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Abstract

In a Hilbert space, we consider a class of nonlinear fractional equations having the
Caputo fractional derivative of the time variable ¢ and the space fractional function
of the self-adjoint positive unbounded operator. We consider various cases of global
Lipschitz and local Lipschitz source with time-singular coefficient. These sources
are generalized of the well-known fractional equations such as the fractional Cahn—
Allen equation, the fractional Burger equation, the fractional Cahn—Hilliard equation,
the fractional Kuramoto—Sivashinsky equation, etc. Under suitable assumptions, we
investigate the existence, uniqueness of maximal solution, and stability of solution
of the problems with respect to perturbed fractional orders. We also establish some
global existence and prove that the global solution can be approximated by known
asymptotic functions as t — 0.

Keywords Fractional diffusion (primary) - Caputo derivative - Initial value problem -
Maximal solution - Global solution - Decay rate

B Erkan Nane
ezn0001 @auburn.edu

Nguyen Minh Dien
diennm@tdmu.edu.vn

Nguyen Dang Minh
ndminh@hcmus.edu.vn

Dang Duc Trong

ddtrong@hcmus.edu.vn

Faculty of Education, Thu Dau Mot University, Thu Dau Mot, Binh Duong Province, Viet Nam
Department of Mathematics and Statistics, Auburn University, Alabama 36849, USA

3 Ho Chi Minh City University of Science, Ho Chi Minh City, Viet Nam

4 Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13540-022-00056-w&domain=pdf

Global solutions of nonlinear fractional diffusion equations... 1167

Mathematics Subject Classification Primary 26A33 - 35R11 - 35R30 - 35A01 - 35A02

1 Introduction
1.1 Statement of the problem

Let H be a Hilbert space, A : D(A) C H — H be a self-adjoint positive definite
unbounded operator, and f : [0, +00) x D(A®) — H with s > 0. For « € (0, 1],
B > 0, we consider the problem to find a function u : [0, T] — H satisfying

D + APu = f(t,u()), t >0, (1.1)
where DY is the Caputo fractional derivative

ﬁfé(l —$)"%/(s) ds, if @ € (0, 1),

D’”(t)z{ W (t), if o= 1.

and the fractional power of the operator A? will be defined later. The equation
(1.1) is a general form of a lot of well-known equations such as the Ginzburg—
Landau equation (¢ = 1,A = —A, f(t,u) = au — bu3), Burger equation
(a=1,A=—A, f(t,u) = uuy), and Kuramoto—Sivashinsky equation (o« = 1, A =
A2, f(t,u) = VZu + (1/2)||Vul|?)). In the present paper, we will investigate the
stability of solution of the initial value and the final value problems for (1.1).

The equation (1.1) subject to the initial data

u(0) =¢ (1.2)

is called the fractional initial value (or the Cauchy, the forward) problem (FIVP).
By the definition of the spectral resolution of the operator A and the Laplace trans-
form, we can rewrite the FIVP as

t
Problem P, , 5 : u(t) = Ea( — t“Aﬂ)g +/ Eqp(A,t,7) f(r,u(r)) dr, (1.3)
0

where Ey g(z,1,7) = (1— r)“_lEa,a (—zP (t—1)%) is expressed by the Mittag-Leffler
function, and the operators Ea( — 1% AP ) Eq.g(A,t, T) will be defined in Sect. 2.
A function u that satisfies Eq. (1.3) is called a mild solution of the FIVP and denote

by u =urqp.

1.2 History and motivation

The abstract parabolic equation u; + Au = f was considered for the last thirty years
in many works on this area. The readers can see the classical book by Cazenave and

Haraux [5] and references therein. The FIVP was also studied by lot of researchers.
Xing et al. [24] discussed the existence, uniqueness, analyticity and the long-time
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1168 N. M. Dien et al.

asymptotic behavior of solutions of space-time fractional reaction—diffusion equations
in R"

Dfu+ (=) u = p(xu,

subject to the initial condition u(x, 0) = a(x). Existence and uniqueness of the max-
imal solutions of some linear and nonlinear fractional problems were investigated
in [2, 6, 10, 12, 21]. The blow—up and global solution of time—fractional nonlin-
ear diffusion—reaction equations were studied recently with some kind of nonlinear
sources as f(t,u) = au + uP (see Cao et al. [4]), f(r,u) = |u|?"'u (see [27]),
f(t,u) = |ul? (Zhang [26]), Asogwa et al. [3] studied finite time blow up results for
a version of equation (1.1).

The first motivation of our paper is to study the existence and uniqueness of maximal
solution of the initial value problem with respect to a singular source. In many practical
situation, the source is often assumed to satisfy || f (¢, u) — f (¢, v)| < K(¢t, M)|lu —
v|| for |lu]l, |lv|| < M, where K : (0, 00) x (0, 00) — R is the Lipschitz coefficient.
If K (¢, M) is dependent (independent) on ¢, we say that the coefficient is #-dependent
(t-independent). Generally, in a lot of papers, the coefficient is assumed to be ¢-
independent. A time-dependent coefficient which can be unbounded in a time interval
(0, T),i.e.supy, .7 K(t, M) = oo, israrely studied. In the present paper, we consider
a generalized form of singular source

Lf @ u)— ft, 0l < K@ M)|lu—vlpas for llullu, lvllz <M,

with K(t, M) = ko(t)L(M) for lim,_, o+ ko(t) = oo. In the special case ko(t) =
t "k (t), the condition of K (¢, M) is similar to the generalized Nagumo condition
(see, e.g., [13], Ch. 7 or [11]). In particular, the time-dependent source promises to
bring many interesting global properties to the solution of the problem.

The second motivation of our paper is of studying the continuity of solution with
respect to the fractional orders «, § and the initial data ¢. In the papers mentioned
above, the parameters «, B are assumed to be perfectly known. But in the real word
of applications, the fractional orders can only be approximated from the mathemat-
ical model or statistical methods. In [1, 7], the Caputo derivatives can be identified
approximately from observation data u (xo, t) witht > 0,oru(x, T) withx € Q@ C R".
Besides, Kateregga [ 15] used statistical methods as the quantiles, logarithmic moments
method, maximum likelihood, and the empirical characteristic function method to
identify the parameters of the Lévy process. In these examples, the fractional orders
are obtained only as approximate values. Hence, a natural question is that whether the
solutions of fractional equations is continuous with respect to the perturbed orders.
The papers devoted to these questions are still rare. We can list here some papers. Li
and Yamamoto [16] investigated the solution u,, p of the problem

D/u = 9 <D(x)a—u> , (x,0) € (0,1 x(0,T),
0x ox
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subject to the Neumann condition u, (0, 1) = u,(1,¢) = 0 and the initial condition
u(x,0) = f(x). They proved that

ey, 0, (0, ) =y, 0, (0, M 22007y = CUy1 — v2l + 11D1 — D2llcro,1)-

Dang et al. [8] studied the continuity of solutions of some linear fractional PDEs with
perturbed orders. In the references [9, 19, 22], the authors considered the stability of
solution of some class of nonlinear space—fractional diffusion problems taking into
account the disturbance of parameters. To the best of our knowledge, until now, there
is very few papers devoted to the stability of solutions of time-fractional problems with
respect to the fractional time and space derivative parameters: «, 8. In [20, 23], the
stability was considered for the global Lipschitz source. The problem with the local
time-singular Lipschitz source is still a topic of investigation. This stability result
will serve as the foundation for numerical computation schemes for equations with
imprecise fractional derivative parameters.

