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Abstract
In this work, a class of non-linear weakly singular fractional integro-differential
equations is considered, and we first prove existence, uniqueness, and smoothness
properties of the solution under certain assumptions on the given data. We propose
a numerical method based on spectral Petrov-Galerkin method that handling to the
non-smooth behavior of the solution. The most outstanding feature of our approach
is to evaluate the approximate solution by means of recurrence relations despite solv-
ing complex non-linear algebraic system. Furthermore, the well-known exponential
accuracy is established in L2-norm, and we provide some examples to illustrate the
theoretical results and the performance of the proposed method.

Keywords Weakly singular fractional integro-differential equation · Caputo
derivative operator · Generalized Jacobi polynomials · Spectral Petrov-Galerkin
method · Convergence
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1 Introduction

The subject of fractional calculus has recently gained significant popularity and impor-
tance, due mainly to its memory features and demonstrated applications in numerous
seemingly diverse andwidespreadfields of science and engineering. For further details,
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readers are relegated to the books ( [3], [6], [14], [18], [24], [30]) and review papers
([17], [26], [29]).

There is no generally applicable method to find an analytic solution to an arbitrary
given fractional-integro differential equation (FIDE). That is why effective numerical
methods can help overcome the problems caused by the shortage of analytical methods
for the computation of solutions to FIDEs. Various kinds of approximate methods
have independently appeared for the numerical solution of FIDEs along with smooth
kernel function, such as Quadratic method [15], spline collocation method [23, 25],
differential transform method [1], Legendre wavelet method [2], second Chebyshev
wavelet method [35], Laguerre collocation method [5], Jacobi collocation method
[7], Taylor expansion method [13], Legendre collocation method [19] and hybrid
collocation method [16].

Weakly singular FIDEs seem to be investigated less frequently than FIDEs asso-
ciated with smooth kernel function. For instance, alternative Legendre polynomials
method [27], Jacobi Tau method [20], second kind Chebyshev spectral method [22],
second kind Chebyshev wavelet method [31], and piecewise polynomial collocation
method [34] have introduced for the numerical solution of linear weakly singular
FIDEs. Moreover, the most frequently used methods for obtaining the approximate
solutions of non-linear weakly singular FIDEs are Legendre wavelet method [32],
shifted Jacobi collocation method [4], and hat functions method [21].

In this work we consider a non-linear weakly singular FIDE

{
Dα
C y(t) = f (t, y(t)) + λ

∫ t
0 (t − s)β−1g(t, s, y(s))ds, t ∈ � = [0, T ],

y(k)(0) = y(k)
0 , k = 0, 1, . . . , �α� − 1, α > 0, 0 < β ≤ 1,

(1.1)

where λ ∈ R, α = a1
b1
, β = a2

b2
along with ai ≥ 1, bi ≥ 2, i = 1, 2, and (ai , bi ) are

the pairs of co-prime integers.
Here �.� is the ceiling function, and T is a finite positive real value.

f (t, y(t)) : � × R → R and g(t, s, y(s)) : D × R → R, with

D = {(t, s) ∈ � × � : 0 ≤ s ≤ t ≤ T } ,

are continuous functions, and y(t) : � → R is the unknown. Dα
C is Caputo fractional

derivative of order α defined by

Dα
C (.) = I �α�−α∂

�α�
t (.),

in which I �α�−α denotes the Riemann-Liouville fractional integral operator of order
�α� − α, [6, 14, 24].

In this work, a comprehensive investigation regarding the existence, uniqueness,
and smoothness properties of (1.1) are provided on the one side, and then an efficient
spectral scheme is implemented to (1.1) thanks to the fractional generalized Jacobi
functions (FGJFs) introduced in [8]. Needless to direct that spectral methods offer
highly accurate approximations for smooth problems. However, some cons are still
existed, including the requirement of solving ambiguous and ill-conditioned algebraic
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systems and the striking decline in the accuracy of the approximations facing the
problems with non-smooth solutions. Contrary to all cons, the numerical strategy in
this essay is taken whereby it contributes to both spectral accuracy in attacking non-
smooth solution and evaluating approximate solution bymeans of recurrence relations
despite solving non-linear complex algebraic systems.

This paper is organized in the following way. We begin by presenting theorems of
existence, uniqueness, and smoothness. This analysis confirms that some derivatives
of the solution have probably a discontinuity at the initial point. Subsequently, in
Section 3, we first provide the essential concepts and definitions of generalized Jacobi
polynomials (GJPs) and FGJFs, and then a state-of-the-art Petrov-Galerkin method is
implemented to deal with the solution of (1.1) which satisfies the assumptions of the
existence, uniqueness and smoothness theorems. Numerical solvability and practical
implementation of the relevant non-linear algebraic system are examined as well. In
particular, the error estimate is mightily surveyed in Section 4. Section 5 includes
some prototype examples to assess the efficiency and applicability of the introduced
method. Section 6 ultimately presents concluding remarks.

2 Existence, uniqueness and smoothness

We allocate this section to the existence, uniqueness, and smoothness properties of
the solution of (1.1).

Let ψ(t) =
�α�−1∑
k=0

tk

k! y
(k)
0 . Define the set

�ζ = {y ∈ C([0, T ]) : ‖y − ψ‖� ≤ ζ } ,

where ‖.‖� = max
t∈�=[0,T ] |z(t)| for all z ∈ C(�) and

ζ = ‖ f ‖�T α


(α + 1)
+ ‖g‖�λ
(β)T α+β


(1 + α + β)
. (2.1)

Through applying the Riemann-Liouville fractional integral operator of order α,
(1.1) is changed into the weakly singular Volterra integral equation

y(t) = ψ(t) + I α( f (t, y(t))) + λI α

(∫ t

0
(t − s)β−1g(t, s, y(s))ds

)
. (2.2)

At this stage, we define an operator Tψ , on �ζ , by

Tψ (ϕ) (t) = ψ(t) + I α( f (t, ϕ(t))) + λI α

(∫ t

0
(t − s)β−1g(t, s, ϕ(s))ds

)

= ψ(t) + 1


(α)

∫ t

0
(t − s)α−1 f (s, ϕ(s))ds

+ λ


(α)

∫ t

0
(t − τ)α−1

(∫ τ

0
(τ − s)β−1g(τ, s, ϕ(s))ds

)
.
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Using this operator, the equation (1.1) can be rewritten as y = Tψ (y). Thereby, if the
operator Tψ has a unique fixed point on �ζ , (1.1) will possess a unique continuous
solution. This result is provided on the next theorem.

To prove theorems of existence, uniqueness, and smoothness, we consider the
hypotheses:

• H1: Let D1 = � × [mψ − ζ, Mψ + ζ ] and D2 = D × [mψ − ζ, Mψ + ζ ], where
mψ = min

t∈�
|ψ(t)|, Mψ = max

t∈�
|ψ(t)| and ζ is defined by (2.1).

The functions f (s, y(s)) : D1 → R and g(t, s, y(s)) : D2 → R are continuous
for all s ∈ � and further the functions f and g fulfills Lipschitz conditions
with respect to the second and third variables, respectively. Therefore, there exists
L1 > 0 and L2 > 0 such that

| f (t, z1) − f (t, z2)| ≤ L1|z1 − z2|, ∀z1, z2 ∈ �ζ ,

|g (t, s, z1) − g (t, s, z2)| ≤ L2|z1 − z2|, ∀z1, z2 ∈ �ζ .

