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Abstract
In this paper, the problem of identifying Multiple-Input-Single-Output (MISO) sys-
tems with fractional models from noisy input-output available data is studied. The
proposed idea is to use Higher-Order-Statistics (HOS), like fourth-order cumulants
(foc), instead of noisymeasurements. Thus, a fractional fourth-order cumulants based-
simplified and refined instrumental variable algorithm (frac-foc-sriv) is first developed.
Assuming that all differentiation orders are known a priori, it consists in estimating
the linear coefficients of all Single-Input-Single-Output (SISO) sub-models compos-
ing the MISO model. Then, the frac-foc-sriv algorithm is combined with a nonlinear
optimization technique to estimate all the parameters: coefficients and orders. The
performances of the developed algorithms are analyzed using numerical examples.
Thanks to fourth-order cumulants, which are insensitive to Gaussian noise, and the
iterative strategy of the instrumental variable algorithm, the parameters estimation is
consistent.
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1 Introduction

Continuous-time (CT) system identification involves usingmeasured input-output data
to build mathematical models that characterize the behavior of a system. Several
methods have therefore been developed in the literature to identify CT systems using
rational models [9–11, 20, 28, 35]. In many real applications such as heat transfer,
electrochemical and lithium-ion batteries, system behavior can be described more
accurately with fractional models than with rational models [1, 8, 15–17, 21, 26,
34, 36, 37]. This greater accuracy is due to the global characterization of fractional
differentiation. Consequently, various approches have been developed in the literature
to deal with system identification with fractional models (see [7, 22, 29, 31, 32, 38–
40, 42] and references therein for an overview). Most of the developed approaches
have focused on the problem of identifying SISO (Single-Input-Single-Output) and
MIMO (Multi-Input-Multi-Output) systems.All approches have been developedwhen
only the output measurements are noisy. In the case where both input and output
measurements are affected by additive noise, the system is called with Errors-In-
Variables (EIV). However, the estimation cannot be consistent when using the classical
approaches. This problem has been solved in [41] by using Second-Order-Statistics
(SOS) and in [4, 5] by using Higher-Order-Statistics (HOS), such us third-order and
fourth-order cumulants.

One of the main difficulties in CT system identification is the computing of time
derivatives. Since the goal is to obtain an estimate of a CT system, the knowledge
of input and output derivatives is required. However, these derivatives are firstly not
exactly computable when using sampled input-output data and secondly may amplify
the noise or the error of measurements effect. To overcome this problem, the simplified
and refined based-instrumental variable (sriv) algorithm has been proposed. Firstly,
it has been developed for rational and fractional SISO systems identification in the
case where only the output signal is noisy [12, 13, 18, 19, 27, 32, 43]. Then, it has
been extended for system identification with fractional models in the EIV context.
The developed estimator is based on fourth-order cumulants [2]. The obtained results
were satisfactory, the estimator gave unbiased estimates with minimal variances in
presence of important noise corrupting the input and output signals. In [33], it has
been developed for fractional MISO systems identification in the case where only
the output is noisy. In [25], the sriv estimator based on third-order cumulants has
been developed for MISO system identification with fractional models in the EIV
framework. But the assumption of non-symmetry of the input signals on which the
method is relying is restrictive. To solve this problem and in early work developed
in [3], the ordinary least squares method based on fourth-order cumulants has been
proposed. It gave consistent results in presence of noise corrupting both input and
output measurements. However, the variance of the estimates becomes larger when
the noise level becomes significant.

Hence, motivated by the studied works mentioned above, the main contribution of
this paper is to develop a new sriv estimator based on fourth-order cumulants. Firstly,
the differentiation orders are supposed to be known and only the linear coefficients are
estimated. The developed algorithm is called fractional fourth-order cumulants based-
simplified and refined instrumental variable (frac-foc-sriv). Secondly, all parameters of
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Fig. 1 Fractional LTI MISO system with Errors-In-Variables

MISO fractional model are estimated by assuming that the structures of all subsystems
composing the MISO fractional system are the same and have a prior knowledge.
Indeed, three cases are established: in the first case a global commensurate order is
estimated. In the second case, the local commensurate orders for all SISO subsystems
are estimated. In the third case, all differentiation orders are estimated. The proposed
idea consists in combining the frac-foc-sriv with a nonlinear optimization technique.
The developed algorithm is called frac-foc-sriv combined with optimization orders
(frac-foc-oosriv).

The remainder of this paper is organized as follows: the MISO fractional systems
with Errors-In-Variables are presented is Section 2. Section 3 describes the problem
statement of CTMISO system identification with fractional models in the EIV frame-
work. In Sections 4 and 5 the developed algorithms are detailed. Section 6 concludes
the paper.

2 MISO fractional systems with errors-in-variables

As illustrated in Figure 1, a fractional MISO Linear-Time-Invariant (LTI) system with
noise-affected input and output signals is represented by the following model:

(H)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(

1 +
N�∑

n=1
an,� pαn,�

)

ỹ�(t) =
(

M�∑

m=0
bm,� pβm,�

)

ũ�(t), � = 1, ..., L

ỹ(t) =
L∑

�=1
ỹ�(t)

u�(tk) = ũ�(tk) + eũ�
(tk), � = 1, ..., L

y(tk) = ỹ(tk) + eỹ(tk).

(2.1)

123



1614 M. Chetoui et al.

L is the number of SISO subsystems.
{ũ1(t), ..., ũ�(t), ..., ũL(t)} and {ỹ1(t), ..., ỹ�(t), ..., ỹL (t)} denote, respectively, the
noise-free input and output signals. The discrete-time available input and output mea-
surements are {u1(tk), ..., ul(tk), ..., uL (tk)} and y(tk). eũ�

(tk) and eỹ(tk) stand for
discrete-time noise affecting, respectively, the input and the output measurements.
They are defined, respectively, by the following equations:

eũ�
(tk) = Hũ�

(q−1)e0ũ�
(tk), � = 1, ..., L, (2.2)

eỹ(tk) = Hỹ(q
−1)e0ỹ(tk), (2.3)

q−1 represent the backward shift operator and e0ũ�
(tk), e0ỹ(tk) are zero-mean white

Gaussian noises.
The SISO fractional differential equation, relating the noise-free input ũ�(t) and

the noise-free output ỹ�(t), is:

⎛

⎝1 +
N�∑

n=1

an,� p
αn,�

⎞

⎠ ỹ�(t) =
⎛

⎝
M�∑

m=0

bm,� p
βm,�

⎞

⎠ ũ�(t), (2.4)

(an,�, bm,�) ∈ R
2 are the linear coefficients. p = D =

(
d

dt

)

designates the differ-

ential operator in the time-domain and the differentiation orders αn,� and βm,� are
positive real numbers.