1.3 Outline of the paper

Summarizing the discussion of the FIVP, in the present paper, we will:

o Investigate the existence and uniqueness of the maximal solution of the nonlin-
ear FIVP with respect to the singular nonlinear source on the maximal interval
[0, T &, p)- To solve the problem, we have to establish an appropriate Gronwall-
type inequality which also has a specific merit in investigating other fractional
problems.

e Study the stability of the nonlinear FIVP with respect to the perturbed orders «, .
In fact, we establish

ug o p = Ugap as (&, B — (¢ a B)

in an appropriate norm. Especially, for « — 17, we will prove that the solution
of the nonlinear FIVP tends to that of classical nonlinear initial value parabolic
problem.

e Study the existence of global solution on [0, co) and prove decay estimates for
the global solution. To illustrate for our results, we present an asymptotic result.
Under some conditions, we will prove that

Jim (1 D%l 0p Ol = ¢ 1ls—p

1
rd—a)

for every ¢ € D(A®), ¢ # 0. The result shows that the decay of the FIVP is of
polynomial order.

The rest of the paper is organized as follows. Section 2 gives the main results of
our paper without proofs. In Sect. 3 the proofs of these results are presented.
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1170 N. M. Dien et al.

2 Main results
2.1 Notations

To state our problem precisely, we will give some definitions. Firstly, in the paper, we
always denote by C, C’ generic constants which could be different from line to line.
We denote the inner product in Hilbert space H by (., .) and the associated norm by

[I-1I-

We recall (see, e.g., [17,page 61, Ch.4]) that a resolution of the identity on a Hilbert
space H is a one-parameter family {S) : A € R} of orthogonal projections on H such
that

(1) S < Sy if A < )\ (monotonicity),
(1) limy/_ 3+ Sy¢ = Sy¢ for ¢ € H (strong right continuity),
(iii) limy— o S3¢ = 0and lim) 400 Sy =¢ for ¢ € H.

Assume that 8 > 0 is the lower bound of the spectrum of the operator A. Let us
denote by {5, } the spectral resolution of the identity associated to operator A such that
A= fgoo Ad S).. We follow [25,page 29] (see also [17,page 92]) to define the power of
the self-adjoint positive definite unbounded operator as

+o0
Aﬁuz/m AP dSu, BeR.
6

Generally, for a continuous function 4 : R — R, we denote the domain of #(A) to
be

+00
Dmm»:{weH:/ |Mmﬁﬂ&wW<+w}. 2.1
0

If w € D(h(A)), we define the linear operator
+o00
h(A)w = / h(A) dS,w.
0

Particularly, if h(z) = z* for z > 0,5 € R, we have the Hilbert space D(A*) with
12

the norm |w|, = ( 8+°° 22 dIISAwIIZ) . For v € C([0, T]; D(A%)) we denote

[vls,r = supg<; <, [V(T)l5. Let O < 54 < s* and s1, 52 € [54, s¥], 52 < 1. Itis easy to

see that
D(A™) ¢ D(A") c D(A®) = H and lwls, < 62wl .

For M, s > 0, we put

By(M) = {w € D(A®) : |wlls < M},
By, 7(M) = {v e C(0, T]; D(A%)) : |vls,r < M}.
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In this section, we also remind the Mittag—Leffler function and its properties which
play important roles in the proof of main results of current paper. We recall also the
Gamma and Beta functions,

00 1
I'(z) :/ “~le7'dt, B(p,r) =/ P71 = 1)’ ~'dr for Re(z), p,r > 0.
0 0

The Mittag—Leffler function with two parameters is defined as

+00 k

z
E, ()= Zm, Ep(z) :==E;1(z), z€ C for p,r >0.
k=0

Definition1 A function u € C([0, T); D(A®) is a maximal solution of Problem
P o.p if u satisfies P; o g on the interval [0, T') such that T = oo or that T < oo,
lim sup,_, p- [lu(t)|ls = oo. In the case T = oo, we say that u is aglobal solution of
Pr o, p. The global solution u is said to have

e the sub-polynomial decay rate if there are p, C > 0 such that
lu(@®)|ls < C(1 + )~ forevery ¢t > 0.
o the asymptotically polynomial decay if there is p, C,, > 0 such that

lim (1 +0)?lu(®)|ls = Cp.
t—00

2.2 The global Lipschitz source

Using the notations defined, we can state precisely the assumption for the singular
source. In fact, we consider the source function of the problem satisfying the following
assumptions.

Assumption Fl(«) Let T > 0,a € (0, 1] and f € C((0,00) x D(A%); H). We
assume that

t
M7 = sup / (t = 0 Equ(—07 (t — 1)) f(x. 0)||* d7 < o0.
0

0<t<T

Assumption G1 Let T > 0,s > 0,v < «/2 and f € C((0,00) x D(A®); H),
k € C([0, 00); [0, 00)). We assume that

If @, w) = f@ w)l <7 k@ wy —waly forall wi, wy € D(AY).  (2.2)
Remark 1 Assumption F1(«) holds in many cases. For example, as shown in Lemma

2 (see the part of proofs), if || f (¢, 0)|| < ™"/« f(t) for2vy <,k € C([0, 00); R),
then Assumption F1(«) holds.

Using the assumptions, we can obtain the following existence result.
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1172 N. M. Dien et al.

Theorem1 Leta € (0,1),8 > 0,5 € [0, 8/2], ¢ € D(A®) and let f € C((0, 0) x
D(A®); H). Assume that Assumption F1(«) and Assumption G1 hold. Forv < /2,
the equation (1.3) has a unique solution u = u; o g € C([0, 00); D(A*)). Moreover,
foraT >0, if we put

t

KkT.s = max k(t), g(t) = Ea( - taA/f‘)g +/ Eqp(A, t,7)f(7,0) dr,
0<t<T 0

then g € C ([0, T, D(A®)) and there is a constant C independent of t such that

lu)? <2CT (1 —=2v)[gl2, Eq—2v,1-2v (292S—ﬂx%,sz“—2”) forany t €10, T],
2.3)
where we recall |g|s; = supg<, <, 18(T) 5.
Forv = a/2, k75 < oB/2—s ra- ot))*l/z, the equation (1.3) has a unique
solution u € C([0, T]; D(A%)).

Remark 2 We can use the Edelstein fixed point theorem (see, e.g., [13], Ch. 7) to obtain
the desired result for the case v = /2, k7 s = gB/2=s ra- oz))_l/z. We note that
if we put u,4+1 = F(up), where F(u) is the right hand side of equation (1.3), then the
sequence (u,) converges to the solution u in C ([0, T'], D(A®)).

From the existence result stated, we can obtain an interesting global existence result.
Moreover, we also give an asymptotically polynomial result for decay estimates.

Theorem2 Leta € (0,1),8 > 0, s € [0,8/2], ¢ € D(A®), v,vy > 0, v < a/2,
vy <af2andlet f e C((0,00) x D(A®); H). Assume:

e Assumption G1 holds and there are k1 > 0, £ € R such that
0 <) <.+
o Thereexistky > 0,vy > 0, £y € R such that
1f @ Ol < wept™ (140

With these assumptions, we have the following two results:
1Ife, by < v, a > % — v, then, for every ¢ € D(A®), the problem P g
has a unique global solution u; o g € C([0,00); D(A®)) which has the sub-
polynomial decay rate. More explicitly, for every w satisfying 0 < w <
min {%, % — 4, % — Ef}, we can find C, > 0 such that

lugop®ls < C+ )~ mineo} for ¢ > Q.

2. If L by < % —a, 0 < a < 1/2 then, for every ¢ € D(A®), the prob-
lem P o p has a unique global solution u; g € C([0, 00); D(A®)) which
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has the sub-polynomial decay rate. More explicitly, for every a < w <

min{%, % — 4, % —Zf} we can find Cy o > 0 such that

lug.a.p(t) = Ea(—1* AP)]ly < CaollCls(1 4177

In addition, the solution u; « g has the asymptotically polynomial decay rate

m (1 0% ug 0,60l = Z1ls—p-

ra—-ou
Remark 3 As mentioned, the set D(A®) is dense in H. Hence the polynomial decay
rate of the solution holds for almost every ¢ € H.