• H2: We have

f (t, y(t)) = f̄ (t1/b, y(t)),

g(t, s, y(s)) = ḡ(t1/b, s1/b, y(s)),

where b signifies the least common multiple of bi , i = 1, 2, and f̄ and ḡ are
analytic functions in the neighborhood of (0, y(0)

0 ) and (0, 0, y(0)
0 ), respectively.

Theorem 1 (Existence and uniqueness) Assume that H1 holds. Then, (1.1) possesses
a unique continuous solution on �.

Proof Suppose that y ∈ �ζ . It is straightforward prove that Tψ (y) ∈ �ζ .
Let δ > 0 be a constant such that

max

(
L1

δα
+ L2λ
(β)

δα+β

)
< 1. (2.3)

We introduce a new norm ‖ · ‖δ over the space C(�;�ζ ) as

‖ϕ‖δ =
∥∥∥∥ ϕ

exp(δt)

∥∥∥∥
�

.

Using standard arguments, it can be readily inferred that �ζ is a closed subset of
the Banach space of continuous functions on �, associated with the norm ‖ · ‖δ .

Let ϕ, ϕ̂ ∈ �ζ . Regarding the Lipschitz assumption on f and g, it follows

∣∣Tψϕ(t) − Tψϕ̂(t)
∣∣

exp(δt)
≤ L1


(α) exp(δt)

∫ t

0
(t − s)α−1 exp(δs)

|ϕ(s) − ϕ̂(s)|
exp(δs)

ds

+ L2λ


(α) exp(δt)

∫ t

0
(t − s)α−1

(∫ s

0
(s − τ)β−1 exp(δτ )

|ϕ(τ) − ϕ̂(τ )|
exp(δτ )

dτ

)
ds
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≤ L1


(α) exp(δt)
‖ϕ − ϕ̂‖δ

∫ t

0
(t − s)α−1 exp(δs)ds

+ L2λ


(α) exp(δt)
‖ϕ − ϕ̂‖δ

∫ t

0
(t − s)α−1

(∫ s

0
(s − τ)β−1 exp(δτ )dτ

)
ds

≤ L1


(α)δα
‖ϕ − ϕ̂‖δ

∫ δt

0
uα−1 exp(−u)du

+ L2λ


(α) exp(δt)δβ
‖ϕ − ϕ̂‖δ

∫ t

0
(t − s)α−1 exp(δs)

(∫ δs

0
vβ−1 exp(−v)dv

)
ds.

Due to the definition of Gamma function, we have∣∣Tψϕ(t) − Tψϕ̂(t)
∣∣

exp(δt)
≤ L1

δα
‖ϕ − ϕ̂‖δ + L2λ
(β)

exp(δt)δβ
(α)

∫ t

0
(t − s)α−1 exp(δs)ds

≤ L1

δα
‖ϕ − ϕ̂‖δ + L2λ
(β)

δα+β
‖ϕ − ϕ̂‖δ

=
(
L1

δα
+ L2λ
(β)

δα+β

)
‖ϕ − ϕ̂‖δ.

Then from the above inequality and (2.3), it follows

∥∥Tψ (ϕ) − Tψ

(
ϕ̂
)∥∥

δ
≤
(
L1

δα
+ L2λ
(β)

δα+β

)
‖ϕ − ϕ̂‖δ < ‖ϕ − ϕ̂‖δ.

Therefore the operator Tψ is a contraction on�ζ . Finally, by the Banach fixed point
principle, the proof of the theorem is complete.

We present the following theorem to dig into the asymptotic behavior of the solution
of (1.1) through its series representation near the origin.

Theorem 2 (Smoothness) Suppose thatH1 and H2 are satisfied. Then the solution of
(1.1) has the following series form in the neighborhood of the initial point

y(t) = ψ(t) +
∞∑

μ=αb

ȳμ t
μ
b , (2.4)

in which ȳμ are known coefficients.

Proof Consider the series expansion of y(t) as

y(t) =
∞∑

μ=0

ȳμ t
μ
b . (2.5)

The unknown coefficients ȳμ are obtained in order that the series (2.5) converges and

solves (1.1). We use the series expansions of f̄ and ḡ around (0, y(0)
0 ) and (0, 0, y(0)

0 ),
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respectively, viz.,

f (t, y(t)) = f̄ (t1/b, y(t)) =
∞∑

μ=0
θ=0

fμ,θ t
μ
b

(
y(t) − y(0)

0

)θ

,

g(t, s, y(s)) = ḡ(t1/b, s1/b, y(s)) =
∞∑

μ,ν=0
θ=0

gμ,ν,θ t
μ
b s

ν
b

(
y(s) − y(0)

0

)θ

. (2.6)

By rearranging, it can be concluded that

(
y(t) − y(0)

0

)θ

=
( ∞∑

μ=1

ȳμt
μ
b

)θ

=
∞∑

σ=0

Cθ
σ t

σ
b , (2.7)

where

Cθ
σ =

⎧⎪⎪⎨
⎪⎪⎩
1, θ = 0, σ = 0,

0, θ = 0, σ ≥ 1,∑
μ1+...+μθ=σ

ȳμ1 . . . ȳμθ , θ �= 0, σ ≥ 1.

Therefore, in view of the equivalent equation (2.2) and substituting the relation
(2.7) into (2.6), we find

∞∑
μ=0

ȳμ t
μ
b = ψ(t) + I α

( ∞∑
μ=0
θ=0

fμ,θ t
μ
b

( ∞∑
σ=0

Cθ
σ t

σ
b

))

+λI α

(∫ t

0
(t − s)β−1

∞∑
μ,ν=0
θ=0

gμ,ν,θ t
μ
b s

ν
b

( ∞∑
σ=0

Cθ
σ s

σ
b

)
ds

)
.

Meanwhile, by considering uniform convergence, the coefficients ȳμ satisfy the
following equality

∞∑
μ=0

ȳμ t
μ
b = ψ(t) + �1

( ∞∑
μ=0

θ,σ=0

fμ,θ Cθ
σ tα+ μ+σ

b

)

+λ�2

( ∞∑
μ,ν=0
θ,σ=0

gμ,ν,θ Cθ
σ tα+β+ μ+ν+σ

b

)
, (2.8)
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in which

�1 = 
(
μ+σ
b + 1)


(
μ+σ
b + α + 1)

, �2 = 
(β)
(ν+σ
b + 1)
(

μ+ν+σ
b + β + 1)


( ν+σ
b + β + 1)
(

μ+ν+σ
b + α + β + 1)

.

Setting μ = μ − σ − αb and μ = μ − ν − σ − αb − βb into the first and second
series on the right-hand side of (2.8) respectively deduces

∞∑
μ=0

ȳμ t
μ
b = ψ(t) + �̄1

( ∞∑
μ=σ+αb
θ,σ=0

fμ−σ−αb,θ Cθ
σ t

μ
b

)

+λ�̄2

( ∞∑
μ=ν+σ+αb+βb

ν,θ,σ=0

gμ−ν−σ−αb−βb,ν,θ Cθ
σ t

μ
b

)
, (2.9)

where

�̄1 = 
(
μ
b − α + 1)


(
μ
b + 1)

, �̄2 = 
(β)
(ν+σ
b + 1)
(

μ
b − α + 1)


( ν+σ
b + β + 1)
(

μ
b + 1)

.

