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Abstract
This paper has two primary objectives. The first one is to demonstrate that the solutions
of master equation

(∂t − �)su(x, t) = f (u(x, t)), (x, t) ∈ B1(0) × R,

subject to the vanishing exterior condition, are radially symmetric and strictly decreas-
ing with respect to the origin in B1(0) for any t ∈ R. Another one is to establish the
Liouville theorem for homogeneous master equation

(∂t − �)su(x, t) = 0, in R
n × R,

which states that all bounded solutions must be constant. We propose a new method-
ology for a direct method of moving planes applicable to the fully fractional heat
operator (∂t − �)s , and the proof of our main results based on this direct method
involves the perturbation technique, limit argument as well as Fourier transform. This
study opens up a way to investigate the geometric behavior of master equations, and
provides valuable insights for establishing qualitative properties of solutions and even
for deriving important Liouville theorems for other types of fractional order parabolic
equations.

B Zhenqiu Zhang
zqzhang@nankai.edu.cn

Lingwei Ma
mlw1103@outlook.com

Yahong Guo
yhguo@sjtu.edu.cn

1 School of Mathematical Sciences, Nankai University, Tianjin 300071, The People’s Republic of
China

2 School of Mathematical Sciences, Shanghai Jiaotong University, Shanghai 200240, The People’s
Republic of China

3 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, The People’s
Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13540-024-00328-7&domain=pdf


L. Ma et al.

Keywords Master equation · Fully fractional heat operator · Direct method of
moving planes · Radial symmetry · Monotonicity · Liouville theorem

Mathematics Subject Classification 35R11 · 35K05 · 47G30 · 35B50 · 35B53

1 Introduction

The objective of this paper is to explore the qualitative properties of solutions to space-
time dual nonlocal equations involving the fractional powers of the heat operator
(∂t − �)s . More specifically, we establish the radial symmetry and monotonicity of
solutions for the following master equation in a unit ball

{
(∂t − �)su(x, t) = f (u(x, t)), (x, t) ∈ B1(0) × R,

u(x, t) ≡ 0, (x, t) ∈ Bc
1(0) × R,

(1.1)

for any t ∈ R, and prove the Liouville theorem for the homogeneous master equations

(∂t − �)su(x, t) = 0, in R
n × R (1.2)

in the whole space.
The first proposal of such a fully fractional heat operator (∂t − �)s is attributed

to the mathematician Marcel Riesz, who introduced it in [26]. This nonlocal operator
can be defined in the following pointwise form

(∂t − �)su(x, t) := Cn,s

∫ t

−∞

∫
Rn

u(x, t) − u(y, τ )

(t − τ)
n
2+1+s

e− |x−y|2
4(t−τ ) dy dτ, (1.3)

where 0 < s < 1, the integral in y is taken in the Cauchy principal value sense and
the normalization positive constant

Cn,s = 1

(4π)
n
2 |�(−s)| ,

with �(·) denoting the Gamma function. The singular integral in (1.3) is well defined
in Rn × R provided

u(x, t) ∈ C2s+ε,s+ε
x, t, loc (Rn × R) ∩ L(Rn × R)

for some ε > 0, where the slowly increasing function space L(Rn ×R) is defined by

L(Rn × R) :=

⎧⎪⎨
⎪⎩u(x, t) ∈ L1loc(R

n × R) |
∫ t

−∞

∫
Rn

|u(x, τ )|e−
|x |2

4(t−τ )

1 + (t − τ)
n
2+1+s

dx dτ < ∞

⎫⎪⎬
⎪⎭ ,
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for ∀ t ∈ R, and the definition of the local parabolic Hölder space C2s+ε,s+ε
x, t, loc (Rn ×R)

will be specified in Sect. 2 . In particular, if u is bounded,we can ensure the integrability
of (1.3) by assuming only that u is local parabolic Hölder continuous. We notice that
the operator (∂t −�)s is nonlocal both in space and time, since the value of (∂t −�)su
at a given point (x, t) depends on the values of u over the wholeRn and even on all the
past time before t . The intriguing aspect of this problem is that applying the space-time
nonlocal operator (∂t − �)s to a function that only depends on either space or time, it
reduces to a familiar fractional order operator, as discussed in [27]. More precisely, if
u is only a function of x , then

(∂t − �)su(x) = (−�)su(x),

where (−�)s is the well-known fractional Laplacian of order 2s. While if u = u(t),
then

(∂t − �)su(t) = ∂st u(t),

where ∂st is usually denoted by Ds
left, representing the Marchaud left fractional

derivative of order s, defined as

Ds
leftu(t) = 1

|�(−s)|
∫ t

−∞
u(t) − u(τ )

(t − τ)1+s
dτ.

Moreover, it should be noted that as s tends to 1 from the left side, the fractional power
of heat operator (∂t − �)s converges to the local heat operator ∂t − � (cf. [17]).

The master equation has a wide range of applications in physical and biological
phenomena, such as anomalous diffusion [19], chaotic dynamics [30], biological inva-
sions [2], among others. In addition to these areas, it has also been employed in the
financial field [25], where it canmodel the correlation between waiting times and price
jumps in transactions. From a probabilistic perspective, the master equation plays a
crucial role in the theory of continuous time random walk, where u represents the
distribution of particles that make random jumps simultaneously with random time
lags (cf. [24]). This is in contrast to the nonlocal parabolic equations

∂t u + (−�)su = f (1.4)

or the dual fractional parabolic equation

∂α
t u + (−�)su = f , (1.5)

where jumps are independent of the waiting times. In other words, the master equation
takes into account the strong correlation between the waiting times and the particle
jumps, whereas the nonlocal parabolic equation (1.4) or the dual fractional parabolic
equation (1.5) do not. It is evident that themaster equation is of great importance in var-
ious fields, and continuous research on it can drive us towards a deeper understanding
of complex phenomena.
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Nowadays substantial progress has beenmade in a series of remarkable papers [1, 4,
27] investigating the existence, uniqueness and regularity of solutions to master equa-
tions. The primary approach used in such studies is the extension method introduced
by Caffarelli and Silvestre [3], which extends the master equation to a local degenerate
parabolic equation in a higher dimensional space. As far as we know, there is limited
understanding of the geometric behavior of solutions to the master equation. This lack
of results can mainly be attributed to the challenges posed by the non-locality and
strong correlation of the operator (∂t − �)s within the framework of master equation.
The only related paper we are aware of is [11], in which Chen and Ma utilized a direct
sliding method to establish that the entire solution of the master equation in (1.1) is
monotone increasing and one-dimensional symmetric in Rn ×R, and thus proved the
Gibbons’ conjecture in this context.

