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Abstract
In a Hilbert space, we consider a class of nonlinear fractional equations having the
Caputo fractional derivative of the time variable t and the space fractional function
of the self-adjoint positive unbounded operator. We consider various cases of global
Lipschitz and local Lipschitz source with time-singular coefficient. These sources
are generalized of the well–known fractional equations such as the fractional Cahn–
Allen equation, the fractional Burger equation, the fractional Cahn–Hilliard equation,
the fractional Kuramoto–Sivashinsky equation, etc. Under suitable assumptions, we
investigate the existence, uniqueness of maximal solution, and stability of solution
of the problems with respect to perturbed fractional orders. We also establish some
global existence and prove that the global solution can be approximated by known
asymptotic functions as t → ∞.
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1 Introduction

1.1 Statement of the problem

Let H be a Hilbert space, A : D(A) ⊂ H → H be a self-adjoint positive definite
unbounded operator, and f : [0,+∞) × D(As) → H with s ≥ 0. For α ∈ (0, 1],
β > 0, we consider the problem to find a function u : [0, T ] → H satisfying

Dα
t u + Aβu = f (t, u(t)), t > 0, (1.1)

where Dα
t is the Caputo fractional derivative

Dα
t u(t) =

{ 1
Γ (1−α)

∫ t
0 (t − s)−αu′(s) ds, if α ∈ (0, 1),

u′(t), if α = 1,

and the fractional power of the operator Aβ will be defined later. The equation
(1.1) is a general form of a lot of well-known equations such as the Ginzburg–
Landau equation (α = 1, A = −Δ, f (t, u) = au − bu3), Burger equation
(α = 1, A = −Δ, f (t, u) = uux ), and Kuramoto–Sivashinsky equation (α = 1, A =
Δ2, f (t, u) = ∇2u + (1/2)‖∇u‖2)). In the present paper, we will investigate the
stability of solution of the initial value and the final value problems for (1.1).

The equation (1.1) subject to the initial data

u(0) = ζ (1.2)

is called the fractional initial value (or the Cauchy, the forward) problem (FIVP).
By the definition of the spectral resolution of the operator A and the Laplace trans-

form, we can rewrite the FIVP as

Problem Pζ,α,β : u(t) = Eα

( − tαAβ
)
ζ +

∫ t

0
Eα,β(A, t, τ ) f (τ, u(τ )) dτ, (1.3)

where Eα,β(z, t, τ ) = (t−τ)α−1Eα,α(−zβ(t−τ)α) is expressed by theMittag-Leffler
function, and the operators Eα

( − tαAβ
)
, Eα,β(A, t, τ ) will be defined in Sect. 2.

A function u that satisfies Eq. (1.3) is called a mild solution of the FIVP and denote
by u = uζ,α,β .

1.2 History andmotivation

The abstract parabolic equation ut + Au = f was considered for the last thirty years
in many works on this area. The readers can see the classical book by Cazenave and
Haraux [5] and references therein. The FIVP was also studied by lot of researchers.
Xing et al. [24] discussed the existence, uniqueness, analyticity and the long-time
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1168 N. M. Dien et al.

asymptotic behavior of solutions of space-time fractional reaction–diffusion equations
in Rn

Dα
t u + (−Δ)βu = p(x)u,

subject to the initial condition u(x, 0) = a(x). Existence and uniqueness of the max-
imal solutions of some linear and nonlinear fractional problems were investigated
in [2, 6, 10, 12, 21]. The blow–up and global solution of time–fractional nonlin-
ear diffusion–reaction equations were studied recently with some kind of nonlinear
sources as f (t, u) = au + u p (see Cao et al. [4]), f (t, u) = |u|p−1u (see [27]),
f (t, u) = |u|p (Zhang [26]), Asogwa et al. [3] studied finite time blow up results for
a version of equation (1.1).