We now arrive at ȳμ through making a comparison between the coefficients of t
μ
b on

both sides of (2.9). Evidently, for μ < αb, we can write

ȳμ =
⎧⎨
⎩

y
(
μ
b )

0
(

μ
b )! , μ = 0, b, ..., (�α� − 1)b,

0, else,

and for μ ≥ αb, the following recursive relation is derived

ȳμ =
∞∑

ν,θ,σ=0

Cθ
σ

(
�̄1 fμ−σ−αb,θ + λ�̄2 gμ−ν−σ−αb−βb,ν,θ

)
,

such that the coefficients fμ−σ−αb,θ and gμ−ν−σ−αb−βb,ν,θ , equipped with negative
indices, are deemed to be zero, and in the case of μ − σ − αb ≥ 0 and μ − ν − σ −
αb − βb ≥ 0, we observe that

μ ≥ σ + αb > σ = μ1 + . . . + μθ ≥ μi ,

μ ≥ ν + σ + αb + βb > σ = μ1 + . . . + μθ ≥ μi , i = 1, 2, . . . , θ.

In other words, ȳμ are obtained recursively, and thereby the series expansion (2.4) is
a unique formal solution of (1.1).

We are now required to verify that such power series is uniformly and absolutely
convergent in the neighborhood of zero. In this regard, we apply Lindelof’s majorant
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approach [6]. Deem the weakly singular Volterra integral equation

Y (t) = ψ̄(t) + I αF(t, y(t)) + λI α
( ∫ t

0
(t − s)β−1G(t, s,Y (s))ds

)
,

where ψ̄(t) =
�α�−1∑
k=0

tk
k! |y(k)

0 |

F(t, y(t)) = F̄(t1/b,Y (t)) =
∞∑

μ=0
θ=0

| fμ,θ | t μ
b

(
Y (t) − |y(0)

0 |
)θ

,

G(t, s,Y (s)) = Ḡ(t1/b, s1/b,Y (s)) =
∞∑

μ,ν=0
θ=0

|gμ,ν,θ | t μ
b s

ν
b

(
Y (t) − |y(0)

0 |
)θ

.

It is clear that all coefficients of Y are positive, and it is a majorant for y. The series
expansion Y may be calculated in precisely the same manner as above. Currently, for
some ω > 0 given in the sequel, we prove that the series Y (t) converges absolutely
over [0, ω]. For this purpose, the key is to justify that the finite partial sum of the
formal solution Y (t) i.e.

SL+1(t) = ψ̄(t) +
L+1∑

μ=αb

Ȳμ t
μ
b ,

can be uniformly bounded on [0, ω]. Clearly, we have the inequality below

SL+1(t) ≤ ψ̄(t) + I αF(t, SL(t)) + λI α
( ∫ t

0
(t − s)β−1G(t, s, SL(s))ds

)
,

(2.10)

in accordance with the recursive evaluation of the coefficients. Albeit, all the coeffi-
cients Ȳμ with μ

b ≤ (L+1)
b are removed from both sides by expanding the right-hand

side of (2.10), there still exists some extra terms of higher-order in the right-hand side.
Considering

D1 =
�α�−1∑
k=0

T k

k! |y(k)
0 |,

D2 = max
(t,z)∈�×[0,3D1]

∣∣F(t, z)
∣∣


(α + 1)
,

D3 = max
(t,s,z)∈�×�×[0,3D1]


(β)
∣∣G(t, s, z)

∣∣

(α + β + 1)

,
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we define

ω = min

{
T ,

[
D1

D2

] 1
α

,

[
D1

D3

] 1
α+β
}
.

At this step, the aim is to show that |SL (t)| ≤ 3D1, t ∈ [0, ω]bymeans ofmathematical
induction on L . The result is valid for L = 0 because

S0(t) = |y(0)
0 | ≤ D1.

We regard that it is valid for L , and proceed to L + 1 as follows

|SL+1(t)| = SL+1(t)

≤ ψ̄(t) + I αF(t, SL(t)) + λI α
( ∫ t

0
(t − s)β−1G(t, s, SL(s))ds

)

≤
�α�−1∑
k=0

ωk

k! |y(k)
0 | + max

s∈[0,t]|F(s, SL(s))| tα


(α + 1)

+ max
s∈[0,t]|G(t, s, SL(s))| 
(β) tα+β


(α + β + 1)

≤ D1 + max
(s,z)∈[0,ω]×[0,3D1]

|F(s, z)| ωα


(α + 1)

max
(t,s,z)∈[0,ω]×[0,ω]×[0,3D1]

|G(t, s, z)| 
(β) ωα+β


(α + β + 1)

≤ D1 + ωαD2 + ωα+βD3 ≤ 3D1.

This establishes that SL+1(t) is uniformly bounded on [0, ω]. Since all the coefficients
SL+1(t) are positive, it is monotone as well. As a result, in according to the power
series structure of Y (t), the majorant Y (t) converges absolutely over [0, ω], and it is
uniformly convergent on the compact subsets of [0, ω). Ultimately, Lindelof’s majo-
rant theorem concludes that the series expansion y(t) inherits the same features. That
is why the above exchange of integration and series was legal.

Theorem 2 tells us that ∂
�α�
t y(t) may not be continuous at the initial point. In

consequence, the accuracy of the classical spectral methods might be threatened by
this difficulty. That is why constructing an exponentially accurate or high-order spec-
tral method is a kind of challenging task. Next section includes such approach to
approximate the solution of (1.1) which satisfies the assumptions of Theorems 1 and
2.
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3 Numerical approach

In this section, the goal is firstly to direct somecritical properties of Jacobi polynomials,
GJPs, and FGJFs, and present an effective strategy based on an advanced operational
Petrov-Galerkin method to approximate the solution of (1.1).

3.1 Jacobi polynomials

The orthogonal relation of classical Jacobi polynomials J (ρ,η)
n (s), ρ, η > −1 is as

follows [28]∫
I
J (ρ,η)
m (s)J (ρ,η)

n (s)w(ρ,η)(s)ds = λ(ρ,η)
n δmn, m, n ≥ 0,

in which w(ρ,η)(s) = (1 − s)ρ(1 + s)η,

λ(ρ,η)
n = ‖J (ρ,η)

n ‖2
w(ρ,η) = 2ρ+η+1
(n + ρ + 1)
(n + η + 1)

(2n + ρ + η + 1)n!
(n + ρ + η + 1)
,

and δmn directs theKronecker delta function. Jacobi polynomials satisfy the Rodrigues
formula below

w(ρ,η)(s)J (ρ,η)
n (s) = (−1)n

2nn!
dn

dsn
{
(1 − s)n+ρ(1 + s)n+η

}
.

3.2 Generalized Jacobi polynomials

Let us first define ρ̂, η̂ and ρ̃, η̃ from ρ, η as follows

ρ̂ =
{

−ρ, ρ ≤ −1,

0, ρ > −1,
ρ̃ =

{
−ρ, ρ ≤ −1,

ρ, ρ > −1,

likewise for η̂ and η̃.
For each ρ, η ∈ Z, the GJPs eliminating the restriction ρ, η > −1 are defined by

[12]

J̄ (ρ,η)
n (s) = (1 − s)ρ̂(1 + s)η̂ J (ρ̃,η̃)

ñ (s), ñ = n − κρ,η ≥ 0, κρ,η = ρ̂ + η̂.