The method of moving planes, which was introduced by Alexandroff in [18], is
a commonly used technique to study the monotonicity and symmetry of solutions
to local elliptic and parabolic equations. However, this approach cannot be directly
applied to pseudo-differential equations involving the fractional Laplacian, due to the
non-locality of this operator. One effective method is to combine the aforementioned
extension method, which enables us to apply the traditional method of moving planes
designed for local equations to the extended problem, thereby establishing the proper-
ties of solutions. Another useful approach is to convert the given pseudo-differential
equations into their equivalent integral equations. By doing so, one can use the method
of moving planes in integral forms and the regularity lifting to investigate the prop-
erties of solutions (cf. [9, 10]). These two effective methods have been successfully
employed to investigate elliptic equations involving the fractional Laplacian. How-
ever, the above two methods can only be applied to equations involving the fractional
Laplacian, and sometimes one may need to perform cumbersome calculations and
to impose additional restrictions on the problem, which may not be necessary when
dealing with the fractional equations directly.

A decade later, Chen, Li, and Li [8] made further progress by introducing a direct
method of moving planes. This method removed the restrictions and greatly sim-
plified the proof process. Since then, this effective direct method has been widely
applied to establish the symmetry, monotonicity, non-existence, and even to obtain
estimates in a boundary layer of solutions for various elliptic equations and systems
involving the fractional Laplacian, the fully nonlinear nonlocal operators, the frac-
tional p-Laplacians as well as the higher order fractional operators. For more details,
please refer to [5–7, 13, 21–23, 31] and the references therein. The direct method of
moving planes is noteworthy for its ability not only to explore the symmetry, mono-
tonicity, and non-existence of positive solutions for the fractional parabolic equations
of type (1.4) (cf. [14–16, 29]), but also for its recent generalization to investigate the
monotonicity of solutions for the dual nonlocal parabolic equations of type (1.5) in a
half-space (cf. [12]).

In contrast, there has been no progress in investigating the feasibility of a direct
method of moving plane for the master equation, and in exploring how to utilize this
approach to derive qualitative properties of solutions to the master equation. As we
have observed that the kernel of the fully fractional heat operator (∂t − �)s possesses
a radial decreasing property, thus it is hopeful to establish the direct method of moving
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planes, which is exactly the research objective of this paper. The innovation of this
paper is that it overcomes the difficulties arising from the non-locality and strong
correlation of the operator (∂t − �)s , and avoids the heavy reliance on extension
method as in classical approach when studying the master equations. By establishing
various maximum principles, we have developed a direct method of moving plane
applicable to the master equation, which has allowed us to obtain the radial symmetry
and strict monotonicity of solution u(x, t) to the master equation (1.1) in a unit ball
for any t ∈ R. More surprisingly, we have also applied this direct method to establish
the Liouville theorem of the homogeneous master equation in Rn × R.

To illustrate the main results of this paper, we start by presenting the notation that
will be used throughout the subsequent sections. Let x1 be any given direction in Rn ,

Tλ = {x = (x1, x
′) ∈ R

n | x1 = λ for λ ∈ R}

be the moving planes perpendicular to x1-axis,

�λ = {x ∈ R
n | x1 < λ} and �λ = {x ∈ B1(0) | x1 < λ}

be the region to the left of the hyperplane Tλ in R
n and in B1(0) respectively. We

denote the reflection of x with respect to the hyperplane Tλ as

xλ = (2λ − x1, x2, · · · , xn).

Let uλ(x, t) = u(xλ, t), we define

wλ(x, t) = uλ(x, t) − u(x, t),

which represents the comparison between the values of u(x, t) and u(xλ, t). It is
obvious that wλ(x, t) is an antisymmetric function of x with respect to the hyperplane
Tλ.

We are now ready to present the main results of this paper. Our primary outcome
is the narrow region principle for antisymmetric functions in bounded domains.

Theorem 1 Let � be a bounded narrow domain containing in the narrow slab {x ∈
�λ | λ − l < x1 < λ} with some small l. Suppose that

w(x, t) ∈ C2s+ε,s+ε
x, t, loc (� × R) ∩ L(Rn × R)

is lower semi-continuous up to the boundary ∂� and bounded from below in � × R,
and satisfies

⎧⎨
⎩

(∂t − �)sw(x, t) = c(x, t)w(x, t), (x, t) ∈ � × R,

w(x, t) ≥ 0, (x, t) ∈ (�λ\�) × R,

w(x, t) = −w(xλ, t), (x, t) ∈ �λ × R,

(1.6)
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where the coefficient function c(x, t) has a uniformly upper bound C0. Then

w(x, t) ≥ 0, in �λ × R (1.7)

for sufficiently small l. Furthermore, if w(x, t) attains zero at some point (x0, t0) ∈
� × R, then

w(x, t) ≡ 0, in R
n × (−∞, t0]. (1.8)

The above narrow region principle is a crucial element in implementing the method
of moving planes, as it provides a starting point to observe some geometric behavior of
solutions. Based on this maximum principle, we construct a direct method of moving
planes that is suitable for the master equations, and then determine the maximum
distance that the plane can be moved while maintaining the desired property. This
allows us to demonstrate the following radial symmetry and strict monotonicity result.