The firstmotivation of our paper is to study the existence and uniqueness ofmaximal
solution of the initial value problemwith respect to a singular source. Inmany practical
situation, the source is often assumed to satisfy || f (t, u) − f (t, v)|| ≤ K (t, M)‖u −
v‖ for ‖u‖, ‖v‖ ≤ M, where K : (0,∞) × (0,∞) → R is the Lipschitz coefficient.
If K (t, M) is dependent (independent) on t , we say that the coefficient is t-dependent
(t-independent). Generally, in a lot of papers, the coefficient is assumed to be t-
independent. A time-dependent coefficient which can be unbounded in a time interval
(0, T ), i.e. sup0<t<T K (t, M) = ∞, is rarely studied. In the present paper, we consider
a generalized form of singular source

|| f (t, u) − f (t, v)||H ≤ K (t, M)‖u − v‖D(As ) for ‖u‖H , ‖v‖H ≤ M,

with K (t, M) = κ0(t)L(M) for limt→0+ κ0(t) = ∞. In the special case κ0(t) =
t−νκ(t), the condition of K (t, M) is similar to the generalized Nagumo condition
(see, e.g., [13], Ch. 7 or [11]). In particular, the time-dependent source promises to
bring many interesting global properties to the solution of the problem.

The second motivation of our paper is of studying the continuity of solution with
respect to the fractional orders α, β and the initial data ζ . In the papers mentioned
above, the parameters α, β are assumed to be perfectly known. But in the real word
of applications, the fractional orders can only be approximated from the mathemat-
ical model or statistical methods. In [1, 7], the Caputo derivatives can be identified
approximately fromobservation datau(x0, t)with t > 0, or u(x, T )with x ∈ 
 ⊂ R

n .
Besides,Kateregga [15] used statisticalmethods as the quantiles, logarithmicmoments
method, maximum likelihood, and the empirical characteristic function method to
identify the parameters of the Lévy process. In these examples, the fractional orders
are obtained only as approximate values. Hence, a natural question is that whether the
solutions of fractional equations is continuous with respect to the perturbed orders.
The papers devoted to these questions are still rare. We can list here some papers. Li
and Yamamoto [16] investigated the solution uγ,D of the problem

Dγ
t u = ∂

∂x

(
D(x)

∂u

∂x

)
, (x, t) ∈ (0, 1) × (0, T ),
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subject to the Neumann condition ux (0, t) = ux (1, t) = 0 and the initial condition
u(x, 0) = f (x). They proved that

‖uγ1,D1(0, ·) − uγ2,D2(0, ·)‖L2(0,T ) ≤ C(|γ1 − γ2| + ‖D1 − D2‖C[0,1]).

Dang et al. [8] studied the continuity of solutions of some linear fractional PDEs with
perturbed orders. In the references [9, 19, 22], the authors considered the stability of
solution of some class of nonlinear space–fractional diffusion problems taking into
account the disturbance of parameters. To the best of our knowledge, until now, there
is very few papers devoted to the stability of solutions of time-fractional problemswith
respect to the fractional time and space derivative parameters: α, β. In [20, 23], the
stability was considered for the global Lipschitz source. The problem with the local
time-singular Lipschitz source is still a topic of investigation. This stability result
will serve as the foundation for numerical computation schemes for equations with
imprecise fractional derivative parameters.

1.3 Outline of the paper

Summarizing the discussion of the FIVP, in the present paper, we will:

• Investigate the existence and uniqueness of the maximal solution of the nonlin-
ear FIVP with respect to the singular nonlinear source on the maximal interval
[0, Tζ,α,β). To solve the problem, we have to establish an appropriate Gronwall-
type inequality which also has a specific merit in investigating other fractional
problems.

• Study the stability of the nonlinear FIVP with respect to the perturbed orders α, β.
In fact, we establish

uζ ′,α′,β ′ → uζ,α,β as (ζ ′, α′, β ′) → (ζ, α, β)

in an appropriate norm. Especially, for α → 1−, we will prove that the solution
of the nonlinear FIVP tends to that of classical nonlinear initial value parabolic
problem.

• Study the existence of global solution on [0,∞) and prove decay estimates for
the global solution. To illustrate for our results, we present an asymptotic result.
Under some conditions, we will prove that

lim
t→∞(1 + t)α‖uζ,α,β(t)‖s = 1

Γ (1 − α)
‖ζ‖s−β

for every ζ ∈ D(As), ζ �= 0. The result shows that the decay of the FIVP is of
polynomial order.

The rest of the paper is organized as follows. Section 2 gives the main results of
our paper without proofs. In Sect. 3 the proofs of these results are presented.
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1170 N. M. Dien et al.

2 Main results

2.1 Notations

To state our problem precisely, we will give some definitions. Firstly, in the paper, we
always denote by C,C ′ generic constants which could be different from line to line.
We denote the inner product in Hilbert space H by 〈., .〉 and the associated norm by
‖.‖.