The GJPs are mutually L2
w(ρ,η) (I )-orthogonal, i.e.,∫

I
J̄ (ρ,η)
m (s) J̄ (ρ,η)

n (s)w(ρ,η)(s)ds = λ
(ρ̃,η̃)

ñ δmn, m, n ≥ κρ,η.

The following relations indicate outstanding properties of the GJPs

∂ is J̄
(ρ,η)
n (1) = 0, i = 0, 1, . . . , ρ̂ − 1, ρ ≤ −1, η > −1,
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∂
j
s J̄

(ρ,η)
n (−1) = 0, j = 0, 1, . . . , η̂ − 1, ρ > −1, η ≤ −1,

and for (ρ, η) ≤ −1, we have

∂ is J̄
(ρ,η)
n (1) = 0, i = 0, 1, . . . , ρ̂ − 1,

∂
j
s J̄

(ρ,η)
n (−1) = 0, j = 0, 1, . . . , η̂ − 1.

This feature invokes the GJPs toward appropriate basis functions for the Galerkin
and Petrov-Galerkin approximations of smooth solutions of functional differential
equations associated with the following boundary conditions

∂ is P(1) = 0, i = 0, 1, . . . , ρ̂ − 1,

∂
j
s P(−1) = 0, j = 0, 1, . . . , η̂ − 1.

3.3 The fractional generalized Jacobi functions

Faghih and Mokhtary [8] introduced the fractional generalized Jacobi functions
which have outstanding approximate properties to the functions owning singularity at
boundaries.

Suppose that γ ∈ (0, 1] and t ∈ �, the essence of the FGJFs J̄ (ρ,η,γ )
n (t) comes

from the GJPs by means of the coordinate transformation s = 2( t
T )γ − 1 as [8]

J̄ (ρ,η,γ )
n (t) = J̄ (ρ,η)

n

(
2

(
t

T

)γ

− 1

)
= 2ρ̂+η̂

T γ (ρ̂+η̂)

(
T γ − tγ

)ρ̂

tγ η̂ J (ρ̃,η̃,γ )

ñ (t),(3.1)

in which ρ, η ∈ Z, n ≥ κρ,η and

J (ρ̃,η̃,γ )

ñ (t) = J (ρ̃,η̃)

ñ

(
2

(
t

T

)γ

− 1

)
,

indicates the fractional Jacobi function (FJF) satisfying the explicit formula [11, 33]

J (ρ̃,η̃,γ )

ñ (t) =
ñ∑
j=0

1

T γ j
ϒ

(ρ̃,η̃,ñ)
j tγ j = Span{1, tγ , . . . , t ñγ },

where

ϒ
(ρ̃,η̃,ñ)
j = (−1)ñ− j
(ñ + η̃ + 1)
(ñ + ρ̃ + η̃ + j + 1)


(η̃ + j + 1) j !
(ñ + ρ̃ + η̃ + 1)(ñ − j)! .
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It can be inferred that the FJFs are L2
w(ρ̃,η̃,γ ) (�)-orthogonal along with the weight

function w(ρ̃,η̃,γ )(t) = γ

T γ (ρ̃+η̃+1)−1

(
T γ − tγ

)ρ̃

tγ (η̃+1)−1, i.e., we have

∫
�

J (ρ̃,η̃,γ )

m̃ (t)J (ρ̃,η̃,γ )

ñ (t)w(ρ̃,η̃,γ )(t)dt = λ
(ρ̃,η̃,γ )

ñ δm̃ñ,

in which

λ
(ρ̃,η̃,γ )

ñ = ‖J (ρ̃,η̃,γ )

ñ ‖2
w(ρ̃,η̃,γ ) = T

2ρ̃+η̃+1
λ

(ρ̃,η̃)

ñ .

The FGJFs are mutually orthogonal along with the following orthogonal relation∫
�

J̄ (α,β,γ )
m (t) J̄ (α,β,γ )

n (t)w(α,β,γ )(t)dt = T

2α+β+1 λ
(α̃,β̃)

ñ δmn .

The following relations hold

∂ it J̄
(ρ,η,γ )
n (T ) = 0, i = 0, 1, . . . , ρ̂ − 1, ρ ≤ −1, η > −1,

∂
j
t J̄

(ρ,η,γ )
n (0) = 0, j = 0, 1, . . . , �γ η̂� − 1, ρ > −1, η ≤ −1,

and for ρ, η ≤ −1, we have

∂ it J̄
(ρ,η,γ )
n (T ) = 0, i = 0, 1, . . . , ρ̂ − 1,

∂
j
t J̄

(ρ,η,γ )
n (0) = 0, j = 0, 1, . . . , �γ η̂� − 1,

which is one of the remarkable features of the FGJFs.

3.4 Operational Petrov-Galerkin method

This section offers a highly accurate operational Petrov-Galerkin method based on
the FGJFs to approximate the solution of (1.1). Solvability analysis of the relevant
non-linear algebraic system is also provided through a sequence of matrix operations.

Inserting ρ = 0, η = −αb and γ = 1
b in (3.1), the FGJFs {J (0,−αb,γ )

k (t)}k≥αb

J̄ (0,−αb,γ )

k (t) = 2αb

T α
tα J (0,αb,γ )

k−αb (t) = J
(0,−αb,γ )

k (t) = Span{tα, tα+γ , . . . , tkγ },(3.2)

satisfy the initial conditions of the equation (1.1). Thereby they are capable of serving
as basis functions to obtain the Petrov-Galerkin approximation of (1.1).

Based on (3.2), we arrive at J (0,−αb,γ ) = JT t , where

J (0,−αb,γ )(t) = [ J̄ (0,−αb,γ )

αb (t), J̄ (0,−αb,γ )

αb+1 (t), . . . , J̄ (0,−αb,γ )

N (t), . . .]′,
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indicating the vector of FGJFs with degree ( J̄ (0,−αb,γ )

k (t)) ≤ kγ , J is a lower-
triangular matrix of order infinity, and T t = [tα, tα+γ , . . . , t Nγ , . . .]′. At this stage,
the Petrov-Galerkin approximation yN (t) of the exact solution y(t) is stated as

yN (t) =
∞∑
k=0

ck J̄
(0,−αb,γ )

k+αb (t) = c J (0,−αb,γ )(t) = cJT t = cJ� T̂ t , (3.3)

where c = [c0, c1, . . . , cN̂ , 0, . . .], T̂ t = [1, tγ , . . . , t N̂γ , . . .]′, N̂ = N − αb, and

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αb︷ ︸︸ ︷
0 . . . 0 1 0 · · ·

... 0 1 0 · · ·

...
... 0 1 0 · · ·

· · · · · · . . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

Meanwhile, the relation (2.6) can be restated as

f (t, y(t)) =
∞∑

μ=0
θ=0

fμ,θ tμγ yθ (t),

g(t, s, y(s)) =
∞∑

μ,ν=0
θ=0

gμ,ν,θ tμγ sνγ yθ (s). (3.5)

Inserting the relation (3.3) into (1.1) and using (3.5), we have

cJ Dα
CT t =

∞∑
μ=0
θ=0

fμ,θ tμγ yθ
N (t) + λ

∞∑
μ,ν=0
θ=0

gμ,ν,θ tμγ

∫ t

0
(t − s)β−1sνγ yθ

N (s)ds.