Theorem 2 Let

u(x, t) ∈ C2s+ε,s+ε
x, t (B1(0) × R)

be a positive bounded solution of

{
(∂t − �)su(x, t) = f (u(x, t)), (x, t) ∈ B1(0) × R,

u(x, t) ≡ 0, (x, t) ∈ Bc
1(0) × R.

Suppose that f ∈ C1([0,+∞)) satisfies f (0) ≥ 0 and f ′(0) ≤ 0. Then u(x, t) is
radially symmetric and strictly decreasing about the origin in B1(0) for any t ∈ R.

To establish the Liouville theorem for the homogeneous master equation inRn ×R,
which has important applications in several areas of mathematics and physics, we first
establish the following maximum principle for antisymmetric functions in unbounded
domains.

Theorem 3 Let

w(x, t) ∈ C2s+ε,s+ε
x, t, loc (�λ × R) ∩ L(Rn × R)

be upper semi-continuous up to the boundary Tλ and bounded from above in �λ ×R.
Suppose that

{
(∂t − �)sw(x, t) ≤ 0, at the points in �λ × R where w(x, t) > 0,
w(x, t) = −w(xλ, t), in �λ × R,

(1.9)

then there holds that
w(x, t) ≤ 0 in �λ × R. (1.10)

Remark 1 Compared to the narrow domain principle (Theorem 1) and the maximum
principle (Theorem 3), although the overall proof methods of both theorems are based
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on the contradiction and perturbation technique, the former only has t belonging to an
unbounded interval, while the latter has both x and t belonging to unbounded domains,
and x does not belong to a narrow region. In the latter case, x and t need to be perturbed
simultaneously, and it is more effective to construct a sequence of auxiliary functions
in an antisymmetric form.

By utilizing this maximum principle to show that the solutions are symmetric with
respect to all hyperplanes inRn for any t ∈ R, and combining with Fourier transform,
we establish the Liouville theorem for the homogeneous master equation in R

n × R.

Theorem 4 Assume that

u(x, t) ∈ C2s+ε,s+ε
x, t, loc (Rn × R)

is a bounded solution of

(∂t − �)su(x, t) = 0, (x, t) ∈ R
n × R,

Then u(x, t) must be a constant.

Remark 2 As is well known, the classical Liouville theorem states that any bounded
harmonic function defined on thewhole spacemust be a constant. In fact, this bounded-
ness condition can be relaxed to one-sided boundedness. However, under this relaxed
condition, the Liouville theorem for the caloric function satisfying heat equation

(∂t − �)u(x, t) = 0, in R
n × R (1.11)

is not valid. For instance, the function u(x, t) = ex+t is a positive nonconstant solution
of (1.11) inRn×R. Since themaster equations recover the classical parabolic equations
in limit cases, then in this sense Theorem 4 can be regarded as a generalization of the
Liouville theorem for the local heat equation to the case of master equations involving
the fractional heat operator (∂t−�)s , where the bounded conditionmay not be optimal
but is still reasonable.

Remark 3 In contrast to the nonlocal elliptic equation (−�)su(x) = 0 and the non-
local parabolic equations ∂t u(x, t) + (−�)su(x, t) = 0, where the Liouville theorem
can be directly proven by the maximum principles in unbounded domains. But for the
space-time nonlocal equation (1.2), where the operator (∂t − �)s with respect to the
time variable t is also nonlocal, such maximum principle can only determine that the
solution is solely dependent on the variable t . To further prove that the solution must
be a constant, Fourier transform is applied.

To conclude this section, we will provide a brief outline of the structure of this
paper. In Sect. 2 , we present the definition of parabolic Hölder space, as well as some
auxiliary results that are necessary for proving our main theorems. Sect. 3 is devoted
to demonstrating two maximum principle: the narrow domain principle (Theorem 1)
and the maximum principle in unbounded domains (Theorem 3). By utilizing these

123



L. Ma et al.

maximum principles, we establish a direct method of moving planes for the master
equation, which enables us to complete the proof of Theorem 2 and Theorem 4 in the
last section.

2 Preliminaries

In this section, we present the definition of the parabolic Hölder space and collect some
useful preliminary estimates, which are necessary for establishing our main results.
Throughout this paper, we use C to denote a general constant whose value may vary
from line to line.

Now we start by stating the definition of parabolic Hölder space C2α,α
x, t (Rn × R)

(cf. [20]) as follows.

(i) When 0 < α ≤ 1
2 , if u(x, t) ∈ C2α,α

x, t (Rn ×R), then there exists a constant C > 0
such that

|u(x, t) − u(y, τ )| ≤ C
(
|x − y| + |t − τ | 12

)2α
for any x, y ∈ R

n and t, τ ∈ R.
(ii) When 1

2 < α ≤ 1, we say that

u(x, t) ∈ C2α,α
x, t (Rn × R) := C1+(2α−1),α

x, t (Rn × R),

if u is α-Hölder continuous in t uniformly with respect to x and its gradient∇xu is
(2α − 1)-Hölder continuous in x uniformly with respect to t and (α − 1

2 )-Hölder
continuous in t uniformly with respect to x .

(iii) While for α > 1, if u(x, t) ∈ C2α,α
x, t (Rn × R), then it means that

∂t u, D2
xu ∈ C2α−2,α−1

x, t (Rn × R).

In addition, we can analogously define the local parabolic Hölder space

C2α,α
x, t, loc(R

n × R).

In the following,weprovide the boundedness estimates for the nonlocal operators ∂st
and (∂t −�)s acting on smooth functions, respectively. These estimates are repeatedly
employed in establishing our main results.

Lemma 1 (cf. [12]) Let

ηr (t) ∈ C∞
0

(
(−r2 + t0, r

2 + t0)
)

,

For some t0 ∈ R and r > 0, then there exists a positive constant C that depends only
on s such that

|∂st ηr (t)| ≤ C

r2s
in (−r2 + t0, r

2 + t0).
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Lemma 2 (cf. [11]) Let

φr (x, t) ∈ C∞
0

(
Br (x

0) × (−r2 + t0, r
2 + t0)

)

for some (x0, t0) ∈ R
n × R and r > 0, then there exists a positive constant C that

depends only on s and n such that

|(∂t − �)sφr (x, t)| ≤ C

r2s
in Br (x

0) × (−r2 + t0, r
2 + t0).