Definition 1 (Grünwald-Leitnikov derivative approximation) The υ th (υ ∈ R
+)

derivative of a causal function f (t) ( f (t) = 0 for t ≤ 0), is computed by using the
following equation [14]:

Dυ f (t) � 1

hυ

K∑

k=0

(−1)k
(

υ

k

)

f (t − kh), (2.5)

h and K denote, respectively, the sampling period and the number of samples.

(
υ

k

)

is the Newton binomial generalized to fractional orders:

(
υ

k

)

= υ (υ − 1) (υ − 2) ... (υ − k + 1)

k! . (2.6)

Definition 2 (Laplace transform) The Laplace transform of the υ th derivative of a
causal function f (t) is defined as the rational case:

L (Dυ f (t)) = sυF(s), (2.7)

s denotes the Laplace variable.
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Applying Definition 2 to equation (2.4), leads to the fractional SISO transfer func-
tion:

H�(s) =

M�∑

m=0
bm,�sβm,�

1 +
N�∑

n=1
an,�sαn,�

. (2.8)

To ensure the MISO model identifiability, all differentiation orders αn,� and βm,�

are allowed to be real positive numbers and are ordered as following:

0 < α1,� < ... < αN�,� ; 0 ≤ β0,� < ... < βM�,�.

Definition 3 (Local commensurability) An �th SISO subsystem has a local commen-
surate order, denoted υ�, if all its differentiation orders are successive integer multiples
of υ�. In that case, equation (2.8) is rewritten as follows:

Hυ�
(s) =

nb,�∑

i=0
b̃i siυ�

1 +
na,�∑

j=1
ã j s jυ�

, (2.9)

where nb,� = βM�,�

υ�

and na,� = αN�,�

υ�

are integers and:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b̃i,� = bm,� if ∃m ∈ {0, 1, . . . , M�} such that iυ� = βm,�

b̃i,� = 0 otherwise

ã j,� = an,� if ∃n ∈ {1, . . . , N�} such that jυ� = αn,�

ã j,� = 0 otherwise.

(2.10)

Example 1 Let us take, as an example, the following SISO transfer function:

H1(s) = 0.5 + s0.3

1 + 2s0.3 + s0.6
. (2.11)

The local commensurate order is υ1 = 0.3. Indeed, according to Definition 3, equation
(2.11) is rewritten as follows:

Hυ1(s) = 0.5 + s1×0.3

1 + 2s1×0.3 + s2×0.3 . (2.12)

Definition 4 (Global commensurability) Consider a fractional MISO system such
that all SISO transfer functions have local commensurate orders υ�. If these are integer
multiples of the same order, then there is a global commensurability. The order is called
global commensurate order and is denoted υG .
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For each �th SISO subsystem, a vector containing the fractional differentiation orders
can be defined:

η� = [
α1,�, ..., αN�,�, β0,�, ..., βM�,�

]T
. (2.13)

The integers multiplying the global commensurate order are grouped in a vector as
follows:

χ� = [
γ1,�, ..., γN�,�, δ0,�, ..., δM�,�

]T
, (2.14)

where

⎧
⎪⎨

⎪⎩

if an,� �= 0 then γn,� = αn,�

υG
else γn,� = 0, n = 1, ..., N� ,

if bm,� �= 0 then δm,� = βm,�

υG
else δm,� = 0, m = 0, ..., M� .

(2.15)

Example 2 Take the following example of MISO fractional system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H1(s) = 1

1 + 0.5s0.4 + 2s0.8

H2(s) = 1.5

1 + 2s0.6 + s1.2

H3(s) = 3

1 + 1.5s0.8 + 0.5s1.6
.

(2.16)

According to Definition 3, the local commensurate orders are:

υ1 = 0.4 = 2 × 0.2
υ2 = 0.6 = 3 × 0.2
υ3 = 0.8 = 4 × 0.2.

(2.17)

So, the global commensurate order is υG = 0.2. Equation (2.16) can be rewritten as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H1(s) = 1

1 + 0.5s1×υ1 + 2s2×υ1
= 1

1 + 0.5s2×υG + 2s4×υG

H2(s) = 1.5

1 + 2s1×υ2 + s2×υ2
= 1.5

1 + 2s3×υG + s6×υG

H3(s) = 3

1 + 1.5s1×υ3 + 0.5s2×υ3
= 3

1 + 1.5s4×υG + 0.5s8×υG
.

(2.18)

Theorem 1 (Bounded-Input-Bounded-Output stability of fractional MISO systems) A
fractional MISO system is stable in the Bounded-Input-Bounded-Output (BIBO) sense
if and only if all its SISO subsystems are stable in the BIBO sense.

Consider an �th SISO fractional subsystem represented by equation (2.9). The latter
can be rewritten as follows:

Hυ�
(s) = Zυ�

(s)

Pυ�
(s)

. (2.19)

Solving equation Pυ�
(s) = 0 leads to its poles, denoted sk,�, k = 1, ..., na,�.
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Thus, the �th SISO subsystem, is BIBO stable if and only if [23]:

0 < υ� < 2, (2.20)

and
∀sk,� ∈ C, Pυ�

(sk,�) = 0 such as | arg(sk,�) |> υ�

π

2
. (2.21)

3 Problem formulation

The aim is to estimate the parameters of the fractional MISO model (H) described
by equation (2.1) using available noisy data measured at discrete-time intervals. Two
different cases are studied in this paper: the first case assumes that all differentiation
orders of all sub-models H�(p) (� = 1, ..., L) are known a priori and only the linear
coefficients are estimated. In the second case, all differentiation orders are assumed
to be unknown and estimated at the same time as the linear coefficients.