In the next two theorems, we state some results on stability of solution of the initial
problem with respect to the initial data and the fractional orders. In the following
stability results, we recall that u; o g is the solution of Problem P 4 g in (1.3) corre-
sponding to the initial data ¢ and the orders o, 8. We first have the classical stability
with respect to the fixed orders «, 8. More precisely, for o, a*, By, B* satisfying
0 <oy <a* <2ay <2,and 0 < B, < B*, we consider

(@, B) € A= [a, @™] x [Bs, B]. 2.4

Theorem 3 Let ¢, & € D(A®) be two initial data with s € [0, 8/2], and let T > 0,
(o, B) € A be as in (2.4). Let the source function f satisfy Assumption FI1(x)
and Assumption Gl. Then the problems Pg o g, Pr o g have the unique solutions
ugo.pUcap € C(0, T], D(A®)), respectively. Moreover, there exists a positive con-
stant Py independent of ¢, & such that

|M$,a,/3 - ug‘,a,ﬂls,T < Pili¢ - g“v

Hence, letting ¢, ¢ € D(A®), &y — ¢ in D(AY), we obtain
lim |ug o — Ucapls,7 =0.
k— 00

Moreover, we also have the stability results with respect to the perturbed orders
a, B. To investigate the stability of the solution of the problem (FIVP), we will restrict
the value (o, B) in the bounded domain.

Theorem 4 Let (a, B), (ak, Br) € A (defined in (2.4)) such that (o, Br) — (a, B),
andlet ¢, ¢ € D(A®) suchthat {y — ¢ in D(A®) as k — 00. Let the source function
[ satisfy Assumption F (o) and Assumption G1. Then the problems Py o g, Py, o,
have the unique solutions

Ugap € C(I0, T1, D(AY)), ugap.p € C[0, T], DA™ Fe/2ly),

respectively. In addition, the following results hold:
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1174 N. M. Dien et al.

(i) If s € [0, B/2), then
im |ug o0 — Uz,apls, 7 =0. 2.5)
k— 00
(ii) If s = B/2 and Br > B for k — oo, then
im |ug o0 — Uz,apls, 7 =0. (2.6)
k— 00
(iii) If Bx < B as k — oo, then

lim |ugy o — Ug,a.8lpe/2,7 =0. 2.7
k—o00

(iv) If we suppose further that {,¢{ € D (A’S*/z"'”) such that & — ¢ in

D (Aﬁ*/z“”l)forsome r1 > 0. We also suppose that s € [% g) S urap()

€ C([0, T, D (A™)) for some r, > 0. Then, there exists constants L, L inde-
pendent of ¢, { such that

Y2
|ugpan e — tzapl, 7 < Lolle = Gills+ L1 (ot — el + 8 — Be) 71727, (2.8)

where Lo, Ly is depended on (., o*, By, B*, T), yi = 2B*, and y, = min{B*+
2(r1 — ), 2ra}.

Remark 4 Theorem 4 showsthatifo — 17, 8 — 1, then the solutions of the fractional
equation (1.1)—(1.2) tend to the solution of the classical equation

ur = Au+ f(t,u(t)).
2.3 The local Lipschitz source

Assumption G2 Let s € [0, 8/2],v < a/2,k € C([0, 00); R), k(t) > 0 fort > 0,
and f € C((0,00) x D(A®); H). For every T, M > 0, we assume that there is an
L7 (M) such that

If @ w) — fE w)ll <t ", (@)L (M)|wi — wals
forall ¢t € [0, T], wi, wy € D(A®), |[wi|ls, lw2lls < M.
Put 8 = (0, 1), H = L?(Z), we can directly check that some common sources
of the following equations satisfy: the Ginzburg Landau equation and the Burger
equation for v = 0, s = 1, the Cahn—Hilliard and Kuramoto—Sivashinsky equations
forv=0,s =2.
In this section, we investigate the existence and uniqueness of the solution of the
problem with local source defined in (2.2). In addition, we study the dependence of the
solution with respect to the fractional order «, § and the initial data ¢. To emphasize
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the dependence of the solution u on these given data, let us write it by u; o 5. We have
the following theorem.

Theorem5 Let ¢ € (0,1), B € (0,+00), s € [0,8/2], v < «/2, and let { be the
initial data defined in (1.2) such that ¢ € D(AP/?). Let the source function f satisfy
Assumption F1(«) and Assumption G2.

Then, for any M > 2||§||/3/2, we have:

(i) (Local existence) There exists a Tyy > O such that the FIVP has a unique mild
solution u; o g which belongs to C([0, Ty ]; D(A*)).
(ii) (Uniqueness) If V, W € C([0, T1; D(A®)) are solutions of (1.3) on [0, T], then
V=Ww.
(iii) (Maximal existence) Let

T a.p =sup{T > 0: (1.3) has a unique solution on [0, T'1}.

Then the equation (1.3) has a unique solution u; 4.5 € C([0, Tr o.g); D(A®)).
Moreover, we have either T o g = +000r Ty .5 < +00and |lug o 5(t)|ls — 00
ast — T; , g Besides, if uga.p € Bs,7(M) then

g0 p 12 = 20 (1= 20)1g12, Ea-2,1-20 (262 P LE M),

foranyt € [0, T].
(lV) Let C? gk € D(AY)v a’ Olk € [(X*, a*]’ /37 ﬂk € [:8*7 ﬂ*] Satisfy

& — ¢ in D(AY), ox > «, B —> B as k — oo.

Assume in addition that Assumption F1(a.) holdand s = B/2, By > Bask — oo
or 0 < s < B/2. Then for every T € (0, T; o, p) we can find a ko > 0 such that
Tepap.pe > T for every k > ko and

lim Jug o p — Uz,aplTs = 0.
k— 00

Moreover, we have

lim inf T;kvakvﬂk > Tg‘,a,ﬁ-
k— 00

If Tr.o,p = 00 then limg_ o0 Ty 0y, = OO

Using Theorem 5, we can obtain global existence and polynomial decay results. To
state precisely the theorem, we state the following

Assumption G3 Forv > 0, f : C((0, 00) x D(A®); H), k € C([0, 00); [0, 00))
we assume that there is an Loo(M) > 0 for every M > 0 such that

£t w) — ft w) <17 k() Loo(M)wi — w2l
for all ¢ € [0, 00), wi, wz € D(AY), [wills, walls <M

@ Springer



1176 N. M. Dien et al.

and there are constants k1,1 > 0, £ € R such that
£t v) = £, 0] < k17 (1 +0)|v]|IT" for every 1 > 0, v € D(A®).

Theorem 6 Let (o, B) € Abeasin(2.4),let0 <2v <a < 1,n,w > 0,s € [0, §/2],
£ € R and suppose that Assumption G3 hold. Assume that

(i) n > max {2(€ — v), 0} and max {Z_T” 0} <w<1/2,
(ii) M2 4 0 = SUP=o(14+0)%? [ (t=1)* " Eqy o (0P (t—1))|| f (1. 0)||* d7 < 00.

Then there exists 6o > 0 such that Problem P; o g has a unique solution u; o g €
C([0, 00); D(A®)) which has the optimal decay rate for

2 2 2
”C”s + moo,a,w = 80‘

Moreover, lf% < a < 1/2, then

Aim (140D ug.apOlls = 1S 1ls—p-

1
i —ow

Remark 5 From the condition (i), the global result holds for v < £ < 1/2. In this case
the Lipschitz coefficient can be unbounded as t — oo since lim;_, o k177" (1 + t)e =
0.