3 Various maximum principles for antisymmetric functions

In this section, we demonstrate various maximum principles for antisymmetric func-
tions, namely, Theorem 1 and Theorem 3 . It will be shown in the later section that
these principles play a crucial role in establishing a direct method of moving planes
for the master equations.

3.1 Narrow region principle in bounded domains

Our first objective is to prove Theorem 1 , which establishes a narrow region principle
for antisymmetric functions in bounded domains. This principle is a key ingredient
in demonstrating the radial symmetry and monotonicity of solutions for the master
equation (1.1).

Proof of Theorem 1 We first argue by contradiction to derive (1.7). Due to the narrow
region � is bounded and the function w is lower semi-continuous up to the boundary
∂�, there must exist x(t) ∈ � such that

w(x(t), t) = min
x∈�

w(x, t) (3.1)

for each fixed t ∈ R. If (1.7) is not valid, we may assume on the contrary that there
exists a positive constant m such that

inf
�×R

w(x, t) = inf
R

w(x(t), t) = −m < 0. (3.2)

Since t belongs to R that is an unbounded domain, the infimum of w(x(t), t) with
respect to t may not be attainable, but there certainly exists a sequence {(x(tk), tk)} ⊂
� × R such that

w(x(tk), tk) = −mk → −m as k → ∞.

Let εk = m − mk , then it is evident that εk is nonnegative and εk → 0 as k → 0. In
order to remedy scenario that the infimum of w with respect to t may not be attained,
we need to perturb w with respect to the variable t such that the perturbed function
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can attain its infimum. For this purpose, we introduce the following auxiliary function

vk(x, t) = w(x, t) − εkηk(t),

where
ηk(t) = η(t − tk) ∈ C∞

0 ((−1 + tk, 1 + tk))

is a smooth cut-off function that satisfies

η(t) =
{
1 t ∈ (− 1

2 ,
1
2 ),

0, t /∈ (−1, 1),
(3.3)

and 0 ≤ η(t) ≤ 1. One one hand, we have

vk(x(tk), tk) = w(x(tk), tk) − εk = −mk − m + mk = −m.

On the other hand, if (x, t) ∈ � × (R \ (−1 + tk, 1 + tk)), then it follows from (3.2)
that

vk(x, t) = w(x, t) ≥ −m.

Based on the above analysis and the exterior condition in (1.6) satisfied by w, there
exists

(x̄ k, t̄k) ∈ � × (−1 + tk, 1 + tk)

such that

− m − εk ≤ vk(x̄
k, t̄k) = inf

�×R

vk(x, t) = inf
�λ×R

vk(x, t) ≤ −m. (3.4)

From this, it is not difficult to further verify that

− m ≤ w(x̄ k, t̄k) ≤ −m + εk = −mk < 0. (3.5)

Next, we derive a contradiction at the minimum point (x̄ k, t̄k) of vk in �λ ×R. On
the one hand, by performing a direct calculation and combining the anti-symmetry
of w in x with the decreasing property of the kernel of operator (∂t − �)s due to
|x̄ k − y| < |x̄ k − yλ|, we have

(∂t − �)svk(x̄
k, t̄k)

= Cn,s

∫ t̄k

−∞

∫
Rn

vk(x̄ k, t̄k) − vk(y, τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−y|2

4(t̄k−τ ) dy dτ

= Cn,s

∫ t̄k

−∞

∫
�λ

vk(x̄ k, t̄k) − vk(y, τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−y|2

4(t̄k−τ ) dy dτ

+Cn,s

∫ t̄k

−∞

∫
�λ

vk(x̄ k, t̄k) − vk(yλ, τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−yλ|2

4(t̄k−τ ) dy dτ
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≤ Cn,s

∫ t̄k

−∞

∫
�λ

vk(x̄ k, t̄k) − vk(y, τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−yλ|2

4(t̄k−τ ) dy dτ

+Cn,s

∫ t̄k

−∞

∫
�λ

vk(x̄ k, t̄k) − vk(yλ, τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−yλ|2

4(t̄k−τ ) dy dτ

= Cn,s

∫ t̄k

−∞

∫
�λ

vk(x̄ k, t̄k) − w(y, τ ) + εkηk(τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−yλ|2

4(t̄k−τ ) dy dτ

+Cn,s

∫ t̄k

−∞

∫
�λ

vk(x̄ k, t̄k) − w(yλ, τ ) + εkηk(τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−yλ|2

4(t̄k−τ ) dy dτ

= 2Cn,svk(x̄
k, t̄k)

∫ t̄k

−∞

∫
�λ

e
− |x̄k−yλ|2

4(t̄k−τ )

(t̄k − τ)
n
2+1+s

dy dτ

+2Cn,sεk

∫ t̄k

−∞

∫
�λ

ηk(τ )e
− |x̄k−yλ|2

4(t̄k−τ )

(t̄k − τ)
n
2+1+s

dy dτ. (3.6)

In order to estimate two integrals in the last line of (3.6), wemake a change of variables

t = |x̄ k − yλ|2
4(t̄k − τ)

and derive

Cn,s

∫ t̄k

−∞

∫
�λ

e
− |x̄k−yλ|2

4(t̄k−τ )

(t̄k − τ)
n
2+1+s

dy dτ

= 1

(4π)
n
2 |�(−s)|

∫
�λ

∫ +∞

0

e−t

(
|x̄ k−yλ|2

4t )
n
2+1+s

|x̄k − yλ|2
4t2

dt dy

= 4s

π
n
2 |�(−s)|

∫
�λ

1

|x̄ k − yλ|n+2s

∫ +∞

0
e−t t

n
2+s−1 dt dy

= 4s�( n2 + s)

π
n
2 |�(−s)|

∫
�λ

1

|x̄ k − yλ|n+2s dy.