When only the linear coefficients are estimated, the parameter vector is defined by:

� = [θ1, ..., θ�, ..., θL ] , (3.1)

where
θ� = [

a1,�, a2,�, ..., aN�,�, b0,�, b1,�, ..., bM�,�

]T
. (3.2)

The dimension of this vector is
L∑

�=1
(N� + M� + 1).

When all parameters are estimated: coefficients and differentiation orders, there are
three sub-cases to be distinguished:

• Sub-case 1: If the fractional MISO system has a global commensurate order, then
the parameter vector is rewritten as follows:

� = [θ1, ..., θ�, ..., θL , υG ] . (3.3)

The dimension of this vector equals 1 +
L∑

�=1
(N� + M� + 1).

• Sub-case 2: If the MISO system has not a global commensurate order, or the
latter is too small, then the local commensurate order of all subsystems must be
estimated. The parameter vector is rewritten as follows:

� = [θ1, ..., θ�, ..., θL , ν] , (3.4)

where
ν = [υ1, ..., υ�, ..., υL ] . (3.5)

υ� {� = 1, ..., L} denotes the local commensurate order of the subsystem H�.

The dimension of this vector equals
L∑

�=1
(N� + M� + 2).
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1618 M. Chetoui et al.

• Sub-case 3: If the MISO system is non-commensurate, then the parameter vector
is rewritten as follows:

� = [θ1, ..., θ�, ..., θL , η] , (3.6)

where
η = [η1, ..., η�, ..., ηL ] , (3.7)

and
η� = [

α1,�, ..., αN�,�, β0,�, ..., βM�,�

]T
. (3.8)

The dimension of this vector equals 2
L∑

�=1
(N� + M� + 1).

The fractional MISO system identification problem in the EIV context consists in
estimating the parameter vector � (equation (3.3), (3.4) or (3.6)) using Nt samples of
noisy input and output data {u1(tk), ...u�(tk), ..., uL (tk), y(tk)}Nt

k=1. In this work, all
sub-cases are handled.

The proposed idea consists in decomposing the fractional MISO system into L
SISO subsystems. The parameters of the �th subsystem are estimated while assuming
that the parameters of all others qth (q �= �) are known.

The noisy output signal of the �th subsystem, denoted x�(tk), is obtained as follows:

x�(tk) = y(tk) −
L∑

q=1,q �=�

ỹq(tk). (3.9)

As is well-known for rational and fractional systems, classical system identification
methods cannot be applied in theEIV framework. Indeed, the available input andoutput
data are noisy, and this often leads to biased estimates. In this context, a consistent
estimation may be obtained either by using identification methods based on second-
order statistics or by using identification methods based on Higher-Order Statistics
(such as third- and fourth-order cumulants based methods).

In this work, the use of fourth-order cross-cumulants (foc) is proposed because of
the advantage of being immune to colored Gaussian noise, as well as white Gaussian
noise. Definitions and properties related to the foc are given in [3].

The following definition will be used in the developed algorithms.

Definition 5 (Fourth-order cross-cumulant estimation) The fourth-order cross-
cumulant is estimated from Nt samples of processes χi (tk), i = 1, ..., 4, by replacing
the mathematical expectations by sample averages:

Ĉχ1χ2χ3χ4(T1, T2, T3)

= Nt + 2

Nt (Nt − 1)

Nt∑

k=1

χ1(tk)χ2(tk + T1)χ3(tk + T2)χ4(tk + T3)

− 3

Nt (Nt − 1)

Nt∑

k=1

χ1(tk)χ2(tk + T1)
Nt∑

k=1

χ3(tk + T2)χ4(tk + T3)
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− 3

Nt (Nt − 1)

Nt∑

k=1

χ1(tk)χ2(tk + T2)
Nt∑

k=1

χ3(tk + T1)χ4(tk + T3)

− 3

Nt (Nt − 1)

Nt∑

k=1

χ1(tk)χ2(tk + T3)
Nt∑

k=1

χ3(tk + T1)χ4(tk + T2).

(3.10)

T1, T2 and T3 are the discrete-time gaps.

Remark 1 The fourth-order cumulants (respectively cross-cumulants) depend on sev-
eral variables, namely Nt , T1, T2 and T3. These variables contain a big number of
informations which may, as a consequence, be redundant in the cumulants estimation.
The proposed idea is to use:

• some parts of the time space1: these parts are dependent on a single variable and are
called cumulant lines. For example, a fourth-order cumulant line can be obtained
by fixing T2 and T3 as a constant chosen arbitrarily and T1 variable [5, 30].

• some part of sampled time data: a part of Nt samples of data is suffisant to obtain
unbiased cumulants (or cross-cumulants) estimates. This part is denoted Nh .

When using the same signal χ , Cχχχχ (T1, T2, T3) is called cumulant. To simplify
writing, (T1, T2, T3) will be replaced by T in the rest of the paper.

Remark 2

• Taking into account Remark 1 and choosing T2 = T3 = 0 leads to the following
fourth-order cross-cumulant estimates:

Ĉχ1χ2χ3χ4(T ) = Nt + 2

Nt (Nt − 1)

Nt∑

k=1

χ1(tk)χ2(tk + T )χ3(tk)χ4(tk)

− 3

Nt (Nt − 1)

Nt∑

k=1

χ1(tk)χ2(tk + T )

Nt∑

k=1

χ3(tk)χ4(tk)

− 3

Nt (Nt − 1)

Nt∑

k=1

χ1(tk)χ2(tk)
Nt∑

k=1

χ3(tk + T )χ4(tk)

− 3

Nt (Nt − 1)

Nt∑

k=1

χ1(tk)χ2(tk)
Nt∑

k=1

χ3(tk + T )χ4(tk).