(3.6)

Hence, we first compute Dα
CT t . In this respect, using the relation [6, 14, 24]

Dα
Ct

τ = 
(τ + 1)


(τ − α + 1)
tτ−α, τ > 0,

we can write

Dα
CT t =

[
Dα
Ct

α+γ i
]
i≥0

=
[

(α + γ i + 1)


(γ i + 1)
tγ i
]
i≥0

= χ T̂ t , (3.7)
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in which

χ =

⎡
⎢⎢⎢⎢⎣


(α + 1) 0 0 . . .

0 
(α+γ+1)

(γ+1) 0 · · ·

0 0 
(α+2γ+1)

(2γ+1) · · ·

...
... 0

. . .

⎤
⎥⎥⎥⎥⎦ .

The key of this strategy is to attain a matrix form for the right-hand side of (3.6)
vigorously. In this sense, we first substitute an appropriate matrix representation for
yθ
N (t) through the following lemma.

Lemma 1 Assuming c = cJ = [c0, c1, . . . , cN̂ , 0, . . .], the following relation holds

yθ
N (t) = c �Qθ−1T̂ t , θ > 0,

where Q indicates the following upper-triangular matrix of order infinity

Q =

⎡
⎢⎢⎢⎣
c�0 c�1 c�2 . . .

0 c�0 c�1 . . .

0 0 c�0 . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦ ,

with �r = {�m,r }∞m=0, r = 0, 1, . . . .

Proof The mathematical induction on θ is utilized to prove this lemma. For θ = 1,
the result is obviously valid. We consider that it is valid for θ , and proceed to θ + 1 as
follows

yθ+1
N (t) = yθ

N (t) × yN (t) = (
c �Qθ−1T̂ t

)× (c � T̂ t )

= c �Qθ−1(T̂ t × (c � T̂ t )). (3.8)

Next, it suffices to demonstrate that

T̂ t × (c � T̂ t ) = QT̂ t . (3.9)

For this purpose, we can derive

T̂ t × (c � T̂ t ) = T̂ t ) ×
( ∞∑
h=0

∞∑
k=0

ck �k,h thγ
)

=
[ ∞∑
h=0

∞∑
k=0

ck �k,h t
(h+m)γ

]∞

m=0

=
[ ∞∑
r=m

( ∞∑
k=0

ck �k,r−m trγ
)]∞

m=0

,

whereby it yields (3.9). Trivially, by inserting (3.9) into (3.8) the desired result can be
achieved.
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Now, it is time to employ Lemma 1 to convert the first term of the right-hand side
of (3.6) into the following vector-matrix form

∞∑
μ=0
θ=0

fμ,θ tμγ yθ
N (t) =

∞∑
μ=0

fμ,0 t
μγ +

∞∑
μ=0
θ=1

fμ,θ tμγ yθ
N (t)

= f
0
T̂ t +

∞∑
μ=0
θ=1

fμ,θ tμγ c �Qθ−1T̂ t

= f
0
T̂ t +

∞∑
θ=1

c �Qθ−1
( ∞∑

μ=0

fμ,θ

[
t (μ+m)γ

]∞
m=0

)

=
(
f
0
+

∞∑
θ=1

c �Qθ−1Fθ

)
T̂ t , (3.10)

in which f
0

= [ f0,0, f1,0, . . . , f N̂ ,0, . . .] and Fθ directs an upper-triangular matrix of
order infinity with the following components

[
Fθ

]∞
i, j=0 =

{
0, i > j,

f j−i,θ , i ≤ j .

Applying the same strategy to the second term of (3.6) concludes

∞∑
μ,ν=0
θ=0

gμ,ν,θ tμγ

∫ t

0
(t − s)β−1sνγ yθ

N (s)ds

=
∞∑

μ,ν=0

gμ,ν,0 t
μγ

∫ t

0
(t − s)β−1sνγ ds

+
∞∑

μ,ν=0
θ=1

gμ,ν,θ tμγ

∫ t

0
(t − s)β−1sνγ c �Qθ−1T̂ sds

=
∞∑

μ,ν=0

gμ,ν,0 t
μγ

∫ t

0
(t − s)β−1sνγ ds +

∞∑
θ=1

c �Qθ−1

( ∞∑
μ,ν=0

gμ,ν,θ tμγ

[∫ t

0
(t − s)β−1s(ν+m)γ ds

]∞

m=0

)
. (3.11)
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Evidently, we have [6]

[∫ t

0
(t − s)β−1s(ν+m)γ ds

]∞

m=0
=
[
Am

ν t (ν+m)γ+β
]∞
m=0

,

∫ t

0
(t − s)β−1sνγ ds = A0

ν tνγ+β,

in which Am
ν = 
(β)
((ν+m)γ+1)


((ν+m)γ+β+1) . Therefore, the equality (3.11) can be rewritten as

∞∑
μ,ν=0
θ=0

gμ,ν,θ tμγ

∫ t

0
(t − s)β−1sνγ yθ

N (s)ds =
∞∑

μ,ν=0

gμ,ν,0 A0
ν t (μ+ν)γ+β

+
∞∑

θ=1

c �Qθ−1
( ∞∑

μ,ν=0

gμ,ν,θ

[
Am

ν t (μ+ν+m)γ+β
]∞
m=0

)

=
(
K +

∞∑
θ=1

c �Qθ−1Hθ

)
T̂ t , (3.12)

along with the infinite-order row vector K as

[
K
]∞
j=0 =

⎧⎪⎨
⎪⎩
0, j < βb,
j−βb∑
ν=0

gν, j−βb−ν,0 A0
j−βb−ν, j ≥ βb,

= [
βb︷ ︸︸ ︷

0 . . . 0,
[
K
]
βb,
[
K
]
βb+1, . . . ,

[
K
]
N̂ , . . .],

and the infinite-order upper-triangular matrix Hθ with the components

[
Hθ

]∞
i, j=0 =

⎧⎪⎨
⎪⎩
0, i ≥ j − βb + 1,
j−i−βb∑

ν=0
gν, j−i−βb−ν,θ Ai

j−i−βb−ν, i < j − βb + 1.

At this stage, we employ the relations (3.7), (3.10) and (3.12) in (3.6), and thereby
we derive

c χ T̂ t =
(
f
0
+

∞∑
θ=1

c �Qθ−1Fθ

)
T̂ t + λ

(
K +

∞∑
θ=1

c �Qθ−1Hθ

)
T̂ t . (3.13)

Due to the orthogonality of {J (0,αb,γ )

k }k≥0, we project (3.13) onto {J (0,αb,γ )

k }N̂k=0.
Ultimately, after some simplemanipulations, the algebraic formof the Petrov-Galerkin
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discretization is obtained as

cN̂ χ N̂ = f N̂
0

+ λK N̂ +
∞∑

θ=1

cN̂ � N̂ (Qθ−1)N̂
(
F N̂

θ + λH N̂
θ

)
. (3.14)

Here, the sign N̂ above the matrices and vectors signifies respectively the principle
sub-matrices and sub-vectors of order N̂ + 1. Needless to mention, we are able to
get the unknown vector through solving the system of N̂ + 1 non-linear algebraic
equations (3.14). The next section presents an outstanding strategy to overcome this
system regardless of its complexity.

