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Abstract
In the present paper, we study the Cauchy-Dirichlet problem to a nonlocal nonlinear
diffusion equation with polynomial nonlinearities Dα

0|t u + (−Δ)spu = γ |u|m−1u +
μ|u|q−2u, γ, μ ∈ R, m > 0, q > 1, involving time-fractional Caputo derivative
Dα

0|t and space-fractional p-Laplacian operator (−Δ)sp. We give a simple proof of the
comparison principle for the considered problem using purely algebraic relations, for
different sets of γ, μ,m and q. The Galerkin approximation method is used to prove
the existence of a local weak solution. The blow-up phenomena, existence of global
weak solutions and asymptotic behavior of global solutions are classified using the
comparison principle.
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1 Introduction

In this paper, we study the initial-boundary value problem for the nonlinear time-space
fractional diffusion equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dα
0|t u + (−Δ)spu = γ |u|m−1u + μ|u|q−2u, (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, x ∈ R
N \ Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
N is a smoothly bounded domain; s ∈ (0, 1), p ≥ 2,m > 0, q ≥ 1,

γ, μ ∈ R and Dα
0|t is the left Caputo fractional derivative of order α ∈ (0, 1) (see

Definition 3).
In recent years, the study of differential equations using non-local fractional opera-

tors has attracted a lot of interest. The time-space fractional diffusion equations could
be applied to a wide range of applications, including finance, semiconductor research,
biology and hydrogeology, continuum mechanics, phase transition phenomena, pop-
ulation dynamics, image process, game theory and Lévy processes, (see [3, 5, 9, 15,
17, 22, 23]) and the references therein. When a particle flow spreads at a rate that
defies Brownian motion theories, both time and spatial fractional derivatives (see [16,
24, 35]) can be employed to simulate anomalous diffusion or dispersion. Recently,
motivated by some situations arising in the game theory, nonlinear generalizations of
the fractional Laplacian have been introduced, (see [6, 9]).

Later on, the fractional version of the p-Laplacian was studied through energy
and test function methods by Chambolle and al. in [10]. The viscosity version of this
non-local operator was given by Ishii and al. in [20], Bjorland and al. in [6].

In the case α = s = 1, γ = −1 the problem (1.1) coincides with a quasi-
linear parabolic equation which has been studied by Li et al in [25]. By using a
Gagliardo-Nirenberg type inequality, the energymethod and comparison principle, the
phenomena of blow-up and extinction have been classified completely in the different
ranges of reaction exponents.

Moreover, when α = s = 1,m > 1 and the coefficients are γ > 0, μ = 0, the
problem (1.1) was considered by Yin and Jin in [38]. They determined the critical
extinction and blow-up exponents for the homogeneous Dirichlet boundary value
problem.

Vergara andZacher in [36] have considered nonlocal in time semilinear subdiffusion
equations on a bounded domain,

⎧
⎨

⎩

Dα
0|t u − div(A(x, t)∇u) = f (u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1.2)

where the coefficients A = (ai j ) were assumed to satisfy

(A(x, t)ξ, ξ) ≥ ν|ξ |2, for a.e. (x, t) ∈ Ω × (0,+∞) and all ξ ∈ R
N .
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Qualitative properties of solutions to a nonlinear... 113

They proved a well-posedness result in the setting of bounded weak solutions and
studied the stability and instability of the zero function in the special case where the
nonlinearity vanishes at 0. In addition, they established a blow-up result for positive
convex and superlinear nonlinearities.

Later on, Alsaedi et al. [2] have studied the KPP-Fisher-type reaction-diffusion
equation, which is the problem (1.1) in the case p = 2, γ = −1, q = 3 and μ =
m = 1, in a bounded domain. Under some conditions on the initial data, they have
showed that solutions may experience blow-up in a finite time. However, for realistic
initial conditions, solutions are global in time. Moreover, the asymptotic behavior of
bounded solutions was analysed.

Recently, in [34], Tuan, Au and Xu studied the initial-boundary value problem for
the fractional pseudo-parabolic equation with fractional Laplacian

⎧
⎨

⎩

Dα
0|t (u − mΔu) + (−Δ)su = N (u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1.3)

where s ∈ (0, 1),m > 0 is a constant, and N (u) is the source term satisfying one of
the following conditions:

(a) N (u) is a globally Lipschitz function;
(b) N (u) = |u|p−2u, p ≥ 2;
(c) N (u) = |u|p−2u log |u|, p ≥ 2.

For the above cases, they proved the existence of a unique local mild solution and finite
time blow-up solution to equation (1.3). Because of the nonlocality of the equation,
the authors believe that proving the existence of a weak solution using the Galerkin
method for equation (1.3) is problematic.

Motivated by the above results, in this paper we consider the time and space
fractional quasilinear parabolic equation (1.1).

Using the Galerkin method, we prove the existence of a local weak solution to
problem (1.1).

This, in turn, partially answers the question posed in [34] about the existence of a
local weak solution to the fractional pseudo-parabolic equation. In addition, a com-
parison principle to problem (1.1) is obtained, and we have investigated results on the
blow-up and global solution using this concept.

2 Preliminaries

2.1 The fractional Sobolev space

In this subsection, let us recall some necessary definitions and useful properties of the
fractional Sobolev space.

Let s ∈ (0, 1) and p ∈ [1,+∞) be real numbers, and let the fractional critical

exponent be defined as p∗
c = Np

N − sp
if sp < N or p∗

c = ∞, otherwise.
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114 M. B. Borikhanov et al.

One defines the fractional Sobolev space as follows

Ws,p(RN ) :=
{

u ∈ L p(RN ),
|u(x) − u(y)|
|x − y| Np +s

∈ L p(RN × R
N )

}

.

This is the Banach space between L p(RN ) andW 1,p(RN ), endowed with the norm

‖u‖Ws,p(RN ) := ‖u‖L p(RN ) +
(∫

RN

∫

RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

) 1
p

.

Let Ω be an open set in RN and letW = (RN ×R
N )\((RN\Ω) × (RN\Ω)). It is

obvious that Ω × Ω is strictly contained inW .
Denote

Ws,p(Ω) :=
{

u ∈ L p(Ω), u = 0 in R
N\Ω,

|u(x) − u(y)|
|x − y| Np +s

∈ L p(W)

}

.

The space Ws,p(Ω) is also endowed with the norm

‖u‖Ws,p(Ω) := ‖u‖L p(Ω) + [u]Ws,p(Ω),

where the term

[u]Ws,p(Ω) :=
(∫

Ω

∫

Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy

) 1
p

< ∞

is the so-called Gagliardo semi-norm of u, which was introduced by Gagliardo [13]
to describe the trace spaces of Sobolev maps.

We refer to [28] and [7], where one can find a description of the most useful proper-
ties of the fractional Sobolev spacesWs,p(Ω). In the literature, fractional Sobolev-type
spaces are also called Aronszajn, Gagliardo or Slobodeckij spaces, by the name of the
people who first introduced them, practically concurrently (see [4, 14, 31]).

For Gagliardo semi-norms, the next result is a Poincaré inequality. This is standard,
but we should also always pay careful attention to the sharp constants dependence on
s.

Lemma 1 ([28], Theorem 6.7) Let s ∈ (0, 1) and p ∈ [1,+∞) be such that sp < N.
Let Ω ⊆ R

N be an extension domain for Ws,p. Then, there exists a positive constant
C = C(N , p, s,Ω) such that, for any u ∈ Ws,p(Ω), we have

‖u‖Lq (Ω) ≤ C‖u‖Ws,p(Ω),

for any q ∈ [p, p∗], where p∗ = p∗(N , s) = Np

N − sp
is the so-called fractional

critical exponent.
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Qualitative properties of solutions to a nonlinear... 115

That means, the space Ws,p(Ω) is continuously embedded in Lq(Ω) for q ∈
[p, p∗]. If, in addition, Ω is bounded, then, the space Ws,p(Ω) is continuously
embedded in Lq(Ω) for q ∈ [1, p∗].
Lemma 2 ([29], Lemma 2.1. Fractional Gagliardo–Nirenberg inequality) Let p >

1, τ > 0, N , q ≥ 1, 0 < s < 1 and 0 < a ≤ 1 be such that

1

τ
= a

(
1

p
− s

N

)

+ 1 − a

q
.

We have

‖u‖Lτ (RN ) ≤ C[u]aWs,p(RN )
‖u‖(1−a)

Lq (RN )
, for u ∈ C1

c (R
N ),

for some positive constant C independent of u.

2.2 Fractional operators

This part is devoted to the definitions and properties of fractional derivatives in time
and space.

Definition 1 ([21], p. 69) The left and right Riemann-Liouville fractional integrals of
order 0 < α < 1 for an integrable function u(t) are given by

I α
0|t u(t) = 1

Γ (α)

t∫

0

(t − s)α−1u (s) ds, t ∈ (0, T ]

and

I α
t |T u(t) = 1

Γ (α)

T∫

t

(s − t)α−1u (s) ds, t ∈ [0, T ).

Definition 2 ([21], p. 70) The left and right Riemann-Liouville fractional derivatives
D

α
0|t of order α ∈ (0, 1), for an absolutely continuous function u(t) is defined by

D
α
0|t u(t) = d

dt
I 1−α
0|t u(t) = 1

Γ (1 − α)

d

dt

t∫

0

(t − s)−αu (s) ds, ∀t ∈ (0, T ]

and

D
α
t |T u(t) = − d

dt
I 1−α
t |T u(t) = − 1

Γ (1 − α)

d

dt

T∫

t

(s − t)−αu (s) ds, ∀t ∈ [0, T ).
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116 M. B. Borikhanov et al.