Substituting the above equality into (3.6), and applying ηk ∈ [0, 1] and (3.4) to arrive
at

(∂t − �)svk(x̄
k, t̄k)

≤ Cvk(x̄
k, t̄k)

∫
�λ

1

|x̄ k − yλ|n+2s dy + Cεk

∫
�λ

1

|x̄ k − yλ|n+2s dy

≤ Cvk(x̄ k, t̄k)

l2s
+ Cεk

l2s

≤ −Cm

l2s
+ Cεk

l2s
. (3.7)
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On the other hand, starting from the differential equation in (1.6) and combining
the fact that C(x, t) has a uniformly upper bound C0, (3.5) with Lemma 1 , we obtain

(∂t − �)svk(x̄
k, t̄k) = (∂t − �)sw(x̄ k, t̄k) − εk(∂t − �)sηk(t̄k)

= c(x̄ k, t̄k)w(x̄ k, t̄k) − εk∂
s
t ηk(t̄k)

≥ −C0m − Cεk . (3.8)

Then a combination of (3.7) and (3.8) yields that

−C0m ≤ −Cm

l2s
+ Cεk

l2s
+ Cεk → −Cm

l2s
,

as k → ∞. Dividing both side of the preceding inequality by −m, we deduce that

C0 ≥ C

l2s
,

which is a contradiction for sufficiently small l. Hence, we conclude that (1.7) is true.
In the sequel, we remain to demonstrate the validity of (1.8). It follows from (1.7)

that

w(x0, t0) = min
�λ×R

w(x, t) = 0.

The equation in (1.6) obviously implies that

(∂t − �)sw(x0, t0) = 0. (3.9)

Besides, through a straightforward calculation, we derive

(∂t − �)sw(x0, t0) = −Cn,s

∫ t0

−∞

∫
Rn

w(y, τ )

(t0 − τ)
n
2+1+s

e
− |x0−y|2

4(t0−τ ) dy dτ

= Cn,s

∫ t0

−∞

∫
�λ

w(y, τ )

(t0 − τ)
n
2+1+s

[
e
− |x0−yλ|2

4(t0−τ ) − e
− |x0−y|2

4(t0−τ )

]
dy dτ.

Since w(x, t) ≥ 0 in �λ × R and

e
− |x0−yλ|2

4(t0−τ ) − e
− |x0−y|2

4(t0−τ ) < 0,

then it follows from (3.9) that

w(x, t) ≡ 0 for (x, t) ∈ �λ × (−∞, t0].
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Finally, the antisymmetry of w(x, t) with respect to x infers that

w(x, t) ≡ 0 in R
n × (−∞, t0].

Therefore, the proof of Theorem 1 is completed. �

3.2 Maximum principle in unbounded domains

We proceed to prove Theorem 3 , which establishes the maximum principle for anti-
symmetric functions in unbounded domains. This principle is a fundamental ingredient
in proving the Liouville theorem for homogeneous master equations.

Proof of Theorem 3 The proof goes by contradiction, if (1.10) is violated, sincew(x, t)
has an upper bound in �λ × R, then there exists a positive constant A such that

sup
�λ×R

w(x, t) = A > 0. (3.10)

Note that the set �λ × R is unbounded, then the supremum of w(x, t) may not be
attained. Even so, (3.10) implies that there exists a sequence {(xk, tk)} ⊂ �λ ×R such
that

0 < w(xk, tk) = Ak → A, as k → ∞. (3.11)

Let εk = A− Ak , then the sequence {εk} is nonnegative and tends to zero as k → ∞.
Given that the supremum of w(x, t) with respect to both x and t may not be

attained, it is necessary to perturb the function w with respect to both x and t such
that the perturbed function not only attains the supremum, but also preserves the
antisymmetry in x . With this aim, we need to introduce an antisymmetric auxiliary
function. Let φ(x) ∈ C∞

0 (Rn) satisfy

φ(x) =
{

e
1+ 1

|x |2−1 , x ∈ B1(0) ,

0, x /∈ B1(0) .

We denote rk = dist(xk, Tλ), then it is not difficult to verify that

�k(x) = φ

(
2(x − xk)

rk

)
− φ

(
2(xλ − xk)

rk

)
∈ C∞

0

(
Brk

2
(xk) ∪ Brk

2

(
(xk)λ

))

is an antisymmetric function with respect to the plane Tλ, and

max
x∈Rn

�k(x) = �k(x
k) = φ(xk) = 1.
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We further select a smooth cut-off function of t that

ηk(t) = η

(
t − tk
(
rk
2 )2

)
∈ C∞

0

(
(tk − (

rk
2

)2, tk + (
rk
2

)2)
)

,

where η is defined in (3.3).
Now we choose the antisymmetric auxiliary function as follows

Vk(x, t) = w(x, t) + εk�k(x)ηk(t).

Let

Q rk
2
(xk, tk) = Brk

2
(xk) × (tk − (

rk
2

)2, tk + (
rk
2

)2)

be a parabolic cylinder, then a straightforward calculation implies that

Vk(x
k, tk) = w(xk, tk) + εk = Ak + A − Ak = A,

and

Vk(x, t) = w(x, t) ≤ A for (x, t) ∈ (�λ × R) \ Q rk
2
(xk, tk).

Thus, the auxiliary function Vk(x, t) must attain its maximum value in �λ ×R. More
precisely, there exists a point (x̄ k, t̄k) ∈ Q rk

2
(xk, tk) such that

A + εk ≥ Vk(x̄
k, t̄k) = sup

�λ×R

Vk(x, t) ≥ A > 0. (3.12)

Meanwhile, it follows from the definition of Vk that

A ≥ w(x̄ k, t̄k) ≥ A − εk = Ak > 0,

then we can apply the differential inequality in (1.9) to w at point (x̄ k, t̄k).
Next, we intend to derive a contradiction at the maximum point (x̄ k, t̄k) of Vk in

�λ × R. On one hand, combining the definition of Vk with the differential inequality
in (1.9) and Lemma 2 , we obtain

(∂t − �)sVk(x̄
k, t̄k) = (∂t − �)sw(x̄ k, t̄k) + εk(∂t − �)s

(
�k(x̄

k)ηk(t̄k)
)

≤ Cεk

r2sk
.