(3.11)

T = T1 which varies from 1 to Nh .
• The refining of the part of sampled time data Nh depends essentially on the system,
which is supposed to be unknown. The optimal value of Nh can therefore be chosen
by experimental trials.

1 The time space contains the lines of cumulants obtained for Nt samples of data
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4 Linear coefficients estimation

With regard to the MISO fractional systems in the EIV framework, the following
assumptions can be made.

Assumptions 1

– A1:The structures of all SISO subsystems are supposed to be known and the same.
– A2: The real orders αn,�(n = 1, ..., N�) and βm,�(m = 0, ..., M�) for {� =
1, ..., L} are supposed to be known.

– A3:Thenoise-free input signals ũ� {� = 1, ..., L} are zeromean stationary stochas-
tic processes such that their fourth-order cumulants are non-zero. Their probability
density function (pdf) cannot therefore be Gaussian.

– A4: eũ�
(tk), {� = 1, ..., L}, eỹ(tk) are stationary zero-mean random variables

independent of ũ� {l = 1, ..., L} and ỹ and having a Gaussian pdf.

4.1 Fourth-order cumulants based-simplified and refined instrumental variable
algorithm

Under assumptions A1-A4, the estimation of fourth-order cross-cumulants is consis-
tent. Indeed, additive noise has a Gaussian pdf, so their fourth-order cross-cumulants
equal zero (assumption A4), and the estimates of fourth-order cross-cumulants of
inputs and output, therefore, contain only unbiased data [3]. Hence fourth-order cross-
cumulants of inputs and output will be used instead of noisy data.

Like the SISO fractional systems, the �th (� = 1, ..., L) subsystem is described by
the following model [2, 4]:

Cu�x�u�u�
(τ ) =

M�∑

m=0
bm,� pβm,�

1 +
N�∑

n=1
an,� pαn,�

Cu�u�u�u�
(τ ), (4.1)

where τ is the continuous-time gap.
The use of fourth-order cross-cumulants estimates leads to:

Ĉu�x�u�u�
(τ ) =

M�∑

m=0
bm,� pβm,�

1 +
N�∑

n=1
an,� pαn,�

Ĉu�u�u�u�
(τ ) + ε�(τ ). (4.2)

An �th output error can therefore be defined as:

ε�(τ ) = Ĉu�x�u�u�
(τ ) − Z�(p)

P�(p)
Ĉu�u�u�u�

(τ ). (4.3)
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The polynomials Z�(p) and P�(p) are defined respectively by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z�(p) =
M�∑

m=0
bm,� pβm,�

P�(p) = 1 +
N�∑

n=1
an,� pαn,� .

(4.4)

Equation (4.3) can be rewritten as follows:

ε�(τ ) = P�(p)

(
Ĉu�x�u�u�

(τ )

P�(p)

)

− Z�(p)

(
Ĉu�u�u�u�

(τ )

P�(p)

)

= P�(p)Ĉu�x�, f u�u�
(τ ) − Z�(p)Ĉu�u�, f u�u�

(τ )

= Ĉu�x�, f u�u�
(τ ) − ϕ̂T

�, f (τ )θ�, (4.5)

θ� is defined by equation (3.2) and ϕ̂T
�, f (τ ) contains the fractional derivatives of the

filtered fourth-order cross-cumulants:

ϕ̂T
�, f (τ ) =

[
−pα1,�Ĉu�x�, f u�u�

(τ ), ...,−pαN�,�Ĉu�x�, f u�u�
(τ ),

pβ0,�Ĉu�u�, f u�u�
(τ ), ..., pβM�,�Ĉu�u�, f u�u�

(τ )
]
,

(4.6)

Ĉu�x�, f u�u�
(τ ) and Ĉu�u�, f u�u�

(τ ) are computed using the following filter:

F�(p) = 1

P�(p)
. (4.7)

It contains the true parameters of the �th subsystem which are unknown but can be
estimated. Thus, the proposed idea is to generate the filter iteratively by using the
estimates obtained at each iteration i ,

Fi
� (p) = 1

P̂ i−1
� (p)

= 1

1 +
N�∑

n=1
âi−1
n,� pαn,�

. (4.8)

The optimal parameter vector, obtained at each iteration i , is the solution of the
following problem:

θ̂ i� = argmin
θ i�

(
J (θ i�)

)
, (4.9)

obtained by minimizing the criterion:

J
(
θ i�

)
= 1

Nh

Nh∑

τ=1

1

2

((
εi�(τ )

)T
εi�(τ )

)

, (4.10)
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1622 M. Chetoui et al.

εi�(tk) denotes the output error of the �th (� = 1, ..., L) subsystem computed at each
iteration i according to the estimates computed at iteration i − 1.

The optimal solution define the frac-foc-sriv estimator:

θ̂ i� =
⎛

⎝
1

Nh

Nh∑

τ=1

ζ̂ i�, f (τ )ϕ̂
i,T
�, f (τ )

⎞

⎠

−1

.

⎛

⎝
1

Nh

Nh∑

τ=1

ζ̂ i�, f (τ )Ĉu�x�, f u�u�
(τ )

⎞

⎠ , (4.11)

for � = 1, ..., L . ϕ̂
i,T
�, f (τ ) and ζ̂ i�, f (τ ) are defined, respectively, by equations (4.12)

and (4.13):

ϕ̂
i,T
�, f (τ ) =

[
−Ĉu�κ

i,1u�u�
(τ ), ...,−Ĉu�κ

i,N�u�u�
(τ ),

Ĉu��
i,0u�u�

(τ ), ..., Ĉu��
i,M�u�u�

(τ )
]
,

(4.12)

where:

• κ i,n = x
i,αn,�

�, f , {n = 1, ..., N�} is the fractional derivative of the �th filtered output
signal,

• �i,m = u
βm,�

�, f , {m = 0, ..., M�} is the fractional derivative of the �th filtered input
signal.