3 Proofs
3.1 Preliminary lemmas

Lemma 1 [see [18]] Letting . > 0, p > 0 and k € N, we have

k

d
R Ep (M) = ~MPRE, ki1 (—AtP), 1> 0.

Lemma2 Let 0 < p, < p* < 2 such that p* < 2ps, and r, > 0. Then for any
P, Po € [px, p*1, and r,rg > ry, and A > 0, we have:

(a) There exists a constant C = C(ps, p*, rx) > 0 such that

oE 0E C
Ep (= —2L(—x —PL | < ——.
|Ep.i( >|+‘ 7y ¢ )M V=T
We also have
1
OSEa(_Z)S 17 OSEaa(_Z)S_ fOVZZO. (3])
’ I'(x)
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(b) Let 0 < p, < p* < 1. There exist two constants Cy, Co which depend only on
Ds, p* such that

1 Cq 1 G
rd—p)1+a F(A—p)1+a

Moreover, we have limy_, 1 oo AEp(—A) = F(+_p).
(c) There exists a constant C = C(p4, p*) such that

|Ep(—=A"t7) — Epy (—20tP0)| < CA (1 +1na) (Ip— pol + r —ro), YA > 1.
(d) We denote
Eqp(h,t,7) = (t = 1) " Eqa(—=2"(t = 1)9).

Then, there exists a constant C = C(py, p*, ry) such that

t
/ |Epr(h,t,T) = Epyro(h, 1, )] dT < C (1 +2")|p — pol + |27 — 170
0

(e) Put

—2v

t
. a1 _pB ey~
Ia,v,w(t) _/O (t f) EOI,Ol( 6 (t T) )(1 _|_.C)2w dr.

Fort>1,v+ao <1/2,0 <o <o, there is a constant D, v > 0 such that

0 =< Ioz,v,w(t) =< Dw,w/t_zv_zw .

Proof We only prove (3.1) and (b), (e). The readers can see the proof of other cases
in [8]. From the complete monotonicity of the Mittag-Leffler function E,(—z) for
z > 0 (see [14], Ch. 3) we have (—1)”5%,Ea(—z) > 0 for z > 0. Hence we have
Eq(—2), Eq.a(—2) is decreasing which give 0 < Eq(=2) < 1,0 < Eyo(—2) < 75
forz > 0.

We prove (b). Using the asymptotic expansion in [14,page 19, Ch. 3] we have

AEp(—1) = n+w + 0(.71). Hence lim; 400 AEp(—1) = ﬁ
We prove (e) next. In fact, noting that Sup;sg % < 1, we have
t : p 72v72w’1.2w’
_ o— o
loy,o = /0 (1 =1 Eqo(=0"(—1) )W dr

t
< f (t = 0 Eq(—0P (¢t — 1))~ dr
0

— ta—2u—2w’(J] + D),
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where

12 ,
Ji =/ (1 —5)  Eg o (—0P1%(1 — 5)%)s 72V 72 (s,
0

1
= (1= Euo(—0Pr*(1 —5)*)s™2 72 ds.
1/2

Using Lemma 2 (a) and estimating directly J; gives

5 < 21U E, o (—0P1e2—)
T (1=2v— 2w/)2172v72w/
; 21-ec c
= (1 + 0Bre2=a) (1 — 2v — 2w/)21-2v=2/ = pa°

Similarly, by Lemma 1, we have

1
22 [ (1 — ) Ey o (—0F12(1 — 5)%) ds

Jr <
12
22v+2a/ 1 d
= / — Eo (—0P1%(1 — $)*) ds
OBt 12 ds
22u+2w/ P 22v+2w/
= 1 — Eu(—60Pt%27%)) < .
0Pate ( al ) = OPate

From the estimation of Ji, J, we complete the proof of Part (e).

In this paper, we also need the following useful inequality.

Lemma3 Leta,g e R,O<a <1,q <«,andletv, g € C[0, T]. Then the equation

t
u(t) = v(t) + g(t)/ (t —0)* e 9u(r) dr
0

has a unique solution u € C[0, T] which satisfies

lu()| < T'(1 = @vlicio,nEa—g1—q (Igllcio,nl (@)* 1)

fort € [0, T). As a consequence, if w € C[0, T] satisfies

(3.2)

t
0<w() <v@)+ g(t)/ (t — ) 't w(r)dr for t €10, T],
0

and if g(t) > 0 fort € [0, T], then

w(t) < CI (1 = lvllicio,nEa—g,1—q (Igllcio.nl @)t*~ ) for t € [0, T],
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where C = max>1dy withd; = I'(« —q) + 1 —q)/T' (¢ +1 —q) and dy =
I'k(e —q) +1—q)/I"(k(e —q) + D).

Remark 6 We note that I"(a) < I'(b) for any 2 < a < b, therefore, I" (k(e — q) +
1 —¢q)/I'(k(ed —q) + 1) < 1 for k large enough or dxy1 < di. This implies that
C = maxg>| di < +00.

Proof of Lemma 3 Put
t
Su(t) =v(t) + g(t)/ (t — ) 't (1) dr.
0

Using the similar technique as in Theorem 1, we can prove that there exists ko € N such
that S* is contraction in C[0, T]. Consequently, there exists a unique u € C[0, T]
such that u = Su.

We put ugp = 0, uy+1 = Su,. The function can be represented by the series u =
Zzio (un+1—uy) . The Weierstrass theorem shows that the series converges in C[0, T']
and

— @) (lgllcio.n T (@))keke=o
k(e —q)—q+1)

=CI' (1 —@)lvlco.nEa—q1—q (IIglco.n (@)r*™ ).

o0

ra
()] < llur = uollcro.n Y
k=0

Now, we prove the final inequality. Put wg = Sw, w,+1 = Sw,,. Since g(¢) > 0 for
t € [0, T], we have Swi(t) < Swy(t) for wi(t) < wy(t), t € [0, T]. We note that
w < wo, hence, by induction we obtain w, < w;,1. Using the contraction principle
we obtain lim,_« lw, — ullcjo,r] = 0. Since w,, < wy41 foreveryn =0,1, ...,
we obtain w(t) < wo(t) < u(t) for ¢t € [0, T]. From (3.2) we obtain the desired
inequality. O

We also need the following results.

Lemma4 Let T,0 > 0, € (0,11,8 > 0,5 € [0,8/2], r > 0,1 € (0,T], w €
C([0, T]; D(A")).

(i) For ¢ € D(A*1T), we have Eo(—t*AP)¢ € D(ASTT) and || Eq(—t* AP)C |54 r
< I¢lls+r, and

1
: o 4 pp _
Am (14 D% Eq (=17 AT |ls = ) I ls—p- (3.3)

For every 0 < w < a/2, we also have

AL = supsup(1 + 1)**|| Eq( — t*AP)&||? < oo for & € D(AY), |Elly, =1 (3.4)
& >0

and
sup(1 + )2 || E (— t*AP)¢ |2 < A2)¢12. 3.5)

t>0
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(ii) Put
t
Qu.p.A(W)(1) =/0 Eqp(A,t, T)w(r) dr, (3.6)

where

Eq g, t,7) = (t — 1) ' Eqo(—2P(t — 0)%) = Aiﬁ%m—ﬁ’(r - )%).