Lemma 3 ([21], Lemma 2.20) If α > 0, then for u ∈ L1(0, T ), the relations

D
α
0|t I α

0|t u(t) = u(t) and D
α
t |T I α

t |T u(t) = u(t)

are true.

Definition 3 ([21], p. 91) The α ∈ (0, 1) order of left and right Caputo fractional
derivatives for u ∈ C1([0, T ]) are defined, respectively, by

Dα
0|t u(t) = I 1−α

0|t
d

dt
u(t) = 1

Γ (1 − α)

t∫

0

(t − s)−αu′ (s) ds, ∀t ∈ (0, T ]

and

Dα
t |T u(t) = −I 1−α

t |T
d

dt
u(t) = − 1

Γ (1 − α)

T∫

t

(s − t)−αu′ (s) ds, ∀t ∈ [0, T ).

If u ∈ C1([0, T ]), then the Caputo fractional derivative can be represented by the
Riemann-Liouville fractional derivative in the following form

Dα
0|t u(t) = D

α
0|t [u(t) − u(0)], ∀t ∈ (0, T ]

and

Dα
t |T u(t) = D

α
t |T [u(t) − u(T )], ∀t ∈ [0, T ).

Lemma 4 ([39], Corollary 4.1) Let T > 0 and let U be an open subset of R. Let
further u0 ∈ U , k ∈ H1

1 (0, T ), H ∈ C1(U ) and u ∈ L1(0, T ) with u(t) ∈ U , for
a. a. t ∈ (0, T ). Suppose that the functions H(u), H ′(u)u, and H ′(u)(kt ∗ u) belong
to L1(0, T ) (which is the case if, e.g., u ∈ L∞(0, T )). Assume in addition that k is
nonnegative and nonincreasing and that H is convex. Then

H ′(u(t))
d

dt
(k ∗ [u − u0])(t) ≥ d

dt
(k ∗ [H(u) − H(u0)])(t), t ∈ (0, T ).

Lemma 5 ([1], Lemma 1) For 0 < α < 1 and any function u(t) absolutely continuous
and real-valued on [0, T ], one has the inequality

1

2
Dα

0|t (u2)(t) ≤ u(t)Dα
0|t u(t).

Property 1 ([21], p. 95-96) If 0 < α < 1, u ∈ AC1[0, T ] or u ∈ C1[0, T ], then

I α
0|t (Dα

0|t u)(t) = u(t) − u(0)
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Qualitative properties of solutions to a nonlinear... 117

and

Dα
0|t (I α

0|t u)(t) = u(t),

hold almost everywhere on [0, T ]. In addition,

D1−α
0|t

∫ t

0
Dα

0|τu(τ )dτ =
(

I α
0|t

d

dt
I 10|t I

1−α
0|t

d

dt
u

)

(t) = u(t) − u(0).

Property 2 ([21], Lemma 2.7) Let 0 < α < 1 and u ∈ C1[0, T ], ϕ ∈ L p(0, T ). Then
the integration by parts for Caputo fractional derivatives has the form

∫ T

0

[
Dα

0|t u
]
(t)ϕ(t)dt =

∫ T

0
u(t)

[
D

α
t |Tϕ

]
(t)dt +

[
I 1−α
t |T ϕ

]
(t)u(t)

∣
∣
∣
∣

T

0
.

Definition 4 ([32]. Lemma 5.1) The fractional p-Laplacian operator for s ∈
(0, 1), p > 1 and u ∈ Ws,p(Ω), is defined by

(−Δ)spu(x) = CN ,s,p P.V.
∫

RN

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+sp
dy,

where

CN ,s,p = sp22s−2

π
N−1
2

Γ (
N+sp
2 )

Γ (
p+1
2 )Γ (1 − s)

(2.1)

is a normalization constant and “P.V.” is an abbreviation for “in the principal value
sense”. Since they will not play a role in this work, we omit the P.V. sense. However,
let us stress that these constants guarantee:

(−Δ)spu(x)
s→1−−−−→ −Δpu(x), for all p ∈ [2,∞),

(−Δ)spu(x)
p→2+
−−−−→ (−Δ)su(x), for all s ∈ (0, 1).

Definition 5 ([26], Theorem 5) We say that u ∈ Ws,p
0 (Ω) is an (s, p) - eigenfunction

associated to the eigenvalue λ if u satisfies the Dirichlet problem

{
(−Δ)spu(x) = λ|u(x)|p−2u(x), x ∈ Ω,

u(x) = 0, x ∈ R
N \ Ω,

(2.2)

weakly, it means that

∫

Ω

∫

Ω

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+sp
(ψ(x) − ψ(y))dxdy
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118 M. B. Borikhanov et al.

= λ

∫

Ω

|u(x)|p−2u(x)ψ(x)dx,

for every ψ ∈ Ws,p
0 (Ω). If we set as

Σp(Ω) :=
{

u ∈ Ws,p
0 (Ω) :

∫

Ω

|u(x)|pdx = 1

}

,

then the nonlinear Rayleigh quotient determines the first eigenvalue

λ1(Ω) := min
u∈Σp(Ω)

∫

Ω

∫

Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy.

Lemma 6 ([26], Lemma 15) Assume that for all j , if we have

Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ ... ⊂ Ω, Ω =
⋃

Ω j .

Then

lim
j→∞ λ1(Ω j ) = λ1(Ω).

Note that the minimization problem is not quite the same if RN × R
N is replaced

by Ω × Ω in the integral. This choice has the advantage that the property

λ1(Ω
∗) ≤ λ1(Ω), if Ω ⊂ Ω∗

is evident for subdomains. By changing coordinates it implies

λ1(Ω
∗) = kα p−Nλ1(kΩ

∗), k > 0.

This asserts that small domains have large first eigenvalues (see [26] references
therein).

Lemma 7 ([7], Lemma 2.4. Fractional Poincaré inequality)
Let 1 ≤ p < ∞ and s ∈ (0, 1), Ω ⊂ R

N be an open and bounded set. Then, it holds

‖u‖p
L p(Ω) ≤ λ1(Ω)[u]pWs,p(Ω) for u ∈ C∞

0 (Ω)

and we have the lower bound

λ1(Ω) ≥ 1

IN ,s,p(Ω)

,

where the geometric quantity IN ,s,p(Ω) is defined by
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Qualitative properties of solutions to a nonlinear... 119

IN ,s,p(Ω) = min

{
diam(Ω ∪ B)N+sp

|B| , B ⊂ R
N \ Ω is a ball

}

.

We define the inner product of the operator (−Δ)sp for u, v ∈ Ws,p(Ω) as

〈(−Δ)spu, v〉 =
∫

Ω

∫

Ω

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dxdy.

(2.3)

Definition 6 A function u = u(x, t) ∈ Ws,p(Ω; L∞(0, T )) ∩ L2(Ω; L∞(0, T )) is
called a weak solution of (1.1) if the following identity holds

∫ T

0

∫

Ω

Dα
0|t uϕdxdt+

∫ T

0

∫

Ω

∫

Ω

|u(x)−u(y)|p−2(u(x)−u(y))

|x − y|N+sp
(ϕ(x)−ϕ(y))dxdydt

= γ

∫ T

0

∫

Ω

|u|m−1uϕdxdt + μ

∫ T

0

∫

Ω

|u|q−2uϕdxdt,

almost everywhere in t ∈ [0, T ], for any ϕ = ϕ(x, t) ∈ Ws,p
0 (Ω; L∞(0, T )), such

that ϕ ≥ 0 in Ω , ϕ = 0 on ∂Ω .

2.3 Notations

We recall standard notations, which will be used in the sequel. If Ω is a bounded and
open set in R

N (Ω ⊆ R
N ), we denote

ΩT = Ω × (0, T ).

We include the following function space

Π = {u,Dα
0|t u ∈ Ws,p(Ω; L∞(0, T )) ∩ L2(Ω; L∞(0, T ))}, (2.4)

with the norm

‖u‖2Π = ‖u‖2Ws,p(Ω;L∞(0,T )) + ‖u‖2L2(Ω;L∞(0,T ))

+ ‖Dα
0|t u‖2Ws,p(Ω;L∞(0,T )) + ‖Dα

0|t u‖2L2(Ω;L∞(0,T ))
.

3 A comparison principle

In this section we study a comparison principle for the fractional parabolic equation.
We begin by presenting a weak subsolution and a weak supersolution to the problem
(1.1).
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120 M. B. Borikhanov et al.

Definition 7 A real-valued function

u = u(x, t) ∈ Π, u(x, 0) ≤ u0(x), u(x, t)|x∈∂Ω ≤ 0

is called a weak subsolution of (1.1) if the inequality

∫ T

0

∫

Ω

|u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t))

|x − y|N+sp
(ϕ(x, t) − ϕ(y, t))dxdydt

≤ γ

∫ T

0

∫

Ω

|u|m−1uϕdxdt + μ

∫ T

0

∫

Ω

|u|q−2uϕdxdt

−
∫ T

0

∫

Ω

[Dα
0|t u]ϕdxdt,

(3.1)

holds for any ϕ ∈ Ws,p
0 (Ω; L∞(0, T )), such that ϕ ≥ 0 in Ω , ϕ = 0 on ∂Ω .

Similarly, a real-valued function

v = v(x, t) ∈ Π, v(x, 0) ≥ v0(x), v(x, t)|x∈∂Ω ≥ 0

is called a weak supersolution of (1.1) if it satisfies the inequality

∫ T

0

∫

Ω

|v(x, t) − v(y, t)|p−2(v(x, t) − v(y, t))

|x − y|N+sp
(ϕ(x, t) − ϕ(y, t))dxdydt

≥ γ

∫ T

0

∫

Ω

|v|m−1vϕdxdt + μ

∫ T

0

∫

Ω

|v|q−2vϕdxdt

−
∫ T

0

∫

Ω

[Dα
0|tv]ϕdxdt .