ζ̂ T
�, f (τ ) =

[
−Ĉu�κ̂

i,1u�u�
(τ ), ...,−Ĉu�κ̂

i,N�u�u�
(τ ),

Ĉu��
i,0u�u�

(τ ), ..., Ĉu��
i,M�u�u�

(τ )
]
,

(4.13)

κ̂ i,n = x̂
i,αn,�

�, f , {n = 1, ..., N�} is the fractional derivative of the �th estimated and
filtered output signal.

The frac-foc-sriv algorithm is summarized in three steps:

frac-foc-sriv algorithm

• Step 1: iteration i = 0

� compute the first estimate �̂0 =
[
θ̂01 , ..., θ̂0� , ..., θ̂0L

]
by applying the frac-foc-ls

algorithm [3]:

θ̂0� =
⎛

⎝
1

Nh

Nh∑

τ=1

ϕ̂�, f (τ )ϕ̂T
�, f (τ )

⎞

⎠

−1

.

⎛

⎝
1

Nh

Nh∑

τ=1

ϕ̂�, f (τ )Ĉu�x�, f u�u�
(τ )

⎞

⎠ , (4.14)

for � = 1, ..., L .
As long as the first estimate is not available, the following state variable filter

(SVF) is used in this step:

F�(p) = 1
(
1 + ω f ,� p

)N f ,�
, (4.15)
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N f ,� and ω f ,� represent its order and cut-off frequency respectively. The SVF
parameters tuning is detailed in [3].

Fractional derivatives of x� and u� signals are computed as following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

κ0,n = x
αn,�

�, f = pαn,�

(
1 + ω f ,� p

)N f ,�
x�, {n = 1, ..., N�}

�0,m = u
βm,�

�, f = pβm,�

(
1 + ω f ,� p

)N f ,�
u�, {m = 0, ..., M�}.

(4.16)

� compute the estimated output of the fractional MISO system ŷ0(tk)
• Step 2: iteration i = i + 1

for each subsystem � = 1, ..., L:
� compute the �th output xi�(tk) and the estimated output x̂ i�(tk)� compute the fractional derivatives of the filtered input and output signals

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ i,n = pαn,�

1 +
N�∑

n=1
âi−1
n,�

pαn,�

x�

κ̂ i,n = pαn,�

1 +
N�∑

n=1
âi−1
n,�

pαn,�

x̂ i�

�i,m = pβm,�

1 +
N�∑

n=1
âi−1
n,� pαn,�

u�

n = 1, ..., N�, m = 0, ..., M�.

(4.17)

� compute the fractional derivatives of fourth-order cross-cumulants estimates
according to equation (3.11) [3].
� built the regression and instrument vectors by using equations (4.12) and (4.13).
� estimate the parameter vector using equation (4.11).

• Step 3: go back to Step 2 until:

∥
∥
∥�̂i − �̂i−1

∥
∥
∥

∥
∥
∥�̂i−1

∥
∥
∥

< δ, for example δ = 10−5

or a maximum number of iterations is reached (i > imax ).
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Fig. 2 Three input and single output signals used for system identification

4.2 Example 1

The following fractional system with three inputs and single output is used to analyze
the performance of the developed frac-foc-sriv algorithm:

(H1) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ỹ(t) = H1(p)ũ1(t) + H2(p)ũ2(t) + H3(p)ũ3(t)

H1(p) = b0,1
1 + a1,1 pα1,1

= 1.5

1 + 3p0.8

H2(p) = b0,2
1 + a1,2 pα1,2

= 2

1 + p0.2

H3(p) = b0,3
1 + a1,3 pα1,3

= 1

1 + 0.5p1.2

u�(tk) = ũ�(tk) + eũ�
(tk), � = 1, 2, 3

y(tk) = ỹ(tk) + eỹ(tk).

(4.18)

The noise-free inputs are chosen as an uncorrelated multisine signals with a non
Gaussian pdf. The available data, plotted in Figure 2, are sampled uniformly with a
sampling period h = 0.05 sec. The number of samples is Nt = 7000.

The performance is assessed through Nmc = 100 runs of Monte Carlo simulations
with different noise realizations.Different additivewhite noise corrupt the input signals
with a Signal-to-Noise-Ratio (SN R) denoted SN Ru and the output signal with a SN R
denoted SN Ry . They are defined, respectively, by:

SN Ru = 10 log

(
var(u�)

var(eũ�
)

)

, � = 1, ..., L, (4.19)

SN Ry = 10 log

(
var(y)

var(eỹ)

)

, (4.20)

var is the variance.
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Table 1 Parameter estimation obtained by applying the frac-foc-ls and the frac-foc-sriv algorithms in
presence of white noise (SN Ru=SN Ry=20dB and 10dB)

True SN Ru=SN Ry=20dB SN Ru=SN Ry=10dB
frac-foc-ls frac-foc-sriv frac-foc-ls frac-foc-sriv
�̄ σ̂ (�) �̄ σ̂ (�) �̄ σ̂ (�) �̄ σ̂ (�)

a1,1 = 3 2.9961 0.0557 3.0010 0.0498 2.9249 0.1641 3.0105 0.1534

b0,1 = 1.5 1.5001 0.0061 1.0052 0.0060 1.4941 0.0195 1.4955 0.0195

a1,2 = 1 1.0060 0.0401 1.0042 0.0257 0.9595 0.1410 1.0002 0.0896

b0,2 = 2 2.0043 0.0239 2.0033 0.0175 1.9748 0.0908 1.9960 0.0653

a1,3 = 0.5 0.5002 0.0238 0.50006 0.0043 0.5118 0.1147 0.5016 0.0139

b0,3 = 1 1.0006 0.0049 1.0005 0.0049 0.9970 0.0167 0.9969 0.0163

N RQE 0.0018 0.0014 0.0066 0.0046

In this section, all the structures of the SISO subsystems making up the MISO
system are assumed to have prior knowledge (A1 satisfied).

4.2.1 Known differentiation orders

Assuming that all differentiation orders are known (assumption A2 satisfied), the
performance of the frac-foc-sriv algorithm is compared with the one obtained with
the frac-foc-ls algorithm developed in [3] and used in the initialization step. The SVF
cut-off frequency used in the frac-foc-ls algorithm is set to 5rad/sec and Nh equals
1000.