(3.13)
On the other hand, starting from the definition of operator (∂t − �)s and utilizing
the antisymmetry of auxiliary function Vk , the radial decrease of the kernel as well as
(3.12), we compute

(∂t − �)sVk(x̄
k, t̄k)
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= Cn,s

∫ t̄k

−∞

∫
�λ

Vk(x̄ k, t̄k) − Vk(y, τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−y|2

4(t̄k−τ ) dy dτ

+Cn,s

∫ t̄k

−∞

∫
�λ

Vk(x̄ k, t̄k) + Vk(y, τ )

(t̄k − τ)
n
2+1+s

e
− |x̄k−yλ|2

4(t̄k−τ ) dy dτ

≥ 2Cn,s

∫ t̄k

−∞

∫
�λ

Vk(x̄ k, t̄k)

(t̄k − τ)
n
2+1+s

e
− |x̄k−yλ|2

4(t̄k−τ ) dy dτ

= 2
4s�( n2 + s)

π
n
2 |�(−s)| Vk(x̄

k, t̄k)
∫

�λ

1

|x̄k − yλ|n+2s dy

≥ CA

r2sk
. (3.14)

Finally, a combination of (3.13) and (3.14) yields that

A ≤ Cεk,

which leads to a contradiction for sufficiently large k. Hence, we conclude that (1.10)
is valid, and then the proof of Theorem 3 is completed.

�

4 The proof of main results

In this section, we will show how the maximum principles established previously
can be used to develop a direct method of moving planes applicable to the master
equations. By means of this direct method, we complete the proof of our main results
(i.e., Theorem 2 and Theorem 4).

4.1 Radial symmetry of solutions in a unit ball

In this subsection, we apply the narrow region principle (Theorem 1) to initiate the
moving plane and combine the perturbation techniquewith the limit argument to prove
that solutions of the master equation subject to the vanishing exterior condition are
radially symmetric and strictly decreasing with respect to the origin in B1(0) for any
t ∈ R, under appropriate assumptions on the nonhomogeneous term f .

Proof of Theorem 2 To carrying out the method of moving planes, we choose x1 to be
any direction and let Tλ, �λ, �λ, xλ, and wλ be defined as in Sect. 1 . By a direct
calculation, we have

⎧⎨
⎩

(∂t − �)swλ(x, t) = Cλ(x, t)wλ(x, t), (x, t) ∈ �λ × R,

wλ(x, t) ≥ 0, (x, t) ∈ (�λ\�λ) × R,

wλ(x, t) = −wλ(xλ, t), (x, t) ∈ �λ × R,

(4.1)
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where the coefficient function

Cλ(x, t) = f (uλ(x, t)) − f (u(x, t))

uλ(x, t) − u(x, t)

is bounded ensured by f ∈ C1([0,+∞)) and the boundedness of u. Now we divide
the proof into two steps.
Step 1. Start moving the plane Tλ from x1 = −1 to the right along x1-axis. If λ is
sufficiently close to −1, then �λ is a narrow region. Furthermore, the assumptions in
Theorem 2 guarantee that we can apply the narrow region principle, as established in
Theorem 1 , to problem (4.1). This allows us to deduce that

wλ(x, t) ≥ 0 in �λ × R. (4.2)

Note that inequality (4.2) provides a starting point to move the plane Tλ.
Step 2. In the second step, we continue to move the plane Tλ to the right along x1-axis
as long as (4.2) is valid to its limiting position. Let

λ0 = sup
{
λ < 0 | wμ(x, t) ≥ 0, (x, t) ∈ �μ × R for any μ ≤ λ

}
,

Our purpose is to show that
λ0 = 0 (4.3)

by a contradiction argument. Otherwise, if λ0 < 0, then the definition of λ0 implies
that there exists a sequence of negative numbers {λk} with {λk} ↘ λ0 such that

inf
�λk×R

wλk (x, t) = inf
�λk×R

wλk (x, t) = −mk < 0,

and

mk → 0, as k → ∞,

where we usewλk (x, t) ≥ 0 in (�λk \�λk )×R. SinceR is an unbounded interval, the
infimum of wλk with respect to t may not be attained, but there must exist a sequence
{(xk, tk)} ⊂ �λk × R and a nonnegative sequence {εk} ↘ 0 as k → ∞, such that

wλk (x
k, tk) = inf

x∈�λk

wλk (x, tk) ≤ −mk + εkmk < 0.

To address the situationwhere the infimumofwλk with respect to t may not be attained,
we need to introduce the following auxiliary function

Wk(x, t) = wλk (x, t) − εkmkηk(t),
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where ηk(t) = η(t − tk) and η(t) is a smooth cut-off function defined in (3.3). A
straightforward computation leads to

Wk(x
k, tk) ≤ −mk,

and

Wk(x, t) = wλk (x, t) � −mk

for |t − tk | � 1. Hence, the auxiliary function Wk(x, t) could attain its minimum at
some point

(x̄ k, t̄k) ∈ �λk × (tk − 1, tk + 1),

such that

− mk − εkmk ≤ Wk(x̄
k, t̄k) = inf

�λk×R

Wk(x, t) ≤ −mk . (4.4)

It follows that
− mk ≤ wλk (x̄

k, t̄k) ≤ −mk + εkmk < 0. (4.5)

Next, we focus on the estimate of Wk at its minimum point (x̄ k, t̄k). On one hand,
analogous to the estimate of (3.7), applying the antisymmetry ofwλk in x and |x̄ k−y| <

|x̄ k − yλk |, we derive

(∂t − �)sWk(x̄
k, t̄k)

≤ 2Cn,sWk(x̄
k, t̄k)

∫ t̄k

−∞

∫
�λk

e
− |x̄k−yλk |2

4(t̄k−τ )