If w £ 0 on [0, t], then

t
| Qupa®]2,, <sup AP PHy (1) /0 (t = 1) Eqo(—0F t—0)*)w ()]} dt,
A=

3.7
where

Ho(h, 1) := 1 — Eq( — AP1%),
Proof We first prove (i). One has

2 —_

o
|Ea(—1APYE |7, = /9 K26 By (—1%08) dISig I

IA

o0
f AT ]S, ¢ = g2y,
0

We next prove (3.3). In fact, we have
2 o0
(1+ 0% | Eo(—1*APYE || = (1 + )™ / A E2(—1%2P) d|S,&)°.
0

Using Lemma 2 we have lim;_, oo (1 + 1) E,(—19\P) = and

__ 1
WI(l—a)

sup |(1 4+ )% Eq (—t*AP)| < o0.
t>0

Hence, applying the Lebesgue dominated convergence theorem yields

o0 1 o
lim (1 +£)* AP EZ(—t*2P) d|S,£7 = —f 22728 418,62
t_l)rgo( +1) /8 ol ) d]Spél 0—a J, IS,

_ 2
= F2i = o s

From (3.3), we deduce (3.4). Put & = ¢/||¢||s we obtain (3.5).
Now, we consider Part (ii). We have E, (z) > O (see [14], Ch. 3). Hence, Lemma
1 yields
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t t
1
/ |Eq.p(1.t,7)] dr =f Eq O t.7) dr = — Ho(). 1). (3.8)
0 0 1B

By the Holder inequality, Lemma 2 and (2.1), we obtain for ¢ € (0, T]

2

t
2
[Qupaw)D,, = H f |Eap(A, 1, D)w(r) dr
0 s+r
+o00 t t
5/ ﬁ(”’)/ |Eq,p(,t,7)| dT x/ |Ea,p(rst, )] dISyw(D)|? dt
0 0 0

t +00 )L2s
< [ [ 5 B0 00 ISP dr.
0oJo A
Noting that Ey o (—AP(t — 1)%) < Eq.o(—0P(t — 7)%) for A > 6, we obtain

| Qap a2,

t
< sup AP Ho(h, 1) / (t — 1) Eqo (=07 (t — 1)) Jw(D)]} dr.
I'(a) 3>6 0
[}
3.2 Proof of Theorem 1
For w € C([0, T, D(A%)), we put
t
F(w)(t) = Ea( - ;aAﬁ)g + / Eup(A,t, 1) f(r, w(r)) dr.
0
Choosing r = 0 in Lemma 4 (ii) gives sup; ¢ ABZ=PHy(A, 11, 1) < 0P and
| F(wi) (1) — F(w2) ()] (3.9)
1 t
<L g f (= N f (T wi (D) — £ @I de
I'(a) 0
1 t
< mek—ﬂx%,sfo (t — )" T |wi(r) — wa(r)|? dr. (3.10)
So we have
1 t
|Fw) (@) — Fw) O < ——6"Pii Jwi —wal} f t—0)* 't e
I'(a) ’ 0

1 25—p, 2 2 a2
= mB(a, 1 —2v)0~° ﬂKT,S|w1 —waly 1%

ra-2
l—( ») 92‘9_’9K%S
I'la+1—-2v) ’

2 -2
|lwy — w2|5,Tfa v,
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where di = I'((@¢ — 2v) + 1 — 2v)/I" (o + 1 — 2v). We consider the case v < /2.
For wy, wy € C([0, T, D(A®)), using the similar technique as in [8], we can prove
by induction that

k
ra—2v) (ezs—ﬂ/c%,s) fk@=2v)
I'(k(a —2v) —2v+1)

k
ra =2 (674G ) ke
<C ’
- I'k(a —2v) —2v+1)

[Pt awno — Famo < wi —wsl 7

2
|w1 —w2|S,T,

where dy = I'(k( —2v) + 1 —2v)/I"(k(a — 2v) 4+ 1)dy—1 withk > 2 and C =
maxy>1 di. This gives

k
F(—2v) (03P ) THe2)
lim C :
k— 00 I' (k(a —2v) —2v +1)

=0.
Hence there is a kg € N such that

k
ra—2u) (6% )" The2) N
Fhol@—2v)—2v+ 1) —2

which gives

(1= 2v) (6% 943 )ko Tho(e=2v)
k k 2 T.s
[F*(wy) — FP(w)lsr = C

. 2
= Tlola—20) —2vrn W17 welir

IA

1 2
E'wl - wzl_y’Tv

i.e., FX0 is a contraction in C([0, T1, D(A%)). Hence, the exists a unique fixed point
u € C([0, T1, D(A%)) satisfying u = F* (). We deduce that Fu = FX(Fu), i.e.,
Fu is also a fixed point of the operator F¥0. Hence u = Fu.

We give the estimate of u. In fact, from (3.10) we obtain

lu() = gl = 1Fu@) = FOOI;

1 1 (3.11)
< 9237;‘3 2 / t— a—1_-—2v -0 2 dr.
=T = (t =0 "t u(r) — Ol dr

Hence

lu())12 < 21g@OII + 2[u) — gl?
(3.12)

2 _ ! -1 -
< 2Ug 0 + 10 ed, [ =0 P ol e
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Using (3.2) of Lemma 3, we obtain the inequality of the theorem.
Finally, we consider the case v = «/2. We can find a & € (0, T] such that
IFwn)(&) — Fw) @)} = supge, <7 IF (1) () — F(w2)(@)];. Lemma 4 gives

2 L g (6 a—1 2
IF(wp)(E)—Fw)@)Iy < 0 / E=D)" 1 f(r, wi(r)— f(r, wa(v)|” dr
I'(a) 0

_r
I (@)

=

&
6% Piz | /0 E—0)* T wi (D) —wa (D)7 dr

1 258, 2 2
= T Bl 1 —ap PG Jwi —wal? p

=TI —w® Fig Jwi—wl? .

If k75 < OP/2=5 (I'(1 — &))~!/? then F is a contraction in C([0, T, D(A®)). Con-
sequently, the problem (1.3) has a unique solution in C ([0, T'], D(A®)). m]

3.3 Proof of Theorem 2

Inthe proof we denote u = u¢ o, g for short. We verify thatsup,- o (1+1)?[Ju(t)|ls < oo.
Assume by contradiction that sup,o(1 +#)®|lu(?)|s = oo. For every A > 0, we put

T, =inf{T >0: (1 +)?|u@)l|s <A forevery ¢ € [0, T]}.
By the continuity of u, we have

(4 T lu(T) lls = A, th Ty =00, (1+0)“u@®)|s <A, Vt €0, Tp].
—00
We note that

L u@)I < @ u@®) = FE O+ £ 0 < kpt™ (L + D u@)ls + 1 £ ).
As in the proof of Theorem 1, choosing » = 0 in Lemma 4 gives

sup A B P Ho(h, 11, 1) < 6%
A>0

and we have

lu()]?
< 2||Eq( —1*AP)¢|?

t
+20%F /0 (t = D% Eqa(—6(t — D) £ (z, u(@)]? dr

< 2||Eq( — 1°AP)¢|?
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t
4 4p2—F fo (=D (1 + 1) Ego (=07 (1 = D) u()]; de
t
+ 46%P / (t — O TP Eqo (0P (1 — D) f(z, 0] dr. (.13)
0

For every A > 0, denoting w(#) = (1 4 #)“u(¢) and using (3.13) yield
lw®I3 < 4A%1C15 + (1 + 0>V + (1 + V3, (3.14)

where 0 < ¢t < T), and
t
Vi = 492“/312/ t — ) (1 + 1) TP Eg o (—0F (1 — 7)) dr,
0
t
V= 4928—/3/ (t = 1) Eqo (—0P(t — )" G777 (1 4+ )7 dr.
0

To prove the theorem, we will use two necessary inequalities. In fact, we can find two
constants y1, y» > 0 such that

(L+0*VE<Ctr™, (14+1)*°V, < Ct727, (3.15)

The proof of these inequalities will be postponed to the end of the proof of the theorem.