3.5 Solvability analysis

It is noteworthy that the system of non-linear algebraic equations (3.14) involves high
computational costs to be solved, specifically for large degrees of approximation, and
it can undoubtedly result in inaccurate solution due to its complexity. In order to cope
with this barrier, we aim to provide a productive and well-conditioned implementation
that gives the unknown of (3.14) by means of some recurrence relations instead of
solving a complex non-linear algebraic system. For this purpose, applying Lemma 1
enables us to write

Q =

⎡
⎢⎢⎢⎣
c�0 c�1 c�2 . . .

0 c�0 c�1 . . .

0 0 c�0 . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αb︷ ︸︸ ︷
0 . . . 0 c0 c1 c2 . . .

... 0 c0 c1 . . .

...
... 0 c0 . . .

· · · · · · . . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Through simple calculations, we observe that (Qθ−1)N̂ has the following upper-
triangular structure

(Qθ−1)N̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(θ−1)αb︷ ︸︸ ︷
0 . . . 0

(
c0
)θ−1

(θ − 1)
(
c0
)θ−2

c1 . . . . . .
... 0

(
c0
)θ−1

(θ − 1)
(
c0
)θ−2

c1 . . .
...

...
...

. . .
. . .

0 0
. . . 0

(
c0
)θ−1

...
...

...
. . .

...

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(θ−1)αb︷ ︸︸ ︷
0 . . . 0 Qθ−1

0,0 Qθ−1
0,1 Qθ−1

0,2 . . .

... 0 Qθ−1
0,0 Qθ−1

0,1 . . .

...
...

...
. . .

. . .

0 0
. . . 0 Qθ−1

0,0
...

...
...

. . .
...

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Qθ−1
0,r , r = 0, 1, . . . , N − θαb, are non-linear functions of the elements

c0, c1, . . . , cr .
In addition, from (3.4) and (3.15), the following upper-triangular matrix of order

N̂ + 1 can be derived

� N̂ (Qθ−1)N̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θαb︷ ︸︸ ︷
0 . . . 0 Qθ−1

0,0 Qθ−1
0,1 Qθ−1

0,2 . . .

... 0 Qθ−1
0,0 Qθ−1

0,1 . . .

...
...

...
. . .

. . .

0 0
. . . 0 Qθ−1

0,0
...

...
...

. . .
...

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consequently, one can be checked that the matrix � defined by

� = � N̂ (Qθ−1)N̂B, B = F N̂
θ + λH N̂

θ ,

has an upper-triangular structure with the components below

[
�
]N̂
i, j=0 =

⎧⎪⎨
⎪⎩
0, i ≥ j − θαb + 1,
j−i−θαb∑

r=0
Qθ−1

0,r

[
B
]
i+r+θαb, j , i < j − θαb + 1.
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Afterward, considering the structure of �, we have

cN̂� = cN̂

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θαb︷ ︸︸ ︷
0 . . . 0

[
�
]
0,θαb

[
�
]
0,θαb+1 . . .

[
�
]
0,N̂

... 0
[
�
]
1,θαb+1 · · · [

�
]
1,N̂

...
...

...
. . .

. . .

0 0
. . . 0

[
�
]
N̂−θαb,N̂

...
...

...
. . .

...

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, due to the above relation, one can deduce

[
cN̂�

]N̂
j=0

=

⎧⎪⎨
⎪⎩
0, j < θαb,
j−θαb∑
i=0

ci
[
�
]
i, j , j ≥ θαb,

= [
θαb︷ ︸︸ ︷

0 . . . 0,Zθ
0,Z

θ
1, . . . ,Z

θ

N̂−θαb
],

where Zθ
r , r = 0, 1, . . . , N̂ − θαb, are non-linear functions of the elements

c0, c1, . . . , cr .
Eventually we attain

∞∑
θ=1

[
θαb︷ ︸︸ ︷

0 . . . 0,Zθ
0,Z

θ
1, . . . ,Z

θ

N̂−θαb
] = [

αb︷ ︸︸ ︷
0 . . . 0, Z̃0, Z̃1, . . . , Z̃ N̂−αb], (3.15)

inwhich Z̃r , r = 0, 1, . . . , N̂−αb are non-linear functions in terms of the components
c0, c1, . . . , cr . We substitute (3.15) into (3.14) and compute the unknown elements
of the unknown vector c through the recurrence relations bellow

c0 = 1


(α + 1)
( f0,0 + λ[K ]0),

...

cαb−1 = 
(γ (αb − 1) + 1)


(α + γ (αb − 1) + 1)
( fαb−1,0 + λ[K ]αb−1),

cαb = 
(γ (αb) + 1)


(α + γ (αb) + 1)

(
fαb,0 + λ[K ]αb + Z̃0

)
,

...

cN̂ = 
(γ N̂ + 1)


(α + γ N̂ + 1)

(
f N̂ ,0 + λ[K ]N̂ + Z̃ N̂−αb

)
.

123



A spectral approach to non-linear weakly singular fractional… 389

Ultimately, solving the lower-triangular system cN̂ = cN̂ J N̂ fuels the main

unknown cN̂ whereby we can obtain the Petrov-Galerkin approximation (3.3).

4 Error estimate

In this section we obtain a convergence result of the method, introduced in previous
section, through employing an appropriate error bound in L2-norm.

Let us introduce�
(0,αb,γ )

N as the L2
w(0,αb,γ ) (�)-orthogonal projection relevant to the

fractional Jacobi space

F (0,αb,γ )

N = Span{J (0,αb,γ )

k : k = 0, 1, . . . , N }.

Meanwhile, for p ∈ L2
w(0,αb,γ ) (�), we can write

(
p − �

(0,αb,γ )

N p, φ

)
w(0,αb,γ )

= 0, ∀φ ∈ F (0,αb,γ )

N .

To obtain an upper bound of truncation error �
(0,αb,γ )

N p − p, we first define the
space

Hm
w(ρ,η) (I ) = {P : ‖P‖m,w(ρ,η) < ∞, m ∈ N},

along with

‖P‖2m,w(ρ,η) =
m∑
l=0

‖∂ ls P‖2
wρ+l,η+l , |P|m,w(ρ,η) = ‖∂ms P‖wρ+m,η+m ,

considered as the norm and semi-norm.
In this step, ifwe assume that the coordinate transformation s = 2( t

T )γ −1 associate
the function p(t) with P(s), their derivatives will be connected as follows

Dt p := ∂s P(s) = ∂s t ∂t p,

D2
t p := ∂2s P(s) = ∂s t ∂t (Dt p) ,

...