We recall (see, e.g., [17,page 61, Ch.4]) that a resolution of the identity on a Hilbert
space H is a one-parameter family {Sλ : λ ∈ R} of orthogonal projections on H such
that

(i) Sλ ≤ Sλ′ if λ ≤ λ′ (monotonicity),
(ii) limλ′→λ+ Sλ′ζ = Sλζ for ζ ∈ H (strong right continuity),
(iii) limλ→−∞ Sλζ = 0 and limλ→+∞ Sλζ = ζ for ζ ∈ H .

Assume that θ > 0 is the lower bound of the spectrum of the operator A. Let us
denote by {Sλ} the spectral resolution of the identity associated to operator A such that
A = ∫ ∞

θ
λdSλ. We follow [25,page 29] (see also [17,page 92]) to define the power of

the self-adjoint positive definite unbounded operator as

Aβu =
∫ +∞

θ

λβ dSλu, β ∈ R.

Generally, for a continuous function h : R → R, we denote the domain of h(A) to
be

D(h(A)) :=
{
w ∈ H :

∫ +∞

θ

|h(λ)|2 d||Sλw||2 < +∞
}

. (2.1)

If w ∈ D(h(A)), we define the linear operator

h(A)w =
∫ +∞

θ

h(λ) dSλw.

Particularly, if h(z) = zs for z ≥ 0, s ∈ R, we have the Hilbert space D(As) with

the norm ||w||s =
(∫ +∞

θ
λ2s d||Sλw||2

)1/2
. For v ∈ C([0, T ]; D(As)) we denote

|v|s,t = sup0≤τ≤t ‖v(τ)‖s . Let 0 ≤ s∗ ≤ s∗ and s1, s2 ∈ [s∗, s∗], s2 ≤ s1. It is easy to
see that

D(As1) ⊂ D(As2) ⊂ D(A0) = H and ||w||s2 ≤ θ s2−s1 ||w||s1 .

For M, s > 0, we put

Bs(M) = {w ∈ D(As) : ‖w‖s ≤ M},
Bs,T (M) = {

v ∈ C([0, T ]; D(As)) : |v|s,T ≤ M
}
.
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Global solutions of nonlinear fractional diffusion equations… 1171

In this section, we also remind the Mittag–Leffler function and its properties which
play important roles in the proof of main results of current paper. We recall also the
Gamma and Beta functions,

Γ (z) =
∫ ∞

0
t z−1e−t dt, B(p, r) =

∫ 1

0
t p−1(1 − t)r−1dt for Re(z), p, r > 0.

The Mittag–Leffler function with two parameters is defined as

Ep,r (z) =
+∞∑
k=0

zk

Γ (kp + r)
, Ep(z) := Ep,1(z), z ∈ C for p, r > 0.

Definition 1 A function u ∈ C([0, T ); D(As) is a maximal solution of Problem
Pζ,α,β if u satisfies Pζ,α,β on the interval [0, T ) such that T = ∞ or that T < ∞,
lim supt→T− ‖u(t)‖s = ∞. In the case T = ∞, we say that u is aglobal solution of
Pζ,α,β . The global solution u is said to have

• the sub-polynomial decay rate if there are ρ, C > 0 such that

‖u(t)‖s ≤ C(1 + t)−ρ for every t > 0.

• the asymptotically polynomial decay if there is ρ,Cρ > 0 such that

lim
t→∞(1 + t)ρ‖u(t)‖s = Cρ.

2.2 The global Lipschitz source

Using the notations defined, we can state precisely the assumption for the singular
source. In fact, we consider the source function of the problem satisfying the following
assumptions.

Assumption F1(α) Let T > 0, α ∈ (0, 1] and f ∈ C((0,∞) × D(As); H). We
assume that

mT ,α := sup
0≤t≤T

∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)‖ f (τ, 0)‖2 dτ < ∞.

Assumption G1 Let T > 0, s > 0, ν ≤ α/2 and f ∈ C((0,∞) × D(As); H),
κ ∈ C([0,∞); [0,∞)). We assume that

|| f (t, w1) − f (t, w2)|| ≤ t−νκ(t)||w1 − w2||s for all w1, w2 ∈ D(As). (2.2)

Remark 1 Assumption F1(α) holds in many cases. For example, as shown in Lemma
2 (see the part of proofs), if ‖ f (t, 0)‖ ≤ t−ν f κ f (t) for 2ν f < α, κ f ∈ C([0,∞);R),
then Assumption F1(α) holds.

Using the assumptions, we can obtain the following existence result.
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1172 N. M. Dien et al.