(3.2)

A function is a weak solution, if it is both a weak subsolution and a weak
supersolution.

Theorem 1 Let s ∈ (0, 1), p ≥ 2 and let m, q, γ, μ satisfy one of the following
conditions:

m ≥ 1, q ≥ 2, γ ≥ 0, μ ≥ 0;
m > 0, q ≥ 1, γ ≤ 0, μ ≤ 0;
m ≥ 1, q ≥ 1, γ ≥ 0, μ ≤ 0;
m > 0, q ≥ 2, γ ≤ 0, μ ≥ 0.

Suppose that u, v ∈ Π be real-valued weak subsolution and weak supersolution of
(1.1), respectively, with u0(x) ≤ v0(x) for x ∈ Ω . Then u ≤ v a.e. in ΩT .

Corollary 1 Assume that p ≥ 2 and let m, q, γ, μ satisfy the conditions in Theorem
1. If u0(x) ≥ 0 for all x ∈ Ω, then u(x, t) ≥ 0, x ∈ Ω, t ≥ 0.
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Qualitative properties of solutions to a nonlinear... 121

The proof of Corollary 1 follows from Theorem 1. More precisely, if u0(x) ≥ 0,
taking 0 as a subsolution, then we have u(x, t) ≥ 0.

Proof of Theorem 1 We choose the test function ϕ = (u − v)+, where (u − v)+ is
the positive part of a real quantity (u − v)+ = max{u − v, 0}. Then it follows that
ϕ(x, 0) = 0, ϕ(x, t)|∂Ω = 0. By subtracting (3.2) from (3.1), we obtain for t ∈ (0, T ]

∫ t

0

∫

Ω

Dα
0|τ [u − v]ϕdxdτ +

∫ t

0

∫

Ω

[(−Δ)spu − (−Δ)spv]ϕdxdτ

≤ γ

∫ t

0

∫

Ω

(|u|m−1u − |v|m−1v)ϕdxdτ

︸ ︷︷ ︸
A

+ μ

∫ t

0

∫

Ω

(|u|q−2u − |v|q−2v)ϕdxdτ

︸ ︷︷ ︸
B

.

(3.3)

According to (2.3), we can write the last term of the left-hand side inequality (3.3) in
the form

∫ t

0

∫

Ω

[(−Δ)spu − (−Δ)spv]ϕdxdτ

=
∫ t

0

∫

Ω

∫

Ω

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdydτ

−
∫ t

0

∫

Ω

∫

Ω

|v(x) − v(y)|p−2(v(x) − v(y))(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdydτ

=
∫ t

0

∫

Ω

∫

Ω

M(u, v)(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdydτ,

(3.4)

where

M(u, v) = |u(x) − u(y)|p−2(u(x) − u(y)) − |v(x) − v(y)|p−2(v(x) − v(y)).

(3.5)

Hence, we can show that

M(u, v)(ϕ(x) − ϕ(y))

=
[
|u(x) − u(y)|p−2(u(x) − u(y)) − |v(x) − v(y)|p−2(v(x) − v(y))

]

× [(u(x) − u(y)) − (v(x) − v(y))]+
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is nonnegative for any p ≥ 2, thanks to the inequality (see [27], P. 99)

(
4

p2

)∣
∣
∣
∣|a| p−2

2 a − |b| p−2
2 b

∣
∣
∣
∣

2

≤ 〈|a|p−2a − |b|p−2b, a − b〉, for a, b ∈ R
N ,

(3.6)

with a := u(x) − u(y), b := v(x) − v(y) in (3.5).
Now, we will evaluate the right-side of (3.3).
Taking account the following inequality

||u|m−1u − |v|m−1v| ≤ C(m)|u − v|||u|m−1 + |v|m−1| ≤ L(m)|u − v|, (3.7)

where L(m) = C(m)max(‖u‖m−1
L∞(Ω), ‖v‖m−1

L∞(Ω)), we can verify that

A ≤ γC(m)

∫ t

0

∫

Ω

||u|m−1 + |v|m−1||u − v|ϕdxdτ

≤ γC(m)max(‖u‖m−1
C(Ω), ‖v‖m−1

C(Ω))

∫ t

0

∫

Ω

|u − v|ϕdxdτ

≤ γ L(m)

∫ t

0

∫

Ω

|u − v|ϕdxdτ,

(3.8)

where we have used the well known inequality [28, Theorem 8.2] for any u ∈ L p(Ω)

such that

‖u‖C(Ω) ≤ ‖u‖C0,β (Ω) ≤ ‖u‖Ws,p(Ω), β = (sp − N )/p, (3.9)

which gives the boundness of max(‖u‖m−1
C(Ω), ‖v‖m−1

C(Ω)).
In addition, from the Lipchitsz condition it follows that

||u|q−2u − |v|q−2v| ≤ L(q)|u − v|, q ≥ 1, (3.10)

where L(q) = C(q)max(‖u‖q−2
L∞(Ω), ‖v‖q−2

L∞(Ω)). Hence, from (3.9), it follows that

B ≤ μC(q)

∫ t

0

∫

Ω

||u|q−2 + |v|q−2||u − v|ϕdxdτ

≤ μC(q)max(‖u‖q−2
C(Ω), ‖v‖q−2

C(Ω))

∫ t

0

∫

Ω

|u − v|ϕdxdτ

≤ μL(q)

∫ t

0

∫

Ω

|u − v|ϕdxdτ.

(3.11)
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Combining (3.4), (3.8) and (3.11), we can rewrite the inequality (3.3) as

∫ t

0

∫

Ω

(Dα
0|τ [u − v])(u − v)+dxdτ

≤ (γ L(m) + μL(q))

∫ t

0

∫

Ω

|u − v|(u − v)+dxdτ.

(3.12)

Using Lemma 5, the inequality (3.12) can be rewritten in the following form

1

2

∫ t

0

∫

Ω

Dα
0|τ (u − v)2+dxdτ ≤ (γ L(m) + μL(q))

∫ t

0

∫

Ω

(u − v)2+dxdτ. (3.13)

At this stage, we have to consider three cases depending on γ, μ:
• The case γ ≥ 0, μ ≥ 0. Applying the left Caputo fractional differentiation

operator D1−α
0|t to both sides of (3.13) and using Property 1, we obtain

1

2

∫

Ω

(u − v)2+dx ≤ (γ L(m) + μL(q))

∫

Ω

∫ t

0
(t − τ)α−1(u − v)2+dτdx . (3.14)

Then, from the weakly singular Gronwall’s inequality (see [19], Lemma 7.1.1 and
[18], Lemma 6, p. 33)

∫

Ω

(u − v)2+dx = 0 ⇐⇒ (u − v)+ = 0, x ∈ Ω.

Finally, it follows that u ≤ v almost everywhere for (x, t) ∈ ΩT .
• The case γ ≤ 0, μ ≤ 0. According to the inequality (3.13), the right-hand side

integral is positive and the coefficients γ, μ are non-positive, we deduce that

1

2

∫ t

0

∫

Ω

Dα
0|τ (u − v)2+dxdτ ≤ (γ L(m) + μL(q))

∫ t

0

∫

Ω

(u − v)2+dxdτ

≤ 0.

Therefore, repeating the similar procedure as above we obtain

∫

Ω

(u − v)2+dx = 0.

Consequently, we have u ≤ v almost everywhere for (x, t) ∈ ΩT .
• The case γ ≥ 0, μ ≤ 0 or γ ≤ 0, μ ≥ 0. Using the inequality (3.13), it follows

that

1

2

∫

Ω

(u − v)2+dx ≤ γ L(m)

∫

Ω

∫ t

0
(t − τ)α−1(u − v)2+dτdx
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or

1

2

∫

Ω

(u − v)2+dx ≤ μL(q)

∫

Ω

∫ t

0
(t − τ)α−1(u − v)2+dτdx,

respectively. By the weakly singular Gronwall’s inequality, we arrive at u ≤ v almost
everywhere for (x, t) ∈ ΩT . ��

4 Local well-posedness

4.1 Existence of a local weak solution

In this subsection, we will prove that problem (1.1) has the local weak solution by
Galerkin method.

Theorem 2 Let u0 ∈ Ws,p
0 (Ω), u0 ≥ 0, sp < N and let either1 < m < q−1 < p−1

or 1 < q − 1 < m < p − 1. Then there exists T > 0 such that the problem (1.1) has
a local real-valued weak solution u ∈ Π , where Π is defined in (2.4).

Proof • The case 1 < m < q − 1 < p − 1. The space Ws,p
0 (Ω) is separable. Then

there exists a countable linear set {ω j } j∈N that is everywhere dense in Ws,p
0 (Ω).