Dn
t p := ∂ns P(s) = ∂s t ∂t (∂s t ∂t (· · · (∂s t ∂t p) · · · )),

in which ∂s t = T
2γ

( t
T

)1−γ . Moreover, it can be deduced that

‖P(s)‖2
w(ρ,η) =

∫
I
|P(s)|2w(ρ,η)(s)ds = d(ρ,η)

∫
�

|p(t)|2w(ρ,η,γ )(t)dt

= d(ρ,η)‖p(t)‖2
w(ρ,η,γ ) ,
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‖∂ms P(s)‖2
w(ρ,η) =

∫
I
|∂ms P(s)|2w(ρ,η)(s)ds = d(ρ,η)

∫
�

|Dm
t p(t)|2w(ρ,η,γ )(t)dt

= d(ρ,η)‖Dm
t p(t)‖2

w(ρ,η,γ ) ,

where d(ρ,η) = 2ρ+η+1

T .
Finally, we define the transformed space

Hm
w(ρ,η,γ ) (�) = {p : ‖p‖m,w(ρ,η,γ ) < ∞},

associated with the norm and semi-norm

‖p‖2m,w(ρ,η,γ ) =
m∑
l=0

d(ρ+l,η+l)‖Dl
t p‖2w(ρ+l,η+l,γ ) ,

|p|m,w(ρ,η,γ ) =
√
d(ρ+m,η+m)‖Dm

t p‖w(ρ+m,η+m,γ ) ,

and from Theorem 3.2 of [9], the following estimation holds

‖�(0,αb,γ )

N p − p‖w(0,αb,γ ) ≤ CN−m |p|m,w(0,αb,γ ) , m ≥ 0. (4.1)

It is time to exhibit the convergence theorem directing the proper error bound for
y(t) − yN (t) in L2-norm.

Theorem 3 (Convergence) Let yN (t) given by (3.3) be the approximate solution of
(1.1). If we have

1.
∫ t
0 (t − s)β−1g(t, s, y(s))ds ∈ H ε

w(0,αb,γ ) (�) such that

Dε+1
t

(∫ t

0
(t − s)β−1g(t, s, y(s))ds

)
∈ C(�), ε ≥ 0.

2. f ∈ Hς

w(0,αb,γ ) (�) such that Dς+1
t f ∈ C(�), ς ≥ 0.

Then the following upper bound holds for sufficiently large values of N

‖eN (t)‖ ≤ C

(
N̂−ε|

∫ t

0
(t − s)β−1g(t, s, y(s))ds|ε,w(0,αb,γ ) + N̂−ς | f |ς,w(0,αb,γ )

)
,

where eN (t) = y(t)− yN (t) dictates the error function, and C > 0 denotes a generic
constant independent of N .

Proof Based on the devised numerical approach in Section 3, we get the following
operator equation

�
(0,αb,γ )

N̂

(
Dα
C yN (t) − f (t, yN (t)) − λ

∫ t

0
(t − s)β−1g(t, s, yN (s))ds

)
= 0,
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and equivalently we have

Dα
C yN (t) = �

(0,αb,γ )

N̂

(
f (t, yN (t))

)+ λ�
(0,αb,γ )

N̂

(∫ t

0
(t − s)β−1g(t, s, yN (s))ds

)
, (4.2)

since we have Dα
C yN (t) ∈ Span{J (0,αb,γ )

0 , J (0,αb,γ )
1 , ..., J (0,αb,γ )

N }. Subtracting (4.2)
from (1.1) yields

Dα
CeN (t) = f (t, y(t)) − �

(0,αb,γ )

N̂

(
f (t, yN (t))

)
+λ

(∫ t

0
(t − s)β−1g(t, s, y(s))ds − �

(0,αb,γ )

N̂

(∫ t

0
(t − s)β−1g(t, s, yN (s))ds

))
,

which can be restated as

Dα
CeN (t) = ( f − f̄ ) + λ

∫ t

0
(t − s)β−1(g(t, s, y(s)) − g(t, s, yN (s))

)
ds

+e
�

(0,αb,γ )

N̂

(
f̄ + λ

∫ t

0
(t − s)β−1g(t, s, yN (s))ds

)
, (4.3)

where e
�

(0,αb,γ )

N̂

(z) = z−�
(0,αb,γ )

N̂
(z) and f̄ = f (t, yN (t)). We enforce the Riemann-

Liouville fractional integral operator of order α on (4.3) and utilize the relation
I αDα

CeN (t) = eN (t) whereby we deduce

eN (t) = I α( f − f̄ )

+λ

∫ t

0
(t − s)α−1

(∫ s

0
(s − τ)β−1(g(s, τ, y(τ )) − g(s, τ, yN (τ ))

)
dτ

)
ds + R,

along with

R = I αe
�

(0,αb,γ )

N̂

(
f̄ + λ

∫ t

0
(t − s)β−1g(t, s, yN (s))ds

)
.

Due to the Lipschitz assumption on f and g, we arrive at

|eN (t)| ≤ L1 I
α|eN (t)| + λL2


(α)

∫ t

0
(t − s)α−1

(∫ s

0
(s − τ)β−1|eN (τ )|dτ

)
ds + |R|

= L1 I
α|eN (t)| + λL2
(β)I α+β |eN (t)| + |R|. (4.4)

In addition to this, we can write

L1 I
α|eN | + λL2
(β)I α+β |eN | ≤ max(L1, λL2
(β))

(
I α|eN | + I α+β |eN |)

= max(L1, λL2
(β))

(∫ t

0
(t − s)α−1

(
1


(α)
+ 1


(α + β)
(t − s)β

)
|eN (s)|ds

)

≤ ℵ
∫ t

0
(t − s)α−1|eN (s)|ds, (4.5)
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in which

ℵ = max(L1, λL2
(β))

(
1


(α)
+ T β


(α + β)

)
.

Substituting (4.5) into (4.4) and employing Gronwall’s inequality, i.e., Lemma 6 of
[10], it can be concluded that

‖eN (t)‖ ≤ C ‖R‖ .

We rewrite the above inequality in the following sense

‖eN (t)‖ ≤ C‖e
�

(0,αb,γ )

N̂

(
f̄ + λ

∫ t

0
(t − s)β−1g(t, s, yN (s))ds

)
‖w(0,αb,γ ) , (4.6)

due to the Cauchy-Schwarz inequality and some manipulations.
Currently, the suitable upper bounds are sought for each term of the right-hand side

of (4.6). In this regard, utilizing the estimation (4.1) and the first-order Taylor formula
give

‖e
�

(0,αb,γ )

N̂

(
λ

∫ t

0
(t − s)β−1g(t, s, yN (s))ds

)
‖w(0,αb,γ )

≤ C N̂−ε|
∫ t

0
(t − s)β−1g(t, s, yN (s))ds|ε,w(0,αb,γ )

≤ C N̂−ε

(
|
∫ t

0
(t − s)β−1g(t, s, y(s))ds|ε,w(0,αb,γ )

+C1‖g(t, s, y(s)) − g(t, s, yN (s))‖
)

≤ C N̂−ε

(
|
∫ t

0
(t − s)β−1g(t, s, y(s))ds|ε,w(0,αb,γ ) + C1L2‖eN‖

)
, (4.7)

due to the Lipschitz assumption on g. Here, C1 > 0 is a generic constant independent
of N . Proceeding the same way as (4.7), we derive

‖e
�

(0,αb,γ )

N̂

( f̄ )‖w(0,αb,γ ) ≤ C N̂−ς | f̄ |ς,w(0,αb,γ ) ≤ C N̂−ς
(
| f |ς,w(0,αb,γ ) + C2L2‖eN‖

)
,

(4.8)

where C2 > 0 denotes a generic constant independent of N .
Inserting (4.7) and (4.8) into (4.6) concludes

‖eN (t)‖ − C(N̂−εC1L2 + N̂−ςC2L2)‖eN (t)‖
≤ C

(
N̂−ε|

∫ t

0
(t − s)β−1g(t, s, y(s))ds|ε,w(0,αb,γ ) + N̂−ς | f |ς,w(0,αb,γ )

)
.