Both frac-foc-ls and frac-foc-sriv algorithms are applied for each noise realization.
Table 1 provides the obtained results for two levels of noise SN Ru = SN Ry = 20dB
and SN Ru = SN Ry = 10dB. It contains the means of estimates (�̄), their standard
deviations (σ̂ (�)) and the Normalized Relative Quadratic Error (NRQE)

N RQE = 1

Nmc

√
√
√
√
√

∥
∥
∥�̂ − �0

∥
∥
∥
2

‖�0‖2
, (4.21)

�0 denotes the true parameter vector.
Thanks to the iterative strategy of the instrumental variable estimator and the use of

fourth-order cumulants, the frac-foc-sriv algorithm yields unbiased estimates. Indeed,
the means of the estimated parameters are close to the real ones, and the variances are
very low. The consistency of the frac-foc-sriv algorithm is confirmed by comparing
it with the frac-foc-ls algorithm. The latter can also provide unbiased estimates in
presence of noise with high levels but with larger variances.
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Fig. 3 Cost function versus the global commensurate order

4.2.2 Unknown differentiation orders

If the differentiation orders are unknown (assumption A2 not satisfied), which is the
case of real systems, the estimation of the global commensurate order is crucial. It
facilitates the calculation of all differentiation orders if the structures of all SISO
sub-models are known (assumption A1 satisfied). Hence, the influence of the global
commensurate order on the parameter estimation is analyzed. The frac-foc-ls and frac-
foc-sriv algorithms are applied for different values of υG chosen in a range between
0.1 and 0.3 (for SN Ru = SN Ry = 10dB).

The following �2-norm (in dB) of the normalized output error is evaluated for each
value of υG :

J = 10 log

(∥
∥y(t) − ŷ(t)

∥
∥2

‖y(t)‖2
)

, (4.22)

where y and ŷ denote, respectively, the measured and the estimated output. The min-
imum value of J must be obtained at the true global commensurate order and would
have the value of NSR = −SN Ry = −10dB.

The variation of the cost function J versus the global commensurate order is plot-
ted in Figure 3. The plot shows that the minimum value of J is obtained, by both
algorithms, at the same value υG = 0.2.

Themodeling error obtainedby the frac-foc-ls algorithmequals 0.4dB (J f rac− f oc−ls

= −10.4dB) and that obtained by the frac-foc-sriv algorithm equals 0.36dB
(J f rac− f oc−sriv = −10.36dB).

The frac-foc-sriv algorithm gives the lowest modeling error for υG = 0.2.
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5 All parameters estimation

5.1 frac-foc-sriv combined with optimization orders algorithm

In this section, only assumption A2 is not satisfied and all fractional orders are esti-
mated together with linear coefficients. It is therefore a matter of dealing with the three
sub-cases discussed in Section 3.

The parameter vector is given by equation (3.3), (3.4) or (3.6) and obtained by
minimizing the �2-norm of output error:

J (�) = 1

2
‖ε(t)‖2, (5.1)

where
ε(t) = y(t) − ŷ(t), (5.2)

ŷ(t) is the estimated output.
This error is linear with respect to the MISO model coefficients but it is nonlinear

with respect to the differentiation orders. So, the proposed idea is to estimate the linear
coefficients using the frac-foc-sriv algorithm and the differentiation orders using a
nonlinear optimization technique (such as Gauss-Newton or Levenberg-Marquardt)
[3, 24].

Denote by ϑ the differentiation orders vector to be optimized:

• Case 1: global commensurate order optimization:

ϑ = υG . (5.3)

• Case 2: local commensurate orders optimization:

ϑ = ν = [υ1, ..., υ�, ..., υL ] . (5.4)

• Case 3: all differentiation orders optimization:

ϑ = μ = [μ1, ..., μ�, ..., μL ] . (5.5)

The differentiation orders vector is estimated iteratively according to:

ϑ i+1 = ϑ i − λ
[
H̃−1G

]

ϑ=ϑ i
, (5.6)

where H̃ is the approximated Hessian [6]:

H̃ = ∂εT

∂ϑ

∂ε

∂ϑ
, (5.7)
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G denotes the gradient, which is defined as following:

G = ∂ J

∂ϑ
= ∂εT

∂ϑ
ε, (5.8)

and λ is a weighting positive constant which is used to ensure the decrease of J .
The analytic compute of the differentiation orders error sensitivity functions are

detailed in [24].
The frac-foc-sriv combined with optimization orders algorithm (frac-foc-oosriv) is

summarized in three steps:

frac-foc-oosriv algorithm

• Step 1: iteration i = 0
� initialize ϑ0 and �

� initialize θ̂0� , � = 1, ..., L by applying the frac-foc-sriv algorithm

� form the parameter vector �0 =
[
θ̂01 , ..., θ̂0L , ϑ0

]

� compute J 0 (equation (5.1))
• Step 2: iteration i = i + 1

do
λ = �

do
� refine the differentiation orders vector using equation (5.6)

� estimate the linear coefficients
(
θ̂ i�, � = 1, ..., L

)
using the frac-foc-sriv algo-

rithm
� form the parameter vector �i =

[
θ̂ i1, ..., θ̂

i
L , ϑ i

]

� evaluate the criterion J i (equation (5.1))

� λ = λ

2
while J i > J i−1

while

∥
∥
∥�̂i − �̂i−1

∥
∥
∥

∥
∥
∥�̂i−1

∥
∥
∥

> δ, for example δ = 10−5

or a maximum number of iterations is reached (i > imax ).

123



Continuous-time MISO fractional system... 1629

5.2 Example 2

The consistency of the developed frac-foc-oosriv algorithm is studied in this paragraph.
The same data generating the fractional MISO model, represented by equation (4.18),
are used. Firstly, in accordance with Definition 4, the global commensurate order is
estimated together with linear coefficients. The frac-foc-oosriv performance is com-
pared with that obtained by applying the output optimization (oe) based algorithm.
The latter is developed in [24] to deal with fractional MISO systems identification
when only the output measurements are noisy. It is used in this paragraph to prove
the efficiency of the frac-foc-oosriv algorithm when input-output measurements are
noisy. Secondly, according to Definition 3, the local commensurate orders of all SISO
sub-models are estimated along with linear coefficients.