Let us consider the Galerkin approximations

un(x, t) =
n∑

j=1

vnj (t)ω j (x), (4.1)

where the unknown vnj ∈ C1([0, Tn]) functions satisfy the following system of
ordinary fractional differential equations:

∫

Ω

Dα
0|t unωkdx + P(un, ωk)

= γ

∫

Ω

|un|m−1unωkdx + μ

∫

Ω

|un|q−2unωkdx, k = 1, 2, ..., n,

(4.2)

supplemented by the initial condition

un(x, 0) =
n∑

j=1

vnj (0)ω j
n→∞−−−→ u0 in Ws,p

0 (Ω), (4.3)

where

P(un, ωk)=
∫

Ω

∫

Ω

∣
∣
∣
∣un(x, t)−un(y, t)

∣
∣
∣
∣

p−2
(un(x, t)−un(y, t))

ωk(x)−ωk(y)

|x − y|N+sp
dxdy.
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First of all, we need to prove that the system of Galerkin equations (4.2) has a solution
vnj ∈ C1([0, Tn]), j = 1, n for some Tn > 0, which depends on n ∈ N . Therefore,
we note that the system of equations (4.2) can be represented in the following form

n∑

j=1

a jkDα
0|tvnj (t) + F1k(vn) = F2k(vn) + F3k(vn), (4.4)

where a jk is an invertible matrix for each n ∈ N and the functions Fik(vn), i = 1, 2, 3
are defined by

F1k(vn)=
∫

Ω

∫

Ω

n∑

j=1

∣
∣
∣
∣vnj (t)ω j (x)−vnj (t)ω j (y)

∣
∣
∣
∣

p−2

(vnj (t)ω j (x) − vnj (t)ω j (y))

× (ωk(x) − ωk(y))
1

|x − y|N+sp
dxdy

and

F2k(vn) =
∫

Ω

n∑

j=1

|vnj (t)ω j (x)|m−1vnj (t)ω j (x)ωk(x)dx,

F3k(vn) =
∫

Ω

n∑

j=1

|vnj (t)ω j (x)|q−2vnj (t)ω j (x)ωk(x)dx .

Next, we will prove the functions Fik(vn), i = 1, 2, 3 are locally Lipschitz function.
Indeed, we have

|F1k(v1n) − F1k(v
2
n)|

=
∫

Ω

∫

Ω

n∑

j=1

(∣
∣
∣
∣v

1
nj (t)ω j (x) − v1nj (t)ω j (y)

∣
∣
∣
∣

p−2

(v1nj (t)ω j (x) − v1nj (t)ω j (y))

−
∣
∣
∣
∣v

2
nj (t)ω j (x)−v2nj (t)ω j (y)

∣
∣
∣
∣

p−2
(v2nj (t)ω j (x)−v2nj (t)ω j (y))

)
ωk(x)−ωk(y)

|x−y|N+sp
dxdy.

Using the following inequality, for p ≥ 1,

||ϕ|p−2ϕ − |ψ |p−2ψ | ≤ C(p)||ϕ|p−2 + |ψ |p−2||ϕ − ψ |
≤ C(p)max{|ϕ|p−2; |ψ |p−2}|ϕ − ψ |

and the generalized Hölder inequality with parameters

1

r1
+ 1

r2
+ 1

r3
= 1, r1 = p

p − 2
, r2 = p, r3 = p, (4.5)
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in the last equality, we obtain

|F1k(v1n) − F1k(v
2
n)|

≤
∫

Ω

∫

Ω

max

{

|u1n(x, t) − u1n(y, t)|p−2; |u2n(x, t) − u2n(y, t)|p−2
}

|x − y| (N+sp)(p−2)
p

×
n∑

j=1

|(v1nj (t)ω j (x) − v1nj (t)ω j (y)) − (v2nj (t)ω j (x) − v2nj (t)ω j (y))|
|x − y| N+sp

p

× ωk(x) − ωk(y)

|x − y| N+sp
p

dxdy

≤ C(p)Φ p−2[ωk]Ws,p(Ω)[u1n − u2n]Ws,p(Ω),

where Φ p−2 = max{[u1n]Ws,p(Ω); [u2n]Ws,p(Ω)} and [ · ]Ws,p(Ω) is the Gagliardo semi-
norm. Consequently,

[u1n − u2n]Ws,p(Ω)

=
∫

Ω

∫

Ω

n∑

j=1

|v1nj (t)ω j (x) − v1nj (t)ω j (y)) − (v2nj (t)ω j (x) − v2nj (t)ω j (y)|p
|x − y|N+sp

dxdy

=
∫

Ω

∫

Ω

n∑

j=1

|v1nj (t) − v2nj (t)|p|ω j (x) − ω j (y)|p
|x − y|N+sp

dxdy

≤ [w j ]Ws,p(Ω)|v1n − v2n |p.

At this stage using

|a − b|p ≤ |a − b||a − b|p−1 ≤ 2p−2|a + b|p−1|a − b|, p > 2, a, b ∈ R,

in the last term of the previous inequality, and recalling v1nj , v
2
nj ∈ C1([0, Tn]) we

arrive at

|F1k(v1n) − F1k(v
2
n)| ≤ C(p)Φ p−2[ωk]Ws,p(Ω) max{|v1n |p−1; |v2n |p−1}|v1n − v2n |.
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Accordingly, using the inequalities (3.7) and (3.9) to F2k(vn), for k, j = 1, n, we
deduce that

|F2k(v1n) − F2k(v
2
n)|

≤
∫

Ω

n∑

j=1

||v1nj (t)ω j (x)|m−1v1nj (t)ω j (x)−|v2nj (t)ω j (x)|m−1v2nj (t)ω j (x)||ωk(x)|dx

≤ max{‖v1nw j‖m−1
C(Ω); ‖v2nw j‖m−1

C(Ω)}|v1n − v2n |
∫

Ω

|ω j (x)||ωk(x)|dx
≤ max{‖v1nw j‖m−1

C(Ω); ‖v2nw j‖m−1
C(Ω)}‖w j‖L2(Ω)‖wk‖L2(Ω)|v1n − v2n |.

Similarly, from (3.9) and (3.10) we obtain an estimate for F3k(vn), for k, j = 1, n, in
the following form

|F3k(v1n) − F3k(v
2
n)|

≤
∫

Ω

n∑

j=1

||v1nj (t)ω j (x)|q−2v1nj (t)ω j (x)−|v2nj (t)ω j (x)|q−2v2nj (t)ω j (x)||ωk(x)|dx

≤ max{‖v1nw j‖q−2
C(Ω); ‖v2nw j‖q−2

C(Ω)}|v1n − v2n |
∫

Ω

|ω j (x)||ωk(x)|dx

≤ max{‖v1nw j‖q−2
C(Ω); ‖v2nw j‖q−2

C(Ω)}‖w j‖L2(Ω)‖wk‖L2(Ω)|v1n − v2n |.

From Lemma 1, the space Ws,p(Ω) is continuously embedded in L2(Ω). Indeed,
the right-hand side of Fik(vn), i = 1, 2, 3, k = 1, n is continuous with respect to
t ∈ [0, Tn] and locally Lipschitz function with respect to vn(t).

Therefore, due to [21, Theorem 3.25] the Cauchy problem for the system of equa-
tions (4.4) has a unique solution vnj ∈ C1([0, Tn]), j = 1, n for some Tn > 0, which
depends on n ∈ N .

Multiplying the expression (4.2) by vnk(t) and performing the summation over
k = 1, ..., n, it follows that

∫

Ω

unDα
0|t undx + [un]pWs,p(Ω) = γ

∫

Ω

|un|m+1dx + μ

∫

Ω

|un|qdx .

Applying the fractional Poincaré inequality from Lemma 7 and the inequality in
Lemma 5 to the previous identity, we get

1

2
Dα

0|t
∫

Ω

|un|2dx + 1

λ1(Ω)

∫

Ω

|un|pdx

≤ γ

∫

Ω

|un|m+1dx + μ

∫

Ω

|un|qdx .
(4.6)

At this stage we have to consider different cases of coefficients γ and μ.
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• The case γ, μ > 0. Thanks to the inequality (see [30], P. 417),

zb+c−1 ≤ εzc + C(a, b)ε− a−b
b−1 za+c−1, a > b, c > 1, and z ≥ 0, ε > 0, (4.7)

for a = q − 1, b = m, and c = 2 in (4.6) we obtain

γ

∫

Ω

|un|m+1dx ≤ γ ε

∫

Ω

|un|2dx + γC(q,m)ε− q−1−m
m−1

∫

Ω

|un|qdx . (4.8)

Consequently, it follows that

Dα
0|t

∫

Ω

|un|2dx ≤ γ ε

∫

Ω

|un|2dx − 1

λ1(Ω)

∫

Ω

|un|pdx

+
(

γC(q,m)ε− q−1−m
m−1 + μ

) ∫

Ω

|un|qdx .
(4.9)

Due to the inequality (4.7) for a = p − 1, b = q − 1 and c = 2, it holds

∫

Ω

|un|qdx ≤ ε̃

∫

Ω

|un|2dx + C(p, q)ε̃
− p−q

q−1

∫

Ω

|un|pdx .

Therefore, using the last inequality in (4.9) we get

Dα
0|t

∫

Ω

|un|2dx ≤
(

ε̃γC(q,m)ε− q−1−m
m−1 + ε̃μ + γ ε

) ∫

Ω

|un|2dx

+
[(

γC(q,m)ε− q−1−m
m−1 + μ

)

C(p, q)ε̃
− p−q

q−1 − 1

λ1(Ω)

] ∫

Ω

|un|pdx .

Finally, choosing the constants ε, ε̃ > 0 such that

(

γC(q,m)ε− q−1−m
m−1 + μ

)

C(p, q)ε̃
− p−q

q−1 − 1

λ1(Ω)
≤ 0,

then we get the following result

Dα
0|t

∫

Ω

|un|2dx ≤ C(ε, ε̃)

∫

Ω

|un|2dx, (4.10)

where

C(ε, ε̃) = ε̃γC(q,m)ε− q−1−m
m−1 + ε̃μ + γ ε.
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Define Φ(t) :=
∫

Ω

|un|2dx , then applying the left Riemann-Liouville fractional

integral operator I α
0|t to both sides of (4.10) and using Property 1, we get

Φ(t) ≤ Φ(0) + C(ε, ε̃)

∫ t

0
(t − s)α−1Φ(s)ds.