Theorem 1 Let α ∈ (0, 1), β > 0, s ∈ [0, β/2], ζ ∈ D(As) and let f ∈ C((0,∞) ×
D(As); H). Assume that Assumption F1(α) and Assumption G1 hold. For ν < α/2,
the equation (1.3) has a unique solution u = uζ,α,β ∈ C([0,∞); D(As)). Moreover,
for a T > 0, if we put

κT ,s = max
0≤t≤T

κ(t), g(t) = Eα

( − tαAβ
)
ζ +

∫ t

0
Eα,β(A, t, τ ) f (τ, 0) dτ,

then g ∈ C ([0, T ], D(As)) and there is a constant C independent of t such that

‖u(t)‖2s ≤ 2CΓ (1 − 2ν)|g|2s,t Eα−2ν,1−2ν

(
2θ2s−βκ2

T ,s t
α−2ν

)
for any t ∈ [0, T ],

(2.3)
where we recall |g|s,t = sup0≤τ≤t ‖g(τ )‖s .

For ν = α/2, κT ,s < θβ/2−s (Γ (1 − α))−1/2, the equation (1.3) has a unique
solution u ∈ C([0, T ]; D(As)).

Remark 2 We can use the Edelstein fixed point theorem (see, e.g., [13], Ch. 7) to obtain
the desired result for the case ν = α/2, κT ,s = θβ/2−s (Γ (1 − α))−1/2. We note that
if we put un+1 = F(un), where F(u) is the right hand side of equation (1.3), then the
sequence (un) converges to the solution u in C([0, T ], D(As)).

From the existence result stated,we can obtain an interesting global existence result.
Moreover, we also give an asymptotically polynomial result for decay estimates.

Theorem 2 Let α ∈ (0, 1), β > 0, s ∈ [0, β/2], ζ ∈ D(As), ν, ν f > 0, ν < α/2,
ν f < α/2 and let f ∈ C((0,∞) × D(As); H). Assume:
• Assumption G1 holds and there are κ1 > 0, � ∈ R such that

0 ≤ κ(t) ≤ κ1(1 + t)�,

• There exist κ f > 0, ν f > 0, � f ∈ R such that

‖ f (t, 0)‖s ≤ κ f t
−ν f (1 + t)� f .

With these assumptions, we have the following two results:
1. If �, � f < ν, α > 1

2 − ν, then, for every ζ ∈ D(As), the problem Pζ,α,β

has a unique global solution uζ,α,β ∈ C([0,∞); D(As)) which has the sub-
polynomial decay rate. More explicitly, for every ω satisfying 0 < ω <

min
{ 1
2 ,

1
2 − �, 1

2 − � f
}
, we can find Cω > 0 such that

‖uζ,α,β(t)‖s ≤ C(1 + t)−min{α,ω} for t > 0.

2. If �, � f < 1
2 − α, 0 < α < 1/2 then, for every ζ ∈ D(As), the prob-

lem Pζ,α,β has a unique global solution uζ,α,β ∈ C([0,∞); D(As)) which
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Global solutions of nonlinear fractional diffusion equations… 1173

has the sub-polynomial decay rate. More explicitly, for every α < ω <

min
{ 1
2 ,

1
2 − �, 1

2 − � f
}
we can find Cα,ω > 0 such that

‖uζ,α,β(t) − Eα(−tαAβ)ζ‖s ≤ Cα,ω‖ζ‖s(1 + t)−ω.

In addition, the solution uζ,α,β has the asymptotically polynomial decay rate

lim
t→∞(1 + t)α‖uζ,α,β(t)‖s = 1

Γ (1 − α)
‖ζ‖s−β.

Remark 3 As mentioned, the set D(As) is dense in H . Hence the polynomial decay
rate of the solution holds for almost every ζ ∈ H .

In the next two theorems, we state some results on stability of solution of the initial
problem with respect to the initial data and the fractional orders. In the following
stability results, we recall that uζ,α,β is the solution of Problem Pζ,α,β in (1.3) corre-
sponding to the initial data ζ and the orders α, β. We first have the classical stability
with respect to the fixed orders α, β. More precisely, for α∗, α∗, β∗, β∗ satisfying
0 < α∗ < α∗ < 2α∗ ≤ 2, and 0 < β∗ < β∗, we consider

(α, β) ∈ Δ := [α∗, α∗] × [β∗, β∗]. (2.4)

Theorem 3 Let ζ, ξ ∈ D(As) be two initial data with s ∈ [0, β/2], and let T > 0,
(α, β) ∈ Δ be as in (2.4). Let the source function f satisfy Assumption F1(α)
and Assumption G1. Then the problems Pξ,α,β , Pζ,α,β have the unique solutions
uξ,α,β, uζ,α,β ∈ C([0, T ], D(As)), respectively. Moreover, there exists a positive con-
stant P1 independent of ζ, ξ such that

|uξ,α,β − uζ,α,β |s,T ≤ P1||ζ − ξ ||s .