5.2.1 Global commensurate order estimation

To demonstrate the relevance of the oe and frac-foc-oosriv algorithms, a Monte Carlo
simulation is performed for two different Gaussian white noise levels affecting both
input and output measurements: SN Ru = SN Ry = 20dB and SN Ru = SN Ry =
10dB. The parameters which must be initialized are chosen arbitrarily as follows:

– for the oe algorithm:

�0 =
[
a01,1, b

0
0,1, a

0
1,2, b

0
0,2, a

0
1,3, b

0
0,3, υ

0
G

]
= [0.1 , 0.1, 0.1, 0.1, 0.1, 0.1, 0.3] ,

– for the frac-foc-oosriv algorithm:

ϑ0 = υ0
G = 0.3.

A Monte Carlo simulation with different noise realizations with Nmc = 50 runs is
carried out. Table 2 summarizes the Monte Carlo simulation results obtained by the
oe and frac-foc-oosriv algorithms. The oe algorithm gives good results for SN Ru =
SN Ry = 20dB. Indeed, the means of the estimates are close to the true ones, the
variances are minimal and the N RQE is low. However, for SN Ru = SN Ry = 10dB,
it gives biased estimates. Consequently, the oe algorithm can be used in the context
of EIV, but in presence of low noise levels. On the other side, the frac-foc-oosriv
produces unbiased estimates with low N RQE and low values of standard deviation.
The obtained results confirm the consistency of the frac-foc-oosriv algorithm in the
EIV framework.

For a run ofMonte Carlo simulation, the cost function (equation (4.22)) is evaluated
and plotted in Figure 4. The modeling error equals 0.0419dB for SN Ru = SN Ry =
20dB and 0.4044dB for SN Ru = SN Ry = 10dB. Even when the noise level is high,
the modeling error is small. As shown in Figure 5, the global commensurate order
estimate converges to the true value.
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Table 2 Parameter estimation obtained by applying the oe and the frac-foc-oosriv algorithms in presence of
white noise (SN Ru = SN Ry = 20dB and 10dB): coefficients and global commensurate order estimation

True SN Ru=SN Ry = 20dB SN Ru=SN Ry = 10dB
oe frac-foc-oosriv oe frac-foc-oosriv
�̄ σ̂ (�) �̄ σ̂ (�) �̄ σ̂ (�) �̄ σ̂ (�)

a1,1 = 3 2.9776 0.0560 3.0233 0.0507 2.7521 0.1650 3.0435 0.1290

b0,1 = 1.5 1.4920 0.0140 1.4958 0.0069 1.3435 0.0484 1.4970 0.0176

a1,2 = 1 1.0719 0.0348 0.9770 0.0239 1.9358 0.1930 0.9968 0.0892

b0,2 = 2 2.0518 0.0316 1.9771 0.0192 2.7351 0.1845 1.9950 0.0669

a1,3 = 0.5 0.4993 0.0054 0.4929 0.0049 0.4864 0.0156 0.4971 0.0149

b0,3 = 1 0.9967 0.0072 0.9992 0.0053 0.9784 0.0179 0.9984 0.0152

υG = 0.2 0.2003 0.0011 0.2046 0.0008 0.2070 0.0025 0.2020 0.0023

N RQE 0.0028 0.0017 0.0302 0.0042

Fig. 4 Cost function variation versus number of iterations: coefficients and global commensurate order
estimation

5.2.2 Local commensurate orders estimation

In this paragraph, the local commensurate orders of all sub-models composing the
MISOmodel (equation (4.18)) are estimated by applying the frac-foc-oosriv algorithm
for:

– white noise affecting input and output measurements (SN Ru = SN Ry = 20dB
and SN Ru = SN Ry = 10dB);

– white and colored noise affecting, respectively, input and output measurements
(SN Ru = SN Re0ỹ

= 5dB).
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Fig. 5 Global commensurate order versus number of iterations

Table 3 Parameter estimation obtained by applying the frac-foc-oosriv algorithm in presence of white and
colored noise: coefficients and local commensurate orders estimation

True White noise White noise Colored noise

SN Ru=SN Ry = 20dB SN Ru=SN Ry = 10dB SN Ru=SN Re0ỹ
= 5dB

�̄ σ̂ (�) �̄ σ̂ (�) �̄ σ̂ (�)

a1,1 = 3 3.0071 0.0393 3.0353 0.1260 3.0232 0.1855

b0,1 = 1.5 1.5003 0.0051 1.5006 0.0148 1.5017 0.0156

a1,2 = 1 0.9973 0.0447 1.0069 0.1590 1.0800 0.2772

b0,2 = 2 1.9978 0.0387 2.0034 0.1393 2.0694 0.2608

a1,3 = 0.5 0.5001 0.0045 0.5001 0.0143 0.5020 0.0121

b0,3 = 1 0.9997 0.0046 0.9994 0.0142 0.9996 0.0130

υ1 = 0.8 0.8000 0.0038 0.7999 0.0124 0.8023 0.0120

υ2 = 0.2 0.2006 0.0044 0.2027 0.0140 0.1984 0.0239

υ3 = 1.2 1.2001 0.0030 1.1999 0.0094 1.1993 0.0072

N RQE 0.0023 0.0088 0.0178

The initial parameter vector is chosen arbitrarily as follows:

ϑ0 = [υ1, υ2, υ3] = [0.5, 0.5, 0.5] .

