ve
d

PD
E
4A

1:
52

nM

PD
E
4B

1:
61

nM

PD
E
4B

2:
75

nM
c P
D
E
4C

1:
34
0
nM

PD
E
4D

7:
17
0
nM

PD
E
4
B
/D

=
1.
3

PD
E
4
D
/A

=
3.
3

PD
E
4
B
/D

=
1.
4

Se
le
ct
iv
e
fo
r
A

M
ed
iu
m
-p
ot
en
cy
,s
el
ec
ti
ve

PD
E
4A

in
hi
bi
to
r

PF
-0
70
38
12
4
(t
op
ic
al
)

Ps
or
ia
si
s
an
d
at
op
ic
de
rm

at
it
is

2b
PD

E
4B

2:
0.
5
nM

N
D

H
ig
h-
po
te
nc
y
PD

E
4B

2

in
hi
bi
to
r

N
D

no
t
de
te
rm

in
ed

a U
ns
el
ec
ti
ve

w
as

de
fin

ed
as

a
po
te
nc
y
ra
ti
o
\

th
re
e-
fo
ld

w
he
n
co
m
pa
ri
ng

th
e
is
of
or
m

w
it
h
hi
gh
es
t
po
te
nc
y
to

th
e
is
of
or
m

w
it
h
lo
w
es
t
po
te
nc
y.
Se
le
ct
iv
e
w
as

de
fin

ed
as

a
po
te
nc
y
ra
ti
o
C

th
re
e-
fo
ld

w
he
n
co
m
pa
ri
ng

th
e
is
of
or
m

w
it
h
hi
gh
es
t
po
te
nc
y
to

th
e
is
of
or
m

w
it
h
lo
w
es
t
po
te
nc
y.

W
he
n
m
or
e
is
of
or
m
s
w
er
e

re
po
rt
ed

w
it
hi
n
a
PD

E
4
su
bt
yp
e,
th
e
av
er
ag
e
of

th
e
is
of
or
m

da
ta

of
a
gi
ve
n
su
bt
yp
e
w
as

us
ed

b H
ig
h
po
te
nc
y
w
as
de
fin

ed
as
a
po
te
nc
y
ra
ng
e
of

0.
1–

0.
9
nM

.P
ot
en
t
w
as
de
fin

ed
as
a
po
te
nc
y
ra
ng
e
of

1–
10

nM
.M

ed
iu
m

po
te
nc
y
w
as
de
fin

ed
as
a
po
te
nc
y
ra
ng
e

of
11
–1

00
0
nM

c P
D
E
4C

is
of
or
m

da
ta
ar
e
lis
te
d
in

it
al
ic
s
an
d
no
tc
on
si
de
re
d
w
he
n
de
sc
ri
bi
ng

th
e
PD

E
4
pr
ofi
le
,s
in
ce

PD
E
4C

is
of
or
m
s
w
er
e
re
po
rt
ed

to
be

ab
se
nt

in
im

m
un

e
an
d

bl
oo
d
ce
lls

(s
ee

T
ab
le
1)

d
T
hi
s
is
of
or
m

w
as

th
e
ba
sa
l
di
m
er

of
PD

E
4D

7
e T
hi
s
is
of
or
m

w
as

th
e
ac
ti
va
te
d
di
m
er

of
PD

E
4D

7
A
pr
em

ila
st
da
ta

w
er
e
ge
ne
ra
te
d
he
ad
-t
o-
he
ad

w
it
h
or
is
m
ila
st
[2
6]

3038 Dermatol Ther (Heidelb) (2023) 13:3031–3042



opening these drugs for new clinical
applications.

Nerandomilast is a selective PDE4B2 inhi-
bitor, although rather limited PDE4 isoform
data have been disclosed [22]. In addition to
anti-inflammatory effects, nerandomilast also
demonstrated an anti-fibrotic effect in preclini-
cal models, as nerandomilast inhibited the
transforming growth factor beta (TGFb)-stimu-
lated transformation of fibroblasts into myofi-
broblasts. In a phase 2 trial, nerandomilast
prevented a decrease in lung function in
patients with idiopathic pulmonary fibrosis
over a period of 12 weeks [23]. Nerandomilast is
currently undergoing phase 3 clinical testing in
idiopathic pulmonary fibrosis and progressive
fibrosing interstitial lung diseases.

Zatolmilast is a brain-penetrating allosteric
modulator of PDE4D. The compound selec-
tively and partially inhibits activated dimeric
isoforms of PDE4D when compared to mono-
meric and basal forms [24]. In theory, modula-
tion of PDE4D (rather than complete
inhibition) is predicted to improve cognitive
function by prolonging cAMP activity. In a
phase 2 trial, zatolmilast met key secondary
efficacy measures of cognition and daily func-
tion in patients with fragile X syndrome [25].
This compound is currently being studied in a
phase 2b/3 trial in the same indication.

Orismilast is a PDE4B/D selective inhibitor
that has been profiled against 13 PDE4 isoforms
and shown to selectively inhibit PDE4B/D iso-
forms [26]. In addition, orismilast potently
inhibits the secretion of several key disease-
driving cytokines (e.g., tumor necrosis factor
(TNF)a, IL-17A, and IL-13) in preclinical mod-
els. In the clinic, orismilast has shown promis-
ing efficacy data in a placebo-controlled,
phase 2b study in patients with moderate-to-
severe psoriasis [27]. Furthermore, orismilast
has shown encouraging data in hidradenitis
suppurativa [28] and is currently being studied
in a phase 2b trial in patients with atopic
dermatitis.

PF-07038124 is a potent PDE4B2 inhibitor
designed to be applied to the skin, using a soft-
drug approach, whereby the drug is rapidly
inactivated when it reaches the systemic circu-
lation. No additional PDE isoform data has been

disclosed for PF-07038124. PF-07038124 is cur-
rently being studied for topical treatment of
both psoriasis and atopic dermatitis [29].

CONCLUSION

A new class of selective PDE4B/D inhibitors is
emerging. Based on clinical data across psoria-
sis, atopic dermatitis, idiopathic pulmonary
fibrosis, and fragile X syndrome, the combina-
tion of potent yet selective mechanism of action
offers new opportunities for clinical applica-
tions. Combined with the proven safety of the
pan-PDE4 inhibitors, novel selective PDE4B/D
inhibitors offer a potential new treatment
approach for the long-term management of
chronic inflammatory and fibrotic diseases.
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