Furthermore, according to Gronwall-type inequality for fractional integral equations
(see [12], Lemma 4.3) we obtain

Φ(t) ≤ Φ(0)Eα,1(C(ε, ε̃)tα) for all t ∈ [0, T ],

where Eα,1(z) is the Mittag-Leffler function, defined by

Eα,1(z) =
∞∑

k=0

zk

Γ (αk + 1)
, z ≥ 0.

Finally, in view of Corollary 1 for real-valued u, we conclude that there exists finite
T0 > 0,

‖un(·, t)‖2L2(Ω)
≤ ‖un(·, 0)‖2L2(Ω)

Eα,1(C(γ, ε)tα) = A(T ), (4.11)

for all t ∈ [0, T ],T < T0, where A(T ) is a constant independent of n.
• The case γ > 0 and μ ≤ 0. Then from (4.6) we obtain

1

2
Dα

0|t
∫

Ω

|un|2dx + 1

λ1(Ω)

∫

Ω

|un|pdx ≤ γ

∫

Ω

|un|m+1dx .

Setting a = p − 1, b = m, and c = 2 in (4.8) we can rewrite the last estimate as

1

2
Dα

0|t
∫

Ω

|un|2dx ≤ γ ε

∫

Ω

|un|2dx+
(

γC(p,m)ε− p−1−m
m−1 − 1

λ1(Ω)

) ∫

Ω

|un|pdx .

By choosing the constants ε, ε̃ > 0 which satisfy

γC(p,m)ε− p−1−m
m−1 − 1

λ1(Ω)
≤ 0,

then we get

Dα
0|t

∫

Ω

|un|2dx ≤ γ ε

∫

Ω

|un|2dx .

The conclusion can be derived as in the previous case.
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• The case γ ≤ 0 and μ > 0. Accordingly from (4.6) we have

1

2
Dα

0|t
∫

Ω

|un|2dx + 1

λ1(Ω)

∫

Ω

|un|pdx ≤ μ

∫

Ω

|un|qdx .

Next, choosing a = p − 1, b = q − 1, and c = 2 in (4.8) it follows

1

2
Dα

0|t
∫

Ω

|un|2dx ≤ με

∫

Ω

|un|2dx +
(

μC(p, q)ε
− p−q

q−2 − 1

λ1(Ω)

)∫

Ω

|un|pdx .

Now, taking ε, ε̃ > 0, which satisfy

μC(p, q)ε
− p−q

q−2 − 1

λ1(Ω)
≤ 0,

we obtain the estimate

Dα
0|t

∫

Ω

|un|2dx ≤ με

∫

Ω

|un|2dx .

Similarly, the conclusion can be derived as in the previous case.
• The case γ, μ ≤ 0. Take into consideration the inequality (4.6) it yields

1

2
Dα

0|t
∫

Ω

|un|2dx + 1

λ1(Ω)

∫

Ω

|un|pdx ≤ 0.

Using the fact that λ1 is nonnegative we obtain

1

2
Dα

0|t
∫

Ω

|un|2dx ≤ 0.

Hence, applying the left Riemann-Liouville integral Iα
0|t to the last inequality and using

Property 1, we deduce that

∫

Ω

|un(x, t)|2dx ≤
∫

Ω

|un(x, 0)|2dx .

Finally, it follows that

‖un(·, t)‖L2(Ω) ≤ ‖un(x, 0)‖L2(Ω), for all t ≥ 0.

Next, multiplying the expression (4.2) by Dα
0|tvnk(t) and summing over k = 1, n, we

obtain

‖Dα
0|t un‖2L2(Ω)

+ P(un,Dα
0|t un(t))

= γ

∫

Ω

|un|m−1unDα
0|t undx + μ

∫

Ω

|un|q−2unDα
0|t undx,

(4.12)
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with

P(un,Dα
0|t un(t)) =

∫

Ω

∫

Ω

|un(x, t) − un(y, t)|p−2

|x − y|N+sp
(un(x, t) − un(y, t))

× Dα
0|t [un(x, t) − un(y, t)]dxdy. (4.13)

Due to Lemma 5 it follows that

(un(x, t) − un(y, t))Dα
0|t [un(x, t) − un(y, t)] ≥ 1

2
Dα

0|t [un(x, t) − un(y, t)]2.

Moreover the identity (4.13) becomes

P(un,Dα
0|t un(t)) ≥ 1

2

∫

Ω

∫

Ω

|un(x, t) − un(y, t)|p−2

|x − y|N+sp

× Dα
0|t [un(x, t) − un(y, t)]2dxdy.

(4.14)

At this stage, we consider the function

H(ω)(t) = 2

p
|ω(t)| p

2 , p ≥ 2,

which is convex. By differentiating respect to ω we have H ′(ω)(t) = |ω(t)| p−2
2 . From

Lemma 4 for the function H(ω)(t) we obtain the following inequality

|ω(t)| p−2
2 Dα

0|tω(t) ≥ 2

p
Dα

0|t |ω| p
2 (t).

Denote ω(t) = |un(x, t) − un(y, t)|2. Then, we obtain

|un(x, t) − un(y, t)|p−2Dα
0|t |un(x, t) − un(y, t)|2 ≥ 1

p
Dα

0|t |un(x) − un(y)|p.

Therefore, using (4.14) and the last inequality we get

∣
∣
∣P(un,Dα

0|t un(t))
∣
∣
∣ ≥ 1

p

∫

Ω

∫

Ω

1

|x − y|N+sp
Dα

0|t |un(x, t) − un(y, t)|pdxdy.

Since the operator Dα
0|t is with respect to the variable t it follows that

∣
∣
∣P(un,Dα

0|t un(t))
∣
∣
∣ ≥ 1

p
Dα

0|t
∫

Ω

∫

Ω

|un(x, t) − un(y, t)|p
|x − y|N+sp

dxdy

= 1

p
Dα

0|t [un(·, t)]pWs,p(Ω).
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Finally, the identity (4.12) can be rewritten as

‖Dα
0|t un‖2L2(Ω)

+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω)

≤ γ

∫

Ω

|un|m−1unDα
0|t undx + μ

∫

Ω

|un|q−2unDα
0|t undx .

(4.15)

At this stage, we should study the different cases of the coefficients γ and μ.
• The case γ, μ > 0. Using the Hölder and ε-Young inequalities

XY ≤ ε

p
X p + C(ε)Y p′

,
1

p
+ 1

p′ = 1, X ,Y ≥ 0,

where C(ε) = 1

p′ε p′−1
for the right hand side of (4.15), respectively, we get

γ

∫

Ω

|un|m−1unDα
0|t undx ≤ γ

(∫

Ω

|un|2mdx
) 1

2
(∫

Ω

∣
∣
∣Dα

0|t un
∣
∣
∣
2
dx

) 1
2

≤ γ ‖un(·, t)‖mL2m (Ω)

∥
∥
∥Dα

0|t un(·, t)
∥
∥
∥
L2(Ω)

≤ ε

2
γ 2 ‖un(·, t)‖2mL2m (Ω)

+ 1

2ε

∥
∥
∥Dα

0|t un(·, t)
∥
∥
∥
2

L2(Ω)

(4.16)

and

μ

∫

Ω

|un|q−2unDα
0|t undx ≤ μ

(∫

Ω

|un|2(q−1)dx

) 1
2
(∫

Ω

|Dα
0|t un|2dx

) 1
2

≤ μ ‖un(·, t)‖q−1
L2(q−1)(Ω)

∥
∥
∥Dα

0|t un(·, t)
∥
∥
∥
L2(Ω)

≤ ε1

2
μ2 ‖un(·, t)‖2(q−1)

L2(q−1)(Ω)
+ 1

2ε1

∥
∥
∥Dα

0|t un(·, t)
∥
∥
∥
2

L2(Ω)
.

(4.17)

From Lemma 2 we obtain

ε

2
γ 2 ‖un(·, t)‖2mL2m (Ω)

≤ ε

2
γ 2C[un(·, t)]2ma

Ws,p(Ω) ‖un(·, t)‖2m(1−a)

L2(Ω)

≤ C(γ, ε, ε̃,C)[un(·, t)]pWs,p(Ω) + C(ε̃) ‖un(·, t)‖
2mp(1−a)
p−2ma

L2(Ω)

(4.18)

and

ε1

2
μ2 ‖un(·, t)‖2(q−1)

L2(q−1)(Ω)

≤ ε1

2
μ2C1[un(·, t)]2(q−1)a

Ws,p(Ω)
‖un(·, t)‖2(q−1)(1−a)

L2(Ω)

≤ C(μ, ε1, ε̃1,C1)[un(·, t)]pWs,p(Ω) + C(ε̃1) ‖un(·, t)‖
2p(q−1)(1−a)
p−2(q−1)a

L2(Ω)
.

(4.19)

123



Qualitative properties of solutions to a nonlinear... 133

Hence, from the last inequalities (4.15) we obtain

1

2
‖Dα

0|t un(·, t)‖2L2(Ω)
+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω)

≤ C(γ, ε, ε̃,C)[un(·, t)]pWs,p(Ω) + C(ε̃) ‖un(·, t)‖
2mp(1−a)
p−2ma

L2(Ω)

+ C(ε)

∥
∥
∥Dα

0|t un(·, t)
∥
∥
∥
2

L2(Ω)
+ C(μ, ε1, ε̃1,C1)[un(·, t)]pWs,p(Ω)

+ C(ε̃1) ‖un(·, t)‖
2p(q−1)(1−a)
p−2(q−1)a

L2(Ω)
+ C(ε1)

∥
∥
∥Dα

0|t un(·, t)
∥
∥
∥
2

L2(Ω)
.