(t̄k − τ)
n
2+1+s

dy dτ

+2Cn,sεkmk

∫ t̄k

−∞

∫
�λk

e
− |x̄k−yλk |2

4(t̄k−τ )

(t̄k − τ)
n
2+1+s

dy dτ

= CWk(x̄
k, t̄k)

∫
�λk

1

|x̄ k − yλk |n+2s dy + Cεkmk

∫
�λk

1

|x̄ k − yλk |n+2s dy

≤ −Cmk(C − εk)

dist(x̄ k, Tλk )
2s

≤ −Cmk(C − εk)

22s
(4.6)

On the other hand, combining the differential equation in (4.1), (4.5) with the
boundedness of Cλk (x̄

k, t̄k) and Lemma 1 , we derive

(∂t − �)sWk(x̄
k, t̄k) = (∂t − �)swλk (x̄

k, t̄k) − εkmk(∂t − �)sη(t̄k)

= Cλk (x̄
k, t̄k)wλk (x̄

k, t̄k) − εkmk∂
s
t η(t̄k)
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≥ −Cλk (x̄
k, t̄k)mk − Cεkmk . (4.7)

Thus, a combination of (4.6) and (4.7) yields that

Cλk (x̄
k, t̄k) ≥ −Cεk + C(C − εk)

22s
≥ C(C − εk).

By virtue of εk → 0 as k → ∞, we deduce that

Cλk (x̄
k, t̄k) ≥ C0 > 0

for sufficiently large k. From this, owing to

Cλk (x̄
k, t̄k) = f ′(ξ) for ξ ∈ (uλk (x̄

k, t̄k), u(x̄ k, t̄k))

and the assumption f ′(0) ≤ 0, there must exist a subsequence of {(x̄ k, t̄k)} (still
denoted by {(x̄ k, t̄k)}) such that

u(x̄ k, t̄k) ≥ C1 > 0. (4.8)

To proceed, we denote

w̄k(x, t) = wλk (x, t + t̄k) and C̄k(x, t) = Cλk (x, t + t̄k).

It follows from Arzelà-Ascoli theorem that there exists some functions w̄(x, t) and
C̄(x, t) such that

lim
k→∞ w̄k(x, t) = w̄(x, t) and lim

k→∞ C̄k(x, t) = C̄(x, t).

Furthermore, on account of the equation

(∂t − �)sw̄k(x, t) = C̄k(x, t)w̄k(x, t), in �λk × R,

and utilizing the regularity theory for master equation established in [27], we obtain
that the limit function w̄ satisfies

(∂t − �)sw̄(x, t) = C̄(x, t)w̄(x, t), in �λ0 × R, (4.9)

by λk → λ0 as k → ∞. Due to �λk is a bounded domain, we may assume that
x̄ k → x0, then applying (4.5) to derive

w̄(x0, 0) ← w̄k(x̄
k, 0) = wλk (x̄

k, t̄k) → 0,

as k → ∞, that is to say,
w̄(x0, 0) = 0.
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Combining the limit equation (4.9) with a direct calculation, we obtain

0 = (∂t − �)sw̄(x0, 0)

= −Cn,s

∫ 0

−∞

∫
Rn

w̄(y, τ )

(−τ)
n
2+1+s

e
|x0−y|2

4τ dy dτ

= Cn,s

∫ 0

−∞

∫
�λ0

w̄(y, τ )

⎡
⎣ e

|x0−yλ0 |2
4τ

(−τ)
n
2+1+s

− e
|x0−y|2

4τ

(−τ)
n
2+1+s

⎤
⎦ dy dτ.

Thereby the nonnegativity of w̄(x, t) in �λ0 × R, the antisymmetry of w̄(x, t) with
respect to x , and the radial decrease of the kernel ensure that the following identity

w̄(x, t) ≡ 0 in R
n × (−∞, 0] (4.10)

holds.
Furthermore, taking the same translation for u as follows

uk(x, t) = u(x, t + t̄k).

Similarly to the above argument regarding w̄k , we also have

lim
k→∞ uk(x, t) = ū(x, t),

and ū(x, t) satisfies the limit equation

(∂t − �)s ū(x, t) = f (ū(x, t)), (x, t) ∈ B1(0) × R. (4.11)

Then it follows from (4.8) that

ū(x0, 0) = lim
k→∞ uk(x̄

k, 0) = lim
k→∞ u(x̄ k, t̄k) > 0. (4.12)

Now we claim that
ū(x, 0) > 0 for any x ∈ B1(0). (4.13)

If not, then there exists a point x̄ ∈ B1(0) such that

ū(x̄, 0) = 0 = min
Rn×R

ū(x, 0)

by the exterior condition and the interior positivity of u. It follows that

(∂t − �)s ū(x̄, 0) = −Cn,s

∫ 0

−∞

∫
Rn

ū(y, τ )

(−τ)
n
2+1+s

e
|x̄−y|2

4τ dy dτ ≤ 0.
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In contrary, we apply the assumption f (0) � 0 and the limit equation (4.11) to lead
to

(∂t − �)s ū(x̄, 0) = f (ū(x̄, 0)) = f (0) ≥ 0.

Thus, we conclude that

(∂t − �)s ū(x̄, 0) = 0.

Taking into account that ū ≥ 0, we arrive at

ū(x, t) ≡ 0 in R
n × (−∞, 0],

which contradicts (4.12). From this, we verify that the assertion (4.13) is valid.
Finally, a combination of ū(x, 0) ≡ 0 in Bc

1(0), (4.13) and λ0 < 0 yields that there
must exist x ∈ Bc

1(0) such that xλ0 ∈ B1(0) and

w̄(x, 0) = ū(xλ0 , 0) − ū(x, 0) = ū(xλ0 , 0) > 0,

which contradict (4.10). Therefore, we prove that the limiting position must be T0, i.e.,
λ0 = 0. By arbitrarily choosing the direction of x1 and combining with the definition
of λ0, we conclude that u(x, t) must be radially symmetric and monotone decreasing
about the origin in x ∈ B1(0) for any t ∈ R.