TheMonte Carlo simulation results are recapitalized in Table 3. The frac-foc-oosriv
algorithm accurately identifies local commensurate orders and linear coefficients. The
means of estimates are close to the true ones with a very low standard deviations and
N RQE . These results show that even with a large number of parameters, it is possible
to consistently estimate the linear coefficients aswell as all local commensurate orders.
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Fig. 6 Cost function variation versus the number of iterations in presence of white noise (for SN Ru =
SN Ry = 20dB (a) and for SN Ru = SN Ry = 10dB (b)): coefficients and local commensurate order
estimation

Figures 6 and 7 respectively represent the cost function and the local commensurate
orders variations versus the number of iterations for a Monte Carlo simulation. All
local commensurate orders converge to the true orders with a very low modeling error
which equals 0.039dB for SN Ru = SN Ry = 20dB and 0.4013dB for SN Ru =
SN Ry = 10dB.

5.3 Example 3

In this example, data generating system is not commensurate and all fractional differ-
entiation orders are estimated along with linear coefficients.

Consider the following two-input-single-output fractional system:

(H2) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ỹ(t) = G1(p)ũ1(t) + G2(p)ũ2(t)

G1(p) = b0,1
1 + a1,1 pα1,1 + a2,1 pα2,1

= 1.5

1 + 1.5p0.8 + 2p1.8

G2(p) = b0,2
1 + a1,2 pα1,2 + a2,2 pα2,2

= 2

1 + 0.5p0.6 + p1.5

u1(tk) = ũ1(tk) + eũ1(tk)
u2(tk) = ũ2(tk) + eũ2(tk)
y(tk) = ỹ(tk) + eỹ(tk).

(5.9)

The noise-free input signals are chosen as uncorrelatedmultisine signals. The input-
output data are uniformly sampled with a sampling time h = 0.05 sec. They are
represented in Figure 8. The number of samples is Nt = 9000 and the part of these
samples which is used for system identification is set to Nh = 1000.
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Fig. 7 Local commensurate
orders variation versus the
number of iterations in presence
of white noise (for
SN Ru = SN Ry = 20dB (a)
and for
SN Ru = SN Ry = 10dB (b))

To provide representative results, a Monte Carlo simulation of Nmc = 50 runs is
performed. For each Monte Carlo run, a new noise realization on input and output
signals is generated and the frac-foc-oosriv algorithm is applied. The latter is iterative,
so the initialization step is necessary. Indeed, the coefficients are initialized by applying
the frac-foc-ls estimator (ω f = 2 rad/sec) and the differentiation orders are initialized,
arbitrarily, as follows:

ϑ0 = [0.9, 0.4, 0.75, 0.3] .
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Fig. 8 Two input and single output signals used for system identification

Table 4 Parameter estimation obtained by applying the frac-foc-oosriv algorithm in presence of white and
colored noise: coefficients and all differentiation orders estimation

True White noise White noise Colored noise

SN Ru = SN Ry = 20dB SN Ru = SN Ry = 10dB SN Ru=SN Re0ỹ
= 5dB

�̄ σ̂ (�) �̄ σ̂ (�) �̄ σ̂ (�)

a2,1 = 2 1.9951 0.0147 1.9776 0.0638 1.9823 0.1576

a1,1 = 1.5 1.5101 0.0341 1.4757 0.1349 1.4856 0.1821

b0,1 = 1.5 1.5013 0.0047 1.5027 0.0149 1.4937 0.0729

a2,2 = 1 0.9995 0.0089 1.0092 0.0338 1.0273 0.0531

a1,2 = 0.5 0.5039 0.0143 0.4867 0.0584 1.5103 0.0526

b0,2 = 2 2.0001 0.0062 1.9967 0.0161 2.0238 0.864

α2,1 = 1.8 1.8036 0.0160 1.7875 0.0628 1.7866 0.0853

α1,1 = 0.8 0.8016 0.0071 0.7944 0.0279 0.8050 0.0337

α2,2 = 1.5 1.5030 0.0133 1.4896 0.0524 1.4847 0.0771

α1,2 = 0.6 0.6012 0.0053 0.5958 0.0209 0.5899 0.0448

N RQE 0.0020 0.0077 0.0183

The obtained results are presented in Table 4 for two levels of white noise affecting
the input and output signals, and for one level of colored noise. The frac-foc-oosriv
gives very accurate results. All estimated parameters are unbiased. Variances are very
low and N RQE remain low even in presence of a high noise level.

For a run of additive noise with SN Ru = SN Ry = 10dB, the cost function and all
orders variations versus the number of iterations are, respectively, plotted in Figure 9
and Figure 10. All fractional orders converge to the real values with a small modeling
error (0.4244dB).
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Fig. 9 Cost function versus the number of iterations in presence of white noise (SN Ru = SN Ry = 10dB):
coefficients and all orders estimation

Fig. 10 All orders variation versus the number of iterations in presence of white noise (SN Ru = SN Ry =
10dB)

6 Conclusions

Continuous-timeMISO systems identification with fractional models, when the avail-
able input-output data are noisy or contain measurement errors, has been studied in
this paper. A new extension of the simplified and refined instrumental variable algo-
rithm has been proposed. This involves using fourth-order cross-cumulants estimates,
which are insensitive to Gaussian noise, instead of noisy input and output signals. So,
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a new algorithm has been developed, it was called fractional-fourth-order cumulants
based-simplified and refined instrumental variable (frac-foc-sriv). Assuming that all
the structures and differentiations orders of the hole system are known a priori, this
estimator allows to estimate only the linear coefficients. When only the structures are
known and there is no prior knowledge of differentiation orders, a combination of the
frac-foc-sriv estimator with a nonlinear optimization technique has been proposed.
Three cases have been highlighted : coefficients and global commensurate order esti-
mation, coefficients and local commensurate orders estimation and coefficients and
all differentiation orders estimation. The latter case, has been proposed when the com-
mensurability constraint is released. The performance of the developed algorithms has
been analyzed by comparing them with the fractional-fourth-order cumulants based-
least squares (frac-foc-ls) and the output error (oe) based optimization algorithms. The
frac-foc-sriv and frac-foc-oosriv algorithms gave unbiased estimates in presence of
white and colored noise. In the future work, it will be interesting to study the prob-
lem of unstable MISO systems identification. It will also be worthwhile developing a
technique for selecting the unknown structures of SISO subsystems.
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