Hence, letting ζ, ζk ∈ D(As), ζk → ζ in D(As), we obtain

lim
k→∞ |uζk ,α,β − uζ,α,β |s,T = 0.

Moreover, we also have the stability results with respect to the perturbed orders
α, β. To investigate the stability of the solution of the problem (FIVP), we will restrict
the value (α, β) in the bounded domain.

Theorem 4 Let (α, β), (αk, βk) ∈ Δ (defined in (2.4)) such that (αk, βk) → (α, β),
and let ζ, ζk ∈ D(As) such that ζk → ζ in D(As) as k → ∞. Let the source function
f satisfyAssumptionF1(α∗) andAssumptionG1. Then the problems Pζ,α,β , Pζk ,αk ,βk

have the unique solutions

uζ,α,β ∈ C([0, T ], D(As)), uζk ,αk ,βk ∈ C([0, T ], D(Amin{s,βk/2})),

respectively. In addition, the following results hold:
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(i) If s ∈ [0, β/2), then

lim
k→∞ |uζk ,αk ,βk − uζ,α,β |s,T = 0. (2.5)

(ii) If s = β/2 and βk ≥ β for k → ∞, then

lim
k→∞ |uζk ,αk ,βk − uζ,α,β |s,T = 0. (2.6)

(iii) If βk ≤ β as k → ∞, then

lim
k→∞ |uζk ,αk ,βk − uζ,α,β |βk/2,T = 0. (2.7)

(iv) If we suppose further that ζk, ζ ∈ D
(
Aβ∗/2+r1

)
such that ζk → ζ in

D
(
Aβ∗/2+r1

)
for some r1 > 0. We also suppose that s∈

[
β∗
2 ,

β
2

)
, f (., uζ,α,β(.))

∈ C([0, T ], D (Ar2)) for some r2 > 0. Then, there exists constants L0, L1 inde-
pendent of ζ, ζk such that

∣∣uζk ,αk ,βk − uζ,α,β

∣∣
s,T ≤ L0‖ζ −ζk‖s + L1(|α −αk |+ |β −βk |)

γ2
2(γ1+γ2+2) , (2.8)

where L0, L1 is depended on (α∗, α∗, β∗, β∗, T ), γ1 = 2β∗, and γ2 = min{β∗+
2(r1 − s), 2r2}.

Remark 4 Theorem4 shows that ifα → 1−, β → 1, then the solutions of the fractional
equation (1.1)–(1.2) tend to the solution of the classical equation

ut = Au + f (t, u(t)).

2.3 The local Lipschitz source

Assumption G2 Let s ∈ [0, β/2], ν ≤ α/2, κ ∈ C([0,∞);R), κ(t) ≥ 0 for t ≥ 0,
and f ∈ C((0,∞) × D(As); H). For every T , M > 0, we assume that there is an
LT (M) such that

|| f (t, w1) − f (t, w2)|| ≤ t−νκ(t)LT (M)||w1 − w2||s
for all t ∈ [0, T ], w1, w2 ∈ D(As), ‖w1‖s, ‖w2‖s ≤ M .

Put � = (0, 1), H = L2(�), we can directly check that some common sources
of the following equations satisfy: the Ginzburg Landau equation and the Burger
equation for ν = 0, s = 1, the Cahn–Hilliard and Kuramoto–Sivashinsky equations
for ν = 0, s = 2.

In this section, we investigate the existence and uniqueness of the solution of the
problemwith local source defined in (2.2). In addition, we study the dependence of the
solution with respect to the fractional order α, β and the initial data ζ . To emphasize
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Global solutions of nonlinear fractional diffusion equations… 1175

the dependence of the solution u on these given data, let us write it by uζ,α,β . We have
the following theorem.

Theorem 5 Let α ∈ (0, 1), β ∈ (0,+∞), s ∈ [0, β/2], ν < α/2, and let ζ be the
initial data defined in (1.2) such that ζ ∈ D(Aβ/2). Let the source function f satisfy
Assumption F1(α) and Assumption G2.