(i) We first consider the case £, £y < v, a > % — .

Using the inequalies (3.14), (3.15) yield
lw)1? < 4A2NgI2 + C1=2 + 722,
Choosing t = T, we obtain
A <422+ CA T 4 CIT
which implies
A2A P4+ CT T + O T > . (3.16)
Noting that lim) _, o, 75, = 00, we obtain in view of (3.16) that 0 > 1 which is
a contradiction.
(ii) We consider the case £, £ 5 < % — «. For the upper bound of ||u(?)]|s we can use
the same argument as Part (i) with @ > «. We verify the asymptotic value for

(1 4+ )%|lu(t)||s. Using Lemma 2 yields

1
. 20 LB 2 _ 2
Jim (14 0% | Ea (AN || = s I8 g
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Choose w = «, denoting w(t) = (1 + #)“u(¢) and using (3.13) yield
Jw(®) = (1 +)?Eq(— *AP)¢],

t
< (492*‘—/3/ t =0T+ DT E o (—0F (1 — D) w(n)[f dt
0

, 1/2
+405P (1 + t)z‘“/o (t — 0" " Eqo (0Pt — )| f(z,0)] df)

< U+ 0%0VE 4+ (1 4+ 0%V2,
Combining the latter inequality with (3.15) yields

lw®) = A+ D?Ey(—1“AP)¢ | <V Ct=2n + C1=2n.

Hence

lim Jw(@)ls = lim [(1+0%Es(—1*AP)¢ s = ENs—p-
t—00 —>00

rd—a)

Finally, we prove (3.15). Since the proof for the case ¢ < 0 is different from the
one of the case ¢ > 0, we divide the proof into two cases.

Inthecasef < 0,since0 < w < 1/2,v > Oweobtainw—v < min{l/2—v, w—~£}.
Hence we can choose o’ such that

w—v <o <min{l/2 —v,o— L}

which gives 0’ <w — £, v+ <1/2,y] ;== —w+ v+ &' > 0. We can use (3.14)
to obtain

V12 S ezs_ﬂ)\-z’cfilayugwfe S Ct—2v—2w ,

where I, , 1s defined in Lemma 2. Applying Lemma 2 (e) we can find a C > 0 such
that

(1+0%vE <crn,
Next, we considerthe case 0 < £ < vwehavew+{—v < 1/2—vandw+L—v < w.
Hence we can find o’ such that w + £ — v < @' < min{1/2 — v, w}. It follows that
o' +v<1/2,0 <wand yp := —w — €+ v+ & > 0. Using Lemma (2) (e) gives
VE < 0% Pkt (1 + 0% g0 < Ct72.

In the second case, if 0 < £ < % — o, we can choose w = «.
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Similarly, we can prove that there is a > > 0 such that
(14+0°VF <=,
This completes the proof of the theorem. O

3.4 Proof of Theorem 3

We denote

t

Frapa)(t) = Eo( —1*AP)¢ +/O Eq (A t,7) f(1,v(1)) drt,

where E, 5(., ¢, T) defined in Lemma 4. Using (3.7) and direct computations, one has

[Fe s a0~ Fg g0
< 2| Ea( - AP) € - oﬂf +2] 05 5.4 (f (. wDO. ) = 05 5 4(F (. )O, t)ﬂf
<200 — g2+ %el‘—ﬁ | - O ) — F 0l de

o) 0

2 7 ! ~
<2l¢ — &3 —~925_ﬁ2,/ =) 2 w(r) — v(r))? dr.
=2)¢ - &ly + @ “Ts | ( ) lw(z) — v(D)l§
Since Ug 5 B and U,z f are solution of equations Fg’&,g’A(w) = w and Fg,&’g’A(v)
= v, respectively, by Lemma 3, we conclude that

2 25—B,2 &2 2
e 50 = ez 50| =200 =20 Eaania, (262 Pid 7)1 - 12
This leads to the result of Theorem 3. |

3.5 Proof of Theorem 4

We first state the following lemma necessary to prove the theorem. The proof of this
lemma is postponed to the next subsection.

Lemma5 Let T > 0, { € D(A%), o, & € [as,a*], B, B € [Bs, B*]. Let the
source function f satisfy Assumption Fl(«,) and Assumption G1. Then the ini-
tial problems have the unique solutions Ur g lUzap € C([0,T], D(A%)) with
s € [0, min{B/2, E/Z}]. Then, for any € > 0, there exist two constants P, P. > 0
which are independent of o, o, f3, E and t such that

e O —teap®) = P+ Pe(le—a1+15 - B
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for every t € [0, T]. Suppose further that { € D (Aﬂ*/2+”) for some r1 > 0 and

[ urqp() € C([O, TN], D (A™)). Then, there exists a constant Qo > 0 which is
independent of a, &, B, B, N and t such that

~ Y2
e 5 — ucap®| = 0o (2772 +1) (la — &1+ 18 - Fl) T

foreveryt € [0, T]. Herein, yy = 2B%*, y» = min{B* + 2r; — 2s, 2r}.

Proof of Theorem 4 Using Theorem 3 and Lemma 5, we will prove the results of the
theorem. Using the triangle inequality, we obtain

oty e (0) — quasﬂ(t)”min{ﬂk/Z, 5)
= ugeanp O = e O mings 2, ) + [c018:O = 12,080 | ingge o, 51
< PUl¢ = &lly + P (e + Pe(la — ol + 18 — B2,

for any ¢ € [0, T']. In addition, we note that
lwl, < 67wl forany 0 < p <g. (3.17)

From the latter result, we can verify directly the main results (2.5), (2.6), (2.7)
and (2.8) of the theorem. In fact, if s € [0, 8/2) then with k large enough, we have
Br/2 > s. Hence, we can combine Lemma 3, Lemma 5 with (3.17) to obtain (2.5). We
also use Lemmas 3 and 5 to deduce (2.6)-(2.7). Finally, combining Lemmas 3 with 5
(i1), we obtain (2.8). This completes the core of the proof. m]

3.6 The proof of Lemma 5

By a direct computation, we have

P 5 a@® = Feapa@ =2 (Ea(~ A7) — Eo(~ a%)) ||

N

2] 05 7AW ~ Cupa )]

<Ly + 4 + 1), (3.18)
where

I = H(E&( — APy g, (- Aﬂz“)) ;‘j

b =] 02500 ~ 0z 4@

s = [0z 5400 ~ Qupatoo

and the function Q is defined in (3.6). We will estimate I} (k = 1, 2, 3) one by one.
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Estimate for I,. To give an estimation for /1, we separate the sum /| into two sums
as follows:
I = I1(N) + I12(N), (3.19)

where

~ 2
Eg(—2P1%) — Eo(— 2#1%)|” dISicI?,

N
I11(N) = / A2
0

I17(N) =/ A%
A>N

For convenience in estimating for /11 (N), I12(N), let us assume N > max{e, 6}.
Estimate for 111(N). By Lemma 2, there exist two constants
C =C(oy, a*, By, B*,T) >0, Co = Co(as, ™, By, B*,60, T) > 0 such that

~ 2
Ez(—3P1%) — Eo(— 2%1%)|” dISicI™

N
L1(N) < C(le =&l + 18— Bl)’ (/9 AEHI (1 4 Ina))? d||SA;||2)
N
< Co(la—a|+ 18 — B> N¥ 1o N/e 32 dISc )2
<Cy(le—al+18—Bl), (3.20)

where Cy = Co|¢|>N?#" In® N.
Estimate for 112(N). We note that 0 < Ey(—x) < 1 for x > 0. This gives