After choosing the constants ε, ε1 such that 1 >
1

ε
+ 1

ε1
, and from the estimate (4.11)

it follows that

‖Dα
0|t un(·, t)‖2L2(Ω)

+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω)

≤ C∗[un(·, t)]pWs,p(Ω) + B(T ),

(4.20)

where C∗ := C(γ, ε, ε̃,C) + C(μ, ε1, ε̃1,C1) and B(T ) := A(ε̃, T ) + A(ε̃1, T ).

Therefore,

Dα
0|t [un(·, t)]pWs,p(Ω) ≤ C∗(p)[un(·, t)]pWs,p(Ω) + B(p, T ). (4.21)

Define y(t) := [un(·, t)]pWs,p(Ω) and using the left Riemann-Liouville integral I α
0|t to

(4.21), according to Property 1, we arrive at

y(t) ≤ y(0) + 1

Γ (α)

∫ t

0
(t − s)α−1 [C∗(p)y(s) + B(p, T )] ds,

which satisfies (see [33], Lemma 3.1)

y(t) ≤ y(0)Eα,1(C∗(p)tα) + B(T )

C∗
[Eα,1(C∗(p)tα) − 1] := E(p, T ).

Finally, we have

[un(·, t)]pWs,p(Ω) ≤ E(p, T ) for all t ∈ [0, T ]. (4.22)

From the inequalities (4.20) and (4.22), we obtain

‖Dα
0|t un(·, t)‖2L2(Ω)

+ Dα
0|t [un(·, t)]pWs,p(Ω)

≤ C∗E(p, T ) + B(p, T ) := L(p, T ).
(4.23)
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Integrating both sides of (4.23) by the left Riemann-Liouville integral I α
0|t and using

Property 1, the last inequality becomes

I α
0|t‖Dα

0|t un(·, t)‖2L2(Ω)
+ [un(·, t)]pWs,p(Ω)

≤ [un(·, 0)]pWs,p(Ω) + I α
0|t [L(p, T )] .

(4.24)

Consequently, applying the left Caputo derivative Dα
0|t due to Property 1, also noting

the facts that [un(·, t)]pWs,p(Ω) is bounded and Dα
0|t [un(·, 0)]Ws,p(Ω) = 0, we can

establish

‖Dα
0|t un(·, t)‖2L2(Ω)

≤ L(p, T ), (4.25)

where L(p, T ) does not dependent to n.
• The case γ > 0 and μ ≤ 0. Accordingly, the inequality (4.15) becomes

‖Dα
0|t un‖2L2(Ω)

+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω) ≤ γ

∫

Ω

|un|m−1unDα
0|t undx .

From the estimates (4.16) and (4.18) we can rewrite the last inequality in the form

1

2
‖Dα

0|t un(·, t)‖2L2(Ω)
+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω)

≤ C(γ, ε, ε̃,C)[un(·, t)]pWs,p(Ω) + C(ε̃) ‖un(·, t)‖
2mp(1−a)
p−2ma

L2(Ω)

+ C(ε)

∥
∥
∥Dα

0|t un(·, t)
∥
∥
∥
2

L2(Ω)
.

By choosing ε small enough such that
1

2
−C(ε) > 0, and using (4.11) it follows that

‖Dα
0|t un(·, t)‖2L2(Ω)

+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω)

≤ C(γ, ε, ε̃,C)[un(·, t)]pWs,p(Ω) + C(ε̃)A(T ).

The conclusion can be obtained, as in the previous case.
• The case γ ≤ 0 and μ > 0. The inequality (4.15) becomes

‖Dα
0|t un‖2L2(Ω)

+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω) ≤ μ

∫

Ω

|un|q−2unDα
0|t undx .
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Using the estimates (4.17) and (4.19) we have

1

2
‖Dα

0|t un(·, t)‖2L2(Ω)
+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω)

≤ C(μ, ε1, ε̃1,C1)[un(·, t)]pWs,p(Ω) + C(ε̃1) ‖un(·, t)‖
2p(q−1)(1−a)
p−2(q−1)a

L2(Ω)

+ C(ε1)

∥
∥
∥Dα

0|t un(·, t)
∥
∥
∥
2

L2(Ω)
.

Taking the constant ε1 small enough such that
1

2
− C(ε1) > 0, and noting (4.11) it

follows that

‖Dα
0|t un(·, t)‖2L2(Ω)

+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω)

≤ C(μ, ε1, ε̃1,C1)[un(·, t)]pWs,p(Ω) + C(ε̃1)A(T ).

The conclusion of this case also can be obtained, as in the first case.
• The case γ, μ ≤ 0. Then, the estimate (4.15) can rewritten as

‖Dα
0|t un‖2L2(Ω)

+ 1

p
Dα

0|t [un(·, t)]pWs,p(Ω) ≤ 0.

Applying the left Riemann-Liouville integral Iα
0|t to the last inequality from Property

(1) it follows that

I α
0|t‖Dα

0|t un‖2L2(Ω)
+ 1

p
[un(·, t)]pWs,p(Ω) ≤ 1

p
[un(·, 0)]pWs,p(Ω).

From the estimate (4.22) we arrive at

I α
0|t‖Dα

0|t un‖2L2(Ω)
≤ 1

p
[un(·, 0)]pWs,p(Ω).

Next, using the left Riemann-Liouville fractional derivative for the last inequality, and
from Property 3 and the identity

D
α
0|t [C] = C

Γ (1 − α)
t−α,

it follows that

‖Dα
0|t un‖2L2(Ω)

≤ t−α

pΓ (1 − α)
[un(·, 0)]pWs,p(Ω), for all t ∈ [0, T ].
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Passing to the limit where n → ∞, from the estimates in the previous estimates, we
conclude that

⎧
⎨

⎩

un ∈ Ws,p(Ω) ∩ L2(Ω; L∞(0, T )),

Dα
0|t un ∈ L2(Ω; L∞(0, T )).

(4.26)

Consequently, from (4.26) there exists a subsequence {unk } of {un}n∈N weak star
converging to some element from Ws,p(Ω) ∩ L2(Ω; L∞(0, T )) such as

unk
∗
⇀u in Ws,p(Ω) ∩ L2(Ω; L∞(0, T )),

Dα
0|t un

∗
⇀Dα

0|t u in L2(Ω; L∞(0, T )).
(4.27)

Similarly, from (4.27), we deduce that one can extract a subsequence {unk } of {un}n∈N
such that

unk
∗
⇀un in Ws,p(Ω) ∩ L2(Ω; L∞(0, T )). (4.28)

Since,Ws,p(Ω)∩L2(Ω; L∞(0, T )) ⊂ L2(Ω; L∞(0, T )), from (4.26) it follows that
the sequences {un}n∈N and Dα

0|t un are bounded in L2(Ω; L∞(0, T )). Then, it partic-
ular {un}n∈N is bounded in Ws,p(Ω). It is known by Lemma 1, that the embedding
of Ws,p(Ω) in L2(Ω) is continuous. It gives us that the subsequence {unk } can be
chosen such that unk → u in the norm of L2(Ω), converging almost everywhere.
The previous argument leads us to the limit in (4.2). However, we multiply (4.2) by
θk(t) ∈ C[0, T ], then summing up both sides over k = 1, n, to get

∫

Ω

Dα
0|t un · Ψ dx + P(un, Ψ ) = γ

∫

Ω

|un|m−1un · Ψ dx + μ

∫

Ω

|un|q−2un · Ψ dx,

almost everywhere in t ∈ [0, T ], where Ψ (x, t) =
n∑

k=1

θk(t)ωk(x).

Taking into account the obtained inclusions and convergence, we pass in (4.2)
to the limit as n → ∞ and obtain Definition 6 for ϕ = Ψ . Since the set of all
functions Ψ (x, t) is dense in Π , then the limit relation holds for all ϕ = ϕ(x, t) ∈
Ws,p

0 (Ω; L p(0, T )).

• The case 1 < q − 1 < m < p. We repeat the entire procedure described above
by simply changing the condition inequality (4.7) to 1 < q − 1 < m < p. ��

4.2 Uniqueness of a weak solution

In this subsection we discuss the uniqueness of weak solutions.

Theorem 3 Let u0 ∈ Ws,p
0 (Ω), u0 ≥ 0 and sp < N. Then the local real-valued weak

solution of (1.1) on (0, T ), T < ∞, is unique.
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Proof Assume that we have two real-valued weak solutions u and v for problem (1.1).
Hence, by Definition 6, we obtain

∫ T

0

∫

Ω

Dα
0|t uϕdxdt+

∫ T

0

∫

Ω

|u(x)−u(y)|p−2(u(x)−u(y))

|x − y|N+sp
(ϕ(x)−ϕ(y))dxdydt

= γ

∫ T

0

∫

Ω

|u|m−1uϕdxdt + μ

∫ T

0

∫

Ω

|u|q−2uϕdxdt

and

∫ T

0

∫

Ω

Dα
0|tvϕdxdt +

∫ T

0

∫

Ω

|v(x)−v(y)|p−2(v(x)−v(y))

|x − y|N+sp
(ϕ(x)−ϕ(y))dxdydt

= γ

∫ T

0

∫

Ω

|v|m−1vϕdxdt + μ

∫ T

0

∫

Ω

|v|q−2vϕdxdt .