Evidently, the desired result can be attained for sufficiently large values of N .
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5 Numerical results

This section is devoted to confirming the effectiveness and productivity of the proposed
implementation through demonstrating the numerical experiments derived from solv-
ing some non-linear weakly singular FIEDs. In this respect, this section is organized
in the following sense

• Toassess the computational capability of the introduced strategy,we illustrate some
essential properties including numerical errors e(N ), convergence order CO(N ),
and CPU-time elapsed. We evaluate the numerical errors through the L2(�)-norm
by

e(N ) = ‖eN (t)‖, ‖eN (t)‖2 � T

2

N∑
k=0

(
eN
(
T /2(x (0,0)

k + 1)
))2

w
(0,0)
k ,

where {x (0,0)
k }Nk=0 and {w(0,0)

k }Nk=0 are the Legendre-Gauss quadrature nodes and
corresponding weights respectively [28]. In addition, convergence order is defined
as

CO(N ) =
∣∣∣∣ log2 e(N )

e( N2 )

∣∣∣∣.
• The stability of the method is also examined via approximating the highly oscilla-
tory solution of a test problem associated with the long domain� and large values
of N .

• The predominance of the suggested approach is assessed by comparing our results
to those obtained by a modification of hat functions (MHFs) introduced in [21].

The computation is conducted by means ofMathematica v11.2, running in a computer
system with an Intel (R) Core (TM) i5-4210U CPU @ 2.40 GHz.

Example 1 Let us consider the non-linear weakly singular FIDEs

{
D

3
2
C y(t) = f (t) + ∫ t

0 (t − s)− 3
4 g(t, s, y(s))ds, t ∈ [0, 1].

y(0) = 0.

The source function f (t) is chosen in a way that the exact solution is

y(t) = E 3
2
(t

3
2 ) − 1,

and

g(t, s, y(s)) = 1

2
s J0(t

7
4 ) sin (y(s)) + s

5
2 y4(s) + t

1
2 s

1
4 ,

where Ec(t) denotesMittag-Leffler function, and for integer number d, Jd(t) is known
as Bessel function.
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Table 1 The numerical
consequences of Example 1 for
different degrees of
approximation N

N e(N ) CO(N ) CPU − time(sec)

8 6.93E-2 – 1.51

16 6.44E-3 3.43 18.92

32 6.51E-7 13.27 113.13

64 2.04E-15 28.25 555.19

Fig. 1 Semi-log depiction of the numerical errors versus N for Example 1

It can easily be checked that the forcing function f (t) has the following asymptotic
behavior

f (t) = 1 − 3.71t + 0.75t
3
2 − 1.02t

11
4 + 0.17t3 + ...,

and we have y(t) = O(t
3
2 ) which coincide with the result of Theorem 2.

We assess this problem by means of the proposed implementation and report the
results in Table 1and Fig. 1. From Table 1, it is reasoned that the approximate solutions
are highly accurate, it is because the numerical errors are declined regularly in the short
CPU-time used particularly for the large degrees of approximation N . In addition, the
semi-log depiction of the numerical errors demonstrated in Fig. 1 confirms the well-
known exponential accuracy predicting in Theorem 3 caused by the linear variations
of the semi-log depiction of errors versus N (notice that we have ε, ς = ∞ in
Theorem 3).

Example 2 Let us give the following highly oscillatory non-linear weakly singular
FIDEs
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Fig. 2 Semi-log depiction of the numerical errors versus N for Example 2

{
D

1
2
C y(t) = f (t) + ∫ t

0 (t − s)− 1
2 g(t, s, y(s))ds, t ∈ [0, 2�],

y(0) = 0.

The forcing function f (t) is selected in a way that

g(t, s, y(s)) = t2s
3
2 y2(s) + 52F2({1

4
,
3

4
}; {1

5
,
2

5
};− t

1
2

2
),

and y(t) = t sin 100t
1
2 .

ξ Fξ ({a1, . . . , aξ }; {b1, . . . , bξ }; t) denotes the generalized hypergeometric func-
tion. We apply the introduced scheme to this problem and the derived consequences
are illustrated in Figs. 2 and 3. Needless to mention, the highly oscillatory behavior of
the solution may cause instability in approximation, particularly for large degrees of
approximation N . Regardless of this fact, the numerical results demonstrate that our
scheme, however, produces highly accurate approximate solutions. Indeed, From Fig.
2, it can be concluded that the method is on the path of convergence for N > 680, and
the effective computational performance of our strategy let the numerical errors decline
regularly specifically for large degrees of approximation N . Furthermore, the well-
known exponential accuracy is confirmed caused by the linear variations of semi-log
depiction of errors versus N .
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Fig. 3 Graphs of the exact solution (solid line) and the approximate solution (red squares) of Example 2
for N = 710

Table 2 The absolute errors at
some selected grid points of
Example 3 with different values
of n utilizing the suggested
method in [21]

n Error

2 7.09E-2

4 1.40E-2

8 3.31E-3

16 8.85E-4

32 2.46E-4

64 6.92E-5

128 2.42E-5

256 8.57E-6

512 3.03E-6

1024 1.07E-6

Example 3 [21] Consider the following non-linear weakly singular FIDEs

{
D

2
3
C y(t) = f (t, y(t)) + ∫ t

0 (t − s)− 1
2 y2(s)ds, t ∈ [0, 1],

y(0) = 0,
(5.1)

where

f (t, y(t)) = 3
( 12 )

4
( 116 )
t
5
6 − t

5
2 − 32

35
t
7
2 + t y(t).

The exact solution of this problem is y(t) = t
3
2 . Considering γ = 1

6 , this problem is
solved via the implemented scheme, and the exact solution is obtained with the degree
of approximation 9, in machine precision. Also, in [21], the approximate solution
of (5.1) is computed by means of a modification of hat functions (MHFs), and the
absolute errors at some selected grid points derived in [21] for various values of n are
listed in Table 2. In this method, n directs the number of uniform sub-intervals. We
refer the reader to [21] for more details about this method. Comparison results justify
the dominance of our suggested method over the presented scheme in [21].
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6 Conclusions

A comprehensive survey of the existence, uniqueness, and smoothness properties
of the solution of (1.1) was presented, and in particular, was demonstrated that
the solution has a singularity at the origin. Taking into account the smoothness of
the solution we proposed a creative strategy based on the spectral Petrov-Galerkin
method to solve (1.1) numerically. This strategy offered some recurrence relations for
deriving the approximate solution rather than solving a non-linear complex algebraic
system. Finally, our implementation drove us to verify the spectral accuracy of the pro-
posed method through the convergence theorem and approximating some illustrative
examples. This strategy enables us to attack a vast majority of non-linear fractional
functional equations, which would possibly motivate us to do research on it in the
future.

Acknowledgements This work is funded by national funds through the FCT - Fundação para a Ciência
e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for
Mathematics and Applications).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional
differential transform method. Chaos Solitons Fractals 40, 521–529 (2009)

2. Abbaszadeh, D., Kajani, M.T., Momeni, M., Zahraei, M., Maleki, M.: Solving fractional Fredholm
integro-differential equations using Legendre wavelets. Appl. Numer. Math. 166, 168–185 (2021)

3. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical
Methods, 2nd edn. World Scientific, Singapore (2016)

4. Biazar, J., Sadri, K.: Solution of weakly singular fractional integro-differential equations by using a
new operational approach. J. Comput. Appl. Math. 352, 453–477 (2019)
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