W) = [ sl (3.21)
A>N
Substituting (3.20) and (3.21) into (3.19), we obtain

I < Cn(la —@| + |8 — B)? +/ A2 ]S, (3.22)

A>N

where Cy is defined in (3.20).
Estimate for I,. Similarly to the proof of Lemma 3, we get

1 5 ! =
L < ——0>7F2 / -0 e — 2 dr. 3.23
NG KT s O( O T () —u(r)ly dr (3.23)

Estimate for I3. Recall that Q is defined in (3.6) as follows:
t
Qu,pa(fC,uw)(1) = / Eqp(A, 1, 7)f(T,u)dr.
0
By the Holder inequality and direct computation, we have
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400 t
0 0
t
|
0

= I31(N) + I32(N), (3.24)

EqpOut,7) — Ez 500, 1, r)’ de

Eqp(h.1.7) — Ez 501, r)( d1S, £ (z, u(z))|? dr

where

N t
Li(N) = f A% f
0 0
t
<
0
t
In(N) = f A% /
A>N 0
t
<
0

We will estimate /31 (N) and I3 (N) one by one.
Estimate for I31(N). By Lemma 2, we have

[

By the mean value theorem, for A < N with N large enough, we obtain
t
/

On the other hand, there exists C3 = C3(a, a™, By) such that

Eup(ut.7) = Eg gk 1,7)| de

Eup(ust.7) = Eg gh 1, 0)| dIS, f (2 u(@)I dr,

Ea,g(k,t,t)—ang()n,t,r)) dr

Eap(hi1,7) — Eg 5001, r)) IS f(z, u(x)|* dz. (3.25)

EapOnt,7) — Eg 500t r)‘ dr < C; ((1 + P a — G| + |AF — /\5|).

Ea,ﬁ(x,z,r)—E&g(x,r,r)‘ dr

< CoAP x| (o — @)+ 18— Bl). (3.26)

EupOut.0) = Bz 01,0 = G (= 0 4+ 0 = )71

<20, ((r — el L — r)“*—l) . (3.27)
Plugging (3.26) and (3.27) into (3.25), we obtain

Li(N) < GNP A2 In N (jo — @l + 18 — Bl)

N pt .
<[ (=07 e = o) s s P de 628)
6 JO
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for N large enough and C4 = 2C,C3. Furthermore, thanks to the condition (2.2), we

get that

N pt .
[ [ (e=07 = om) dis s umi dc
0 0
+oo  pt .
<[ [ (e=0" v a0 dis e o
0 0
t

< fo (¢ =0+ = 0=) (If @O + & T2 u®)]?) de

where C5 = Cs(ay, @™, By, M). Combining the inequality (3.28) with (3.29), we

obtain
(3.30)

B1(N) < Dy (le — & + 18 — B,

where Dy = C4CsNP t 2 In N.
Estimate for 13,(N). Thanks to (3.8), one has

t
/
t t
5/ Eqp(r,t, 1) dt—l—/ Eaglg(k,t, 7)dt
0 0

<1+1
VRV A

Eap(hit, 1) —E&)E()\,t,t)‘ dr

Consequently,

Euput, ) = Eg g0 1,7)| = G,

t
o
0

where Cq = Ce(Bs, B*, 6), and that

Eap(ust,7) = Eg 01,0 dIS,f (7, u(@) P d7

I3 (N) < Cg /

t
A>N JO
t *
< 2c6c3/ ((r — (- z)“**l)
0

+00
« / dIS, f (. u(r)? dr.

N

(3.31)

From (3.22), (3.24), (3.30) and (3.31), for |« — &| + |8 — | < 1, we obtain

I+ 15 < Ey (lo —@ + 18— B) +z/ 22 S,
A>N
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t *
+4C6C3/ ((t B iy r)“*—l)
0
400
X / dIS, f (. u(e)|? d, (332)
N

where Eny = 2Cy + 6 Dy with Cy defined in (3.20) and Dy defined in (3.30).
Let us mention (3.29) that

t N +00
[ (e=o T wa—o=t) [ disfeueni o
0 0
t
< [ (e=0e @ -0 ) (1@ OP +id P oIR) dr = s
0

and ¢ €~D(As ). This leads to the fact that there exists N = N (¢) independent of o, &
and 8, B such that

2 [ s
A>N
t N +o00
+466C [ (a0 o) [ dis s dr
0 N

<e.
Combining (3.32) and the latter inequality, one gets
I+ 15 <e+ P(la—a|+ |8 — B (3.33)

Substituting (3.23) and (3.33) into (3.18), we obtain

2
HFC,E,E,A(U)(I) - F{,a,ﬁ,A(U)(f)HS
< 4(e + P (o — |
~ t N
+1B - BD) + —F?&)Gh_ﬁk%s [0 (t — OF e (1) — u()|? dr.

Since Ur 5 B and u; 4 p are the solution of the equations F;,&,E,A(U) = v and
Fr o,p,4() = u, respectively. We conclude from Lemma 3 that

2
[0 = weap @],
= P (e + Pella = @) + |8 — BD) Eg—2v1-2 (4f 62 F172),
where Py = 41" (1 — 2v). This completes the proof of the first part of Theorem 5.
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Now we consider the proof of the second part of the theorem. From (3.32) in the
proof of Theorem 5, we obtain

L+ <CN¥ 12N (ja —&| + |8 — Bl) + /1 + o,

where

= 2/ 225 dISic I,
A>N

t

+00
I = 4C6C3/ ((r ol — r)“**‘)f 1S, £ (z, u(x))|? dr.
0 N

In fact, using the assumption ¢ € D(AP™/2471), £ (., u(.)) € C([0, T], D(A"™)) yields

Jy < aN~En=29 / M QS|P < aN-E B2
A>N

and J, < CN~2"2, Hence, putting y; = 28*, y» = min{* + 2r| — 2s, 2r2}, we get
L+ <CN”?4+CN" 1N (la — |+ 18— Bl).

Hence, we can use Lemma 3 to prove that

- ~ ~\1/2
H”:,aﬁ(f) - uc,a,ﬂ(t)Hs = Qo (N 24 N In® N (ja — G|+ 18 — ,3|)) ,

~

where Qy is independent of N, «, @, B, B.
Since In N < N, we obtain

Juc50) — weap @] = 00 (N7 4N (a—3 +18-B) . G20
Let us suppose that |o — &| + |8 — El < 1, and we can choose
N =[(a—al+1p—BpVo 2] 41,
It is easy to see that

(lo =@l + 18 = BN+ < N <2(ja = @] + 18 — B~/ 177242,

Hence, by (3.34), we obtain

~ ~ 2(r1+12+2
e ® = weap®| = 00 (2772 +1) (la =l + |5 — B/ 27 2
This completed the proof of Lemma 5. O
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3.7 Proof of Theorem 5

Proof Before proving the theorem, we set up some notations. We will use Theorem 1
to prove Part (i). For M > 0, we put

Mv

) —) for v € D(A®).
max{M, ||v|ls}

v =f (f

Verifying directly, we can prove that the function fj, is global Lipschitz with respect
to the variable v, i.e.,

I, wi) — fu(t, wo)l < kpt™"|wy — wally forall wy, wy € D(AY),

where k) > 0 depends on M. We consider the problem of finding U €
C([0, T], D(A®)) satisfying

t
U(t) = Eo(— 1" AP)¢ —i—/ Eq (A t,7) fu(z, U(x)) dr. (3.35)
0

From Theorem 1, for any 7 > 0, the equation (3.35) has a unique solution
Um,r € C([0, T], D(AY)).

(i) Foranym > 0,weput M = 2||¢||+m. Since Ur (0) = ¢, we can use the continu-
ity of Ur to find a constant Ty; € (0, T'] such that SUPg</<T,, NWUm.7()|ls <M.