By subtracting the previous two inequalities, it follows for t ∈ (0, T ] that
∫ t

0

∫

Ω

Dα
0|τ [u − v]ϕdxdτ +

∫ t

0

∫

Ω

[(−Δ)spu − (−Δ)spv]ϕdxdτ

︸ ︷︷ ︸
C

= γ

∫ t

0

∫

Ω

(|u|m−1u − |v|m−1v)ϕdxdτ

︸ ︷︷ ︸
A

+μ

∫ t

0

∫

Ω

(|u|q−2u − |v|q−2v)ϕdxdτ

︸ ︷︷ ︸
B

.

Using the fact that C is nonnegative from (3.6), and the estimates (3.8), (3.11) for
A,B, respectively, we deduce that

∫ t

0

∫

Ω

Dα
0|τ [u − v]ϕdxdτ ≤ γ L(m)

∫ t

0

∫

Ω

|u − v|ϕdxdτ

+ μL(q)

∫ t

0

∫

Ω

|u − v|ϕdxdτ.

At this stage choosing the real-valued test function

ϕ = (u − v)+ = max{u − v, 0}

and using Lemma 5, we can rewrite the last inequality as

1

2

∫ t

0

∫

Ω

Dα
0|τ (u − v)2+dxdτ

≤ γ L(m)

∫ t

0

∫

Ω

(u − v)2+dxdτ + μL(q)

∫ t

0

∫

Ω

(u − v)2+dxdτ.
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Therefore, we should consider three cases depending on γ, μ. By repeating the entire
procedure as in the proof of Theorem 1, we obtain the main inequality

∫

Ω

(u − v)2+dx ≤ 0,

which is equivalent to (u − v)+ = 0. Finally, we conclude that u = v. ��

5 Global existence and blow-up of solutions

5.1 Blow-up of solution

In this subsection we will show the blow-up of solution to (1.1) using the comparison
principle.

Let ξ(x) > 0 and λ1(Ω) > 0 be the first eigenfunction and the first eigenvalue [26,
Theorem 5], respectively, related to the Dirichlet problem:

⎧
⎨

⎩

(−Δ)spξ(x) = λ1(Ω)|ξ(x)|p−2ξ(x), x ∈ Ω,

ξ(x) = 0, x ∈ R
N \ Ω,

(5.1)

with ‖ξ‖2
L2(Ω)

= 1.

Theorem 4 Let p ≥ 2, u0 > 0, and assume that one of the following conditions holds:
(a) p = q ≥ 2,m > 1 and λ1(Ω) ≥ μ, γ > 0;
(b) p − 1 = m ≥ 1, q > 2 and λ1(Ω) ≥ γ, μ > 0;
(c) p ≥ 2,m > 1, q ≥ 1 and λ1(Ω), γ > 0, μ ≤ 0;
(d) p ≥ 2,m + 1 = q > 2 and γ, μ, λ1(Ω) > 0.
Then the positive solution u(x, t) of (1.1) blows up in finite time

T ∗ = (kΓ (2 − α))
2

2−2α−k ,

where k = m − 1 in cases (a), (c), (d) and k = q − 2 in cases (b), (d) and α ∈ (0, 1),
Γ is the Euler Gamma function, namely, we have

lim
t→T ∗ u(x, t) = +∞.

Proof First we will prove the cases (a) and (b).
We shall prove this theorem by constructing a proper weak subsolution to (1.1). We

will seek the solution v(x, t) = ξ(x) f (t) > 0 with the initial data v0(x) = ξ(x) f (0),
such that 0 ≤ v0(x) ≤ u0(x) on x ∈ Ω . Multiplying the equation (1.1) by v(x, t),
and integrating the equality over Ω , one obtains

f (t)Dα
0|t f (t)‖ξ‖2L2(Ω)

+ λ1(Ω) f p(t)‖ξ p‖2L2(Ω)

= γ f m+1(t)‖ξm+1‖2L2(Ω)
+ μ f q(t)‖ξq‖2L2(Ω)

.
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Hence, from Lemma 5, it follows that

1

2
Dα

0|t f 2(t) + λ1C(p) f p(t) ≤ γC(m) f m+1(t) + μC(q) f q(t). (5.2)

At this stage, by denoting f 2(t) = z(t), we have to consider the cases:
(a) If p = q ≥ 2,m > 1 and λ1(Ω) ≥ μ, γ > 0, then (5.2) can rewritten as

Dα
0|t z(t) ≤ 2C(m, γ )z

m+1
2 (t).

Using the idea of paper [11], we set for any t ∈ (0, b),

z(t) = b

(b − t)
2

m−1

, b := b(m − 1, α) = ((m − 1)Γ (2 − α))
2

3−2α−m .

Accordingly, we have the initial condition z(0) = z0 > 0. We should note that the
function z(t), limt→b− z(t) → ∞, diverges at t = b. Moreover, for any t ∈ (0, b)
and any τ ∈ (0, t) we can obtain

∂

∂τ
z(τ ) : = 2b

(m − 1)(b − τ)
m+1
m−1

≤ 2b

(m − 1)(b − t)
m+1
m−1

= z
m+1
2 (t)

2(m − 1)b
m−1
2

.

From Definition 3 it follows for all t ∈ (0, b),

Dα
0|t z(t) = 2C(m, γ )

Γ (1 − α)

∫ t

0

z′(τ )

(t − τ)α
dτ

≤ 2C(m, γ )z
m+1
2 (t)

2(m − 1)b
m−1
2 Γ (1 − α)

∫ t

0

dτ

(t − τ)α

= C(m, γ )t1−αz
m+1
2 (t)

(m − 1)b
m−1
2 Γ (2 − α)

≤ C(m, γ )b1−αz
m+1
2 (t)

(m − 1)b
m−1
2 Γ (2 − α)

= C(m, γ )b
3−2α−m

2 z
m+1
2 (t)

(m − 1)Γ (2 − α)

= C(m, γ )z
m+1
2 (t).
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Therefore, z(t) diverges at t = b yielding that

T∗ ≤ b = b(m − 1, α).

(b) If p − 1 = m ≥ 1, q > 2 and λ1(Ω) ≥ γ, μ > 0, then from (5.2) we obtain

Dα
0|t z(t) ≤ 2C(q, μ)z

q
2 (t).

We can argue as the previous case by choosing for any t ∈ (0, b) the function

z(t) := b

(b − t)
2

q−2

, b := b(q − 2, α) = ((q − 2)Γ (2 − α))
2

4−2α−q .

Similarly, for any t ∈ (0, b) and any τ ∈ (0, t), we obtain

∂

∂τ
z(τ ) : = 2b

(q − 2)(b − τ)
q

q−2

≤ 2b

(q − 2)(b − t)
q

q−2

= z
q
2 (t)

2(q − 2)b
q−2
2

.

Finally, z(t) diverges at t = b for

T∗ ≤ b = b(q − 2, α).

(c) For p ≥ 2,m > 1, q ≥ 1 and λ1(Ω), γ > 0, μ < 0, inequality (5.2) yields

Dα
0|t z(t) ≤ 2C(m, γ )z

m+1
2 (t).

(d) For p ≥ 2,m + 1 = q > 2 and γ, μ, λ1(Ω) > 0, using (5.2) we have

Dα
0|t z(t) ≤ 2

[
C(m, γ ) + C(p, μ)

]
z
q
2 (t).

Proof of (c) and (d) can be derived from the previous cases. We just omit it. The proof
is complete. ��

5.2 Global solution

In this subsection, we prove the existence of global solutions of problem (1.1).

Theorem 5 Assume that u0 ∈ Ws,p
0 (Ω) ∩ L∞(Ω), s ∈ (0, 1), u0 ≥ 0, and let

p, q,m, γ, μ satisfy one of the following conditions:
(a) p = m + 1 = q > 2 and 0 < γ + μ ≤ λ1(Ω);
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(b) p = q or p = m + 1 and 0 ≤ γ, μ ≤ λ1(Ω);
(c) p ≤ m + q and γ, μ ∈ R;
(d) p ≥ 2,m > 1, q ≥ 1 and γ, μ ≤ 0;
(e) p = q,m > 1 and γ ≤ 0, μ > 0.
Then the problem (1.1) admits a global in time positive solution.

Remark 1 Note that in the limiting case α → 1 and s → 1, the results of Theorem 5
coincides with the results obtained in [25].

Proof of Theorem 5 (a) Let Ω∗ ⊂ R
N be a smooth domain such that Ω ⊂⊂ Ω∗.

Define ψ and λ1(Ω
∗) to be the first eigenfunction and the first eigenvalue related

to the Dirichlet problem:

⎧
⎨

⎩

(−Δ)spψ(x) = λ1(Ω
∗)|ψ(x)|p−2ψ(x), x ∈ Ω∗,

ψ(x) = 0, x ∈ R
N \ Ω∗,

with
∫

Ω∗
|ψ(x)|pdx = 1, for more details see [26, Lemma 15]. Then, from Lemma

6 we have λ1(Ω
∗) ≤ λ1(Ω), where λ1(Ω) is the first eigenvalue of (2.2). Moreover,

in view of [26, Theorem 16], we can choose a suitable Ω∗ and θ > 0 which satisfies
θ ≤ λ1(Ω

∗) ≤ λ1(Ω) . Therefore, let K be so large such that

w = Kψ ≥ Kβ ≥ ‖u0‖L∞(Ω),

where β = infΩ ψ > 0, which we note that ψ > 0 in Ω from the results of Lindgren
and Lindqvist in [26, Theorem 5]. Following that, a simple calculation shows that for
each nonnegative test-function ϕ = ϕ(x, t) ∈ Π ∩ Ws,p

0 (Ω; L∞(0, T )), we have

∫ T

0

∫

Ω

Dα
0|twϕdxdt +

∫ T

0
〈(−Δ)spw, ϕ〉dt

= γ

∫ T

0

∫

Ω

wmϕdxdt + μ

∫ T

0

∫

Ω

wq−1ϕdxdt,

(5.3)

where 〈·, ·〉 is the inner product. Hence, noting that p = m+1 = q > 2, and choosing
θ := γ + μ, the last identity takes the form

∫ T

0

∫

Ω

Dα
0|twϕdxdt +

∫ T

0
〈(−Δ)spw, ϕ〉dt = λ1(Ω)

∫ T

0

∫

Ω

w p−1ϕdxdt

≥ λ1(Ω
∗)

∫ T

0

∫

Ω

w p−1ϕdxdt

≥ (γ + μ)

∫ T

0

∫

Ω

w p−1ϕdxdt .