Then, for any M > 2||ζ ||β/2, we have:
(i) (Local existence) There exists a TM > 0 such that the FIVP has a unique mild

solution uζ,α,β which belongs to C([0, TM ]; D(As)).
(ii) (Uniqueness) If V ,W ∈ C([0, T ]; D(As)) are solutions of (1.3) on [0, T ], then

V = W.
(iii) (Maximal existence) Let

Tζ,α,β = sup{T > 0 : (1.3) has a unique solution on [0, T ]}.

Then the equation (1.3) has a unique solution uζ,α,β ∈ C([0, Tζ,α,β); D(As)).
Moreover,wehave either Tζ,α,β = +∞or Tζ,α,β < +∞and‖uζ,α,β(t)‖s → ∞
as t → T−

ζ,α,β . Besides, if uζ,α,β ∈ Bs,T (M) then

‖uζ,α,β(t)‖2s ≤ 2Γ (1 − 2ν)|g|2s,t Eα−2ν,1−2ν

(
2θ2s−βL2

T (M)tα−2ν
)

,

for any t ∈ [0, T ].
(iv) Let ζ, ζk ∈ D(As), α, αk ∈ [α∗, α∗], β, βk ∈ [β∗, β∗] satisfy

ζk → ζ in D(As), αk → α, βk → β as k → ∞.

Assume in addition that Assumption F1(α∗) hold and s = β/2, βk ≥ β as k → ∞
or 0 ≤ s < β/2. Then for every T ∈ (0, Tζ,α,β) we can find a k0 > 0 such that
Tζk ,αk ,βk > T for every k > k0 and

lim
k→∞ |uζk ,αk ,βk − uζ,α,β |T ,s = 0.

Moreover, we have

lim inf
k→∞ Tζk ,αk ,βk ≥ Tζ,α,β .

If Tζ,α,β = ∞ then limk→∞ Tζk ,αk ,βk = ∞.

Using Theorem 5, we can obtain global existence and polynomial decay results. To
state precisely the theorem, we state the following

Assumption G3 For ν > 0, f : C((0,∞) × D(As); H), κ ∈ C([0,∞); [0,∞))

we assume that there is an L∞(M) > 0 for every M > 0 such that

|| f (t, w1) − f (t, w2)|| ≤ t−νκ(t)L∞(M)||w1 − w2||s
for all t ∈ [0,∞), w1, w2 ∈ D(As), ‖w1‖s, ‖w2‖s ≤ M
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and there are constants κ1, η > 0, � ∈ R such that

‖ f (t, v) − f (t, 0)‖ ≤ κ1t
−ν(1 + t)�‖v‖1+η

s for every t > 0, v ∈ D(As).

Theorem 6 Let (α, β) ∈ Δ be as in (2.4), let 0 ≤ 2ν ≤ α < 1, η, ω > 0, s ∈ [0, β/2],
� ∈ R and suppose that Assumption G3 hold. Assume that

(i) η > max {2(� − ν), 0} and max
{

�−ν
η

, 0
}

< ω < 1/2,

(ii) m2∞,α,ω := supt≥0(1+t)2ω
∫ t
0 (t−τ)α−1Eα,α(−θβ(t−τ)α)‖ f (τ, 0)‖2 dτ < ∞.

Then there exists δ0 > 0 such that Problem Pζ,α,β has a unique solution uζ,α,β ∈
C([0,∞); D(As)) which has the optimal decay rate for

‖ζ‖2s + m2∞,α,ω ≤ δ20 .

Moreover, if �−ν
η

< α < 1/2, then

lim
t→∞(1 + t)α‖uζ,α,β(t)‖s = 1

Γ (1 − α)
‖ζ‖s−β.

Remark 5 From the condition (i), the global result holds for ν < � < 1/2. In this case
the Lipschitz coefficient can be unbounded as t → ∞ since limt→∞ κ1t−ν(1+ t)� =
∞.

3 Proofs

3.1 Preliminary lemmas

Lemma 1 [see [18]] Letting λ > 0, p > 0 and k ∈ N, we have

dk

dtk
E p(−λt p) = −λt p−k Ep,p−k+1(−λt p), t ≥ 0.

Lemma 2 Let 0 < p∗ < p∗ < 2 such that p∗ < 2p∗, and r∗ > 0. Then for any
p, p0 ∈ [p∗, p∗], and r , r0