In this case fy(t, Uy, 7(t)) = f(t, Uy, (t)) forall t € [0, Ty] and Ups 7(2)
satisfies (1.3) for ¢ € [0, Ty/].
@) IfV, W e C([0, T]; D(A®)) are solutions of (1.3), we denote

w=1 +maX{ sup [V(®lls, sup [[W()lls

0<t<T 0<t<T

and consider the equation

U(t) = Eq(— t“Aﬁ)g“ + /OI Eqyp(A,t,7) fu(r, U(r)) dr. (3.36)
From Theorem 1, the equation (3.36) has a unique solution
Uur € C([0, T]; D(AY)).
Since ||V ()]s, W ()]|ls < u fort € [0, T], we have
f@, V@) = fu@. V), f, W) = fult, W@)).
Hence, V, W satisfy (3.36). By Theorem 1, wehave V. = U, v = W.
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(iii) For every T € (0, Ty 4,p), the equation (1.3) has a unique solution Uy €
C([0, T]; D(A®). From Part (ii), for T1, 7> € (0, Tz o.p), T1 < T», we have
Ur, (1) = U, (t) for t € [0, T1]. Hence, we can put u; o g(t) = Ur(¢) for all
t €[0,T],T € (0, Ty 4,p). The function u; g is the unique solution of (1.3)
on [0, Ty o.p)-
We prove the second result of Part (iii). Assume by contradiction that 7; o g < 00
and |lu¢ o, p(t)|ls < M forevery t € [0, T; o, ). We consider the equation

t
U(t) = Eo( — 1" AP)¢ +/ Eq (A t,7) fu(z, U(x)) dr. (3.37)
0

From Theorem 1, the equation (3.37) has a unique solution U M.5+Tr 0 p with § >
0. From Part (ii) we have u; o g(t) = Um s+1,,,(t) for every t € [0, T o).
Since Uy s+1; 5 € C([0, 8+ T¢ 0. pl; D(A*)), we can find a constant 8 €(0,6)
such that ||UM,5+T{,a.ﬂ ®)|ls < M fort € [0,8 + T; «,p]- Hence the equation
(1.3) has a unique solution on [0, T;  g+8']. It follows that Ty o g +6' < T; o, g,
which is a contradiction.
Finally, the proof of the last inequality of the theorem is similar to the inequality
(2.3). Hence we omit it.

(iv) Choose T € (0, T 4,8) and M = 1 + |us o gls,7 and consider the problem
(3.37) and

t

U(t):Eak(—t“kAﬁk){k—i-/ Eapp (A 1, 0) fu(z, U(r)) dr.  (3.38)
0

Denote the solution of (3.37), (3.38) by U «,g and Uy, ., g, Tespectively. From
the stability result, we obtain

Ugar.pp = Urap in C([0,T]; D(A)) as k — oo. (3.39)
Since |u¢ o, gls,7 < M, wehave us o 8 = Ur o p. From (3.39), there is a kg € N
such that |Ug, o g ls,7 < M which gives Ug, o8, = Ugy,ap,p, 1 the solution
of Problem Py o, . It follows that T < Ty, o g, for kK > ko which implies
liminfy o0 Ty, g = T, Using (3.39) yields

lim Jug o p — Uz,apls,r =0.
k—o00

This completes the proof of the theorem.

3.8 Proof of Theorem 6

Proof o <w(n+1)—4L, 0 <1/2—v,0o—v—w <0.Wehavew —v < o <
w(n+ 1) — £ which gives —v < wn — L orw > %.Wealsoneeda)—v <1/2—-v
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which gives w < 1/2. Hence Z_T" < 1/2 Since n > max {2(¢ — v), 0} we can choose

w such that

£—v
max{ ,O} <w<1/2
n

which gives
max{w — v, 0} < minfw(n +1) — ¢, 1/2 —v}.
Choosing ' such that
max{w — v, 0} < ® < min{fw(n+1) —£,1/2 — v}

we obtain
o <minfo(n+1)—£,1/2—v}, 0 —v—a <O0. (3.40)

The maximal solution u = u; o g € C([0, Tz «,p), D(A?)) satisfies

t
u(t) = EO,( — t“A’f‘)g +/ Eqp(At,7)f(t,u(r)) dr forall ¢ € [0, T; o,8).
0

We claim that 77 o 5 = 0o and sup,.o(1 + )“[lu(?)|ls < co. We note that

I (6, )l < £, u(@) — £, 00 + £, 0
<kt L+ D a1 + 1 £, 0.

As in the proof of Theorem 1, choosing r = 0 in Lemma 4 gives

sup kzs_ﬁHo()\, t,h) < gx—Fp
r>0

and we have

lue(e))?
<2||Eq( —1*AP)¢|?

t
1297 / (t = O B (0P — D)) | £ (. u(x)|? dr
0
< 2||Eo(— 1% AP)z |2

1
+ 402 / =D e + 1) Eq (0P (1 — 1)) u() 3" dr
0

t
+40%F /0 (t — 1) Ego(—6P(t — 1)) f (1, 0)|? dr. (3.41)
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Putting w(#) = (1 4+ ¢)®u(¢) and, for A > ||¢||s, denoting

Toound = sup{Tp € [0, Tz a,p) : llw(®)|ls < Afor 0 <t < Tp}.
We claim that there are A > 0,89 > 0 such that Tyouna = 77,4, for every
¢ ||§ + mgo a0 < 60- Assume by contradiction that Tyound < 17,4, Then, we obtain
lw(Toound) lls = A. The inequality (3.41) yields

lw(®? < Ki + Kz for 0 < ¢ < Thound:

where

Ky =2(1 40| Eo( — t*AP)¢|I; + 467 PmZ, , ..

Ky =40%7P(1 + t)z“’/clz/ (t =0 T Ey o (—0F (1 — 1))
0

x (1 4 7)267200+D |y (1) |20+ D g,
From (3.4) we obtain
Ky < 240081 +46% P m 4.0 < 55
Next, we consider K;. For t > 1, we obtain in view of Lemma 2 and (3.40) that

Ky < 4A2(ﬂ+1)92s—/3(1 + t)2wK12 Lowo(n 1)t
<ACAXTEVYHP (L 4 )22 < € p20D,

where o’ < w(n+1)— 4,0 <1/2—v,w—v — ' < 0. We estimate for the case
0 <t < 1. We have

t
Ky <4203 P (1 4 1>kt / (t =D T Eq o (—0%(t — 1))
0

X (1 + _[)2@—2(1)(7’]+1) df

2 1
< 44 1) 2? ﬂ22a) / (l )Ol 1 —2v dr
= T
4 A20+D)
< 07220 2 B, 1 — 2v)
I'(a)
4A20+D)
< 0772222 B(a, 1 —2v).
(o)

Combining the two cases gives

Ky < CAZ(n'H).
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From the estimates for K|, K, we obtain

A? = lw(Thomd) > = sup  w(@)|? < g8 + CA>TD,

0=t <Thound

Since 2(n + 1) > 2 we can choose A, ¢y > 0 such that I > CA?", {8 < A% —
C A201+D and

4 B -1
82 =¢p <2Aw + WQZS ﬂ) .

A

In this case we get A2 = ||w(Tb0und)||§ < {02 + CA2tD < A2 which is a contra-
diction. Hence, we have to obtain Tyound = T7,¢,5. SO we have

lu@)lls < A +1"A foreveryt € [0, Ty.q.p).

Using the continuation result in Theorem 5 leads to T o g = oo. Finally, we consider

the case =¥ <@ < 1 /2. In this case, we can choose w = « and obtain the desired

result by a similar argument as in Theorem 2. This completes the proof of the theorem.
O
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