It follows that w = Kψ is a weak supersolution of problem (1.1). From Theorem 1,
we have 0 ≤ u ≤ w almost everywhere in ΩT . It is also important to note that the
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functionw is independent of t , allowing us to continue the method at any time interval
[T , T ′]. As a result, we may say that the solution to (1.1) is global in time.

(b) Due to the expression (5.3) and the conditions p = q or p = m + 1, it follows
that

∫ T

0

∫

Ω

Dα
0|twϕdxdt +

∫ T

0
〈(−Δ)spw, ϕ〉dt ≥ μ

∫ T

0

∫

Ω

w p−1ϕdxdt

and

∫ T

0

∫

Ω

Dα
0|twϕdxdt +

∫ T

0
〈(−Δ)spw, ϕ〉dt ≥ γ

∫ T

0

∫

Ω

w p−1ϕdxdt .

Since, 0 ≤ γ, μ ≤ λ1(Ω), then the function w = Kψ is also a weak supersolution of
(1.1). The conclusion is established using the same argument as before.

(c) FromDefinition 5 assume that u is an eigenfunction associated to the eigenvalue
λ1(Ω), which is a nonnegative [26, Theorem 5]. Then by (5.3) it follows that

λ1(Ω)

∫ T

0

∫

Ω

u p−1ϕdxdt = γ

∫ T

0

∫

Ω

umϕdxdt + μ

∫ T

0

∫

Ω

uq−1ϕdxdt . (5.4)

Choosing constants r , r ′ such as

1

r
+ 1

r ′ = 1, r , r ′ > 1 and p − 1 = m

r
+ q − 1

r ′ ≤ m + q − 1,

we obtain

∫ T

0

∫

Ω

u p−1ϕdxdt =
∫ T

0

∫

Ω

u
m
r + q−1

r ′ ϕ
1
r + 1

r ′ dxdt .

Using the Hölder and ε-Young inequalities to the last expression, it follows that

∫ T

0

∫

Ω

u p−1ϕdxdt ≤
(∫ T

0

∫

Ω

umϕdxdt

) 1
r
(∫ T

0

∫

Ω

uq−1ϕdxdt

) 1
r ′

≤ ε

∫ T

0

∫

Ω

umϕdxdt + C(ε)

∫ T

0

∫

Ω

uq−1ϕdxdt .

Therefore, the identity (5.4) becomes

γ

∫ T

0

∫

Ω

umϕdxdt + μ

∫ T

0

∫

Ω

uq−1ϕdxdt

≤ λ1(Ω)ε

∫ T

0

∫

Ω

umϕdxdt + λ1(Ω)C(ε)

∫ T

0

∫

Ω

uq−1ϕdxdt .
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Now, taking ε small enough, such that λ1(Ω)ε − γ ≥ 0 and λ1(Ω)C(ε) − μ ≥ 0,
we can get that the last inequality will be non-positive

(λ1(Ω)ε − γ )

∫ T

0

∫

Ω

umϕdxdt + (λ1(Ω)C(ε) − μ)

∫ T

0

∫

Ω

uq−1ϕdxdt ≥ 0,

which completes our proof by the comparison principle.
(d) We proceed by multiplying each term of (1.1) by u ≥ 0 and then integrating

over Ω . Thus, we obtain
∫

Ω

[Dα
0|t u]udx = −〈(−Δ)spu, u〉 + γ

∫

Ω

um+1dx + μ

∫

Ω

uqdx (5.5)

and taking into account that γ, μ ≤ 0, 〈(−Δ)spu, u〉 ≥ 0, it follows that

∫

Ω

[Dα
0|t u]udx ≤ 0.

By Lemma 5, it implies

∫

Ω

Dα
0|t u2dx ≤ 0.

Moreover, the Caputo derivative depends on the variable t , and the last expression can
be rewritten as

Dα
0|t

∫

Ω

u2dx ≤ 0. (5.6)

Hence, applying the left Riemann-Liouville integral Iα
0|t to the inequality (5.6) and

using Property 1, we obtain

∫

Ω

u2(x, t)dx ≤
∫

Ω

u2(x, 0)dx .

Finally, using u0 ≥ 0 and Corollary 1, we get

‖u(·, t)‖L2(Ω) ≤ ‖u0‖L2(Ω), for all t ≥ 0.

(e) Without loss of generality, for γ ≤ 0, μ > 0 we can get from (5.5), by (2.3),
that

∫

Ω

[Dα
0|t u]udx ≤ −CN ,s,p

∫

Ω

∫

Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy + μ

∫

Ω

uqdx .

Then, by Lemma 7 for p = q, we obtain

∫

Ω

[Dα
0|t u]udx ≤ −CN ,s,p[u]pWs,p(Ω) + μλ1(Ω)[u]pWs,p(Ω).
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Using the fact that λ1(Ω) coincides with the sharp constant in Lemma 7 [8, page 2]

we choose the domain such that CN ,s,p ≥ μλ1(Ω) ≥ μ

IN ,s,p(Ω)

holds, which gives

us

∫

Ω

[Dα
0|t u]udx ≤ 0.

Accordingly, the conclusion follows as in the previous case. ��

5.3 Asymptotic behavior of solution

In this subsection, we give the time-decay estimates of global solutions of problem
(1.1).

Theorem 6 Assume that u0 > 0 and that one of the following conditions holds:
(a) m = q − 1 > 0 and γ + μ < 0;
(b) m > 0, q > 1 and γ < 0, μ = 0;
(c) m > 0, q > 1 and γ = 0, μ < 0.
Then the positive global solution to problem (1.1) satisfies the estimate

0 < u(x, t) ≤ M

1 + t
α
r
, t ≥ 0, x ∈ Ω,

where M is a positive constant dependent of u0, and r = m in cases (a), (b) and
r = q − 1 in cases (a), (c).

Proof (a) Let us consider the function v(x, t) := v(t) > 0 for all x ∈ Ω . Then it
follows that

Dα
0|tv(t) + (−Δ)spv(t) = γ vm(t) + μvq−1(t).

According to the fact that (−Δ)spv(t) = 0 and m = q − 1 > 0, γ +μ < 0, the last
expression can be rewritten in the following form

Dα
0|tv(t) + νv(t)m = 0, ν = −(γ + μ) > 0, (5.7)

which ensures that v(t) satisfies (1.1) with the initial data 0 < max
x∈Ω

u0(x) ≤ v0.

It is known from the results of Zacher and Vergara in [37, Theorem 7.1], that if
v0 > 0, ν > 0,m > 0, then the solution to equation (5.7) satisfies estimate v(t) ≤
M

1+t
α
r
, for all t ≥ 0. As 0 < u0(x) ≤ v0, then v(t) is a supersolution of problem (1.1).

This completes the proof.
Cases (b) and (c) are proved in a similar way, completely repeating the above

calculations.
The proof is complete. ��
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32. del Teso, F., Gómez-Castro, D., Vázquez, J.L.: Three representations of the fractional p-Laplacian:

Semigroup, extension and Balakrishnan formulas. Fract. Calc. Appl. Anal. 24(4), 966–1002 (2021).
https://doi.org/10.1515/fca-2021-0042

33. Tisdell, C.C.: On the application of sequential and fixed-point methods to fractional differential
equations of arbitrary order. J. Integral Equations Appl. 24(2), 283–319 (2012)

34. Tuan, N.H., Vo, V.A., Xu, R.: Semilinear Caputo time fractional pseudo-parabolic equations. Commun.
Pure Appl. Anal. 20(2), 583–621 (2021)

35. Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators.
Discrete Contin. Dyn. Syst. 7(4), 857–885 (2014)

36. Vergara, V., Zacher, R.: Stability, instability, and blowup for time fractional and other nonlocal in time
semilinear subdiffusion equations. J. Evol. Equ. 17, 599–626 (2017)

37. Vergara, V., Zacher, R.: Optimal decay estimates for time-fractional and other nonlocal subdiffusion
equations via energy methods. SIAM J. Math. Anal. 47(1), 210–239 (2015)

38. Yin, J., Jin., Ch.: Critical extinction and blow-up exponents for fast diffusive p-Laplacian with sources.
Math. Meth. Appl. Sci. 30(10), 1147–1167 (2007)

39. Zacher, R.: Time fractional diffusion equations: solution concepts, regularity, and long-time behavior.
in Handbook of Fractional Calculus with Applications. Vol. 2. Fractional Differential Equations, ed.
by A. Kochubei and Y. Luchko, De Gruyter, 159–180 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1515/fca-2021-0042

	Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The fractional Sobolev space
	2.2 Fractional operators
	2.3 Notations

	3 A comparison principle
	4 Local well-posedness
	4.1 Existence of a local weak solution
	4.2  Uniqueness of a weak solution

	5 Global existence and blow-up of solutions
	5.1 Blow-up of solution
	5.2 Global solution
	5.3 Asymptotic behavior of solution

	Acknowledgements
	References