We have yet to prove that such decrease is strict, in fact, it is sufficient to argue that

wλ(x, t) > 0 in �λ × R (4.14)

for any −1 < λ < 0. If not, then there exist some λ0 ∈ (−1, 0) and a point (x0, t0) ∈
�λ0 × R such that

wλ0(x
0, t0) = 0.

Combining the differential equation in (4.1) with the definition of nonlocal operator
(∂t − �)s , we deduce that

0 = (∂t − �)swλ0(x
0, t0)

= Cn,s

∫ t0

−∞

∫
Rn

−wλ0(y, τ )

(t0 − τ)
n
2+1+s

e
− |x0−y|2

4(t0−τ ) dy dτ

= Cn,s

∫ t0

−∞

∫
�λ0

wλ0(y, τ )

(t0 − τ)
n
2+1+s

[
e
− |x0−yλ0 |2

4(t0−τ ) − e
− |x0−y|2

4(t0−τ )

]
dy dτ.

Since wλ0(x, t) ≥ 0 in �λ0 × R and

e
− |x0−yλ0 |2

4(t0−τ ) − e
− |x0−y|2

4(t0−τ ) < 0,
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then we must have wλ0(x, t) ≡ 0 in �λ0 × (−∞, t0]. However, it contradicts the fact
that wλ0(x, t) �≡ 0 in �λ0 for any fixed t ∈ (−∞, t0], due to the exterior condition
and the interior positivity of u(x, t). Hence, we verify that the assertion (4.14) is valid,
and thus the proof of Theorem 2 is completed.

�

4.2 Liouville type theorem in the whole space

At the end of this paper, we utilize the maximum principle in unbounded domains
(Theorem 3) to show that solutions are symmetric with respect to all hyperplanes
in R

n for any t ∈ R, and combine with Fourier transform to complete the proof of
Liouville theorem (Theorem 4) for homogeneous master equation

(∂t − �)su(x, t) = 0, in R
n × R.

Proof of Theorem 4 For any fixed t ∈ R, we first claim that u(x, t) is symmetric with
respect to any hyperplane in R

n . Let x1 be any given direction in R
n , where we keep

the notations Tλ, �λ, xλ, uλ and wλ as defined above. For any λ ∈ R, according to
equation (1.2), we immediately calculate that wλ satisfies

{
(∂t − �)swλ(x, t) = 0, in �λ × R,

wλ(x, t) = −wλ(xλ, t), in �λ × R.

Meanwhile, the boundedness of u implies that wλ is also bounded. Then in terms of
Theorem 3 , we derive

wλ(x, t) ≤ 0 in �λ × R.

Replacing wλ with −wλ and following a similar argument as above, we can obtain

wλ(x, t) ≥ 0 in �λ × R.

Thus, it follows that
wλ(x, t) = 0 in �λ × R.

Thereby the arbitrariness of λ implies that u(x, t) is symmetric with respect to any
hyperplane perpendicular to x1-axis. Furthermore, since the choice of x1 direction is
also arbitrary, we verify that u(x, t) is symmetric with respect to any hyperplane in
R
n for any fixed t ∈ R. Therefore, we deduce that u must depend only on t , i.e.,

u(x, t) = u(t) in R
n × R.

From this, the proof Theorem 4 boils down to showing that the bounded solution
u(t) of

Ds
leftu(t) = 0 in R (4.15)

must be a constant.
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Note that the boundedness of u implies that u belongs to a one-side distributional
space L−

s (R). More precisely,

u(t) ∈ L−
s (R) = {u ∈ L1

loc(R) |
∫ t

−∞
|u(τ )|

1 + |τ |1+s
dτ < +∞ for any t ∈ R},

in which one can define Ds
leftu as a distribution

∫ +∞

−∞
(
Ds
leftu(t)

)
ψ(t) dt =

∫ +∞

−∞
u(t)Ds

rightψ(t) dt

for any ψ ∈ S (cf. [28]). Here Ds
right is the Marchaud right fractional derivative,

defined as

Ds
rightψ(t) = 1

|�(−s)|
∫ +∞

t

ψ(t) − ψ(τ)

(τ − t)1+s
dτ,

which only takes into account the values of ψ that occur after time t in the future.
Moreover, in such a setting u is a tempered distribution, then we can define its Fourier
transform and the inverse Fourier transform in the sense of distributions. Applying the
fact presented in [28] that

F(Ds
rightψ)(ρ) = (−iρ)sF(ψ)(ρ)

for any ψ ∈ S, then it follows from (4.15) that

0 =
∫ +∞

−∞
(
Ds
leftu(t)

)
ψ(t) dt =

∫ +∞

−∞
u(t)Ds

rightψ(t) dt

=
∫ +∞

−∞
u(t)F−1 (

(−iρ)sF(ψ)(ρ)
)
(t) dt

(4.16)

for any ψ ∈ S.
In the sequel, we show that

〈Fu, φ〉 = 0 for any φ ∈ C∞
0 (R \ {0}). (4.17)

Let φ ∈ C∞
0 (R \ {0}), then the function φ(ρ)

(−iρ)s
also belongs to C∞

0 (R \ {0}) ⊂ S.
There must exist a function ψ ∈ S such that

F(ψ)(ρ) = φ(ρ)

(−iρ)s
.

It follows from (4.16) that

〈Fu, φ〉 = 〈Fu, (−iρ)sF(ψ)(ρ)〉
= 〈u,F−1 ((−iρ)sF(ψ)(ρ))〉
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=
∫ +∞

−∞
u(t)F−1 ((−iρ)sF(ψ)(ρ)) (t) dt = 0.

Hence, the assertion (4.17) is valid, which implies thatF(u) is supported at the origin.
From this, we conclude that u(t) is a polynomial of t . While the boundedness of u
indicates that

u(t) ≡ C .

In conclusion, we complete the proof of Theorem 4 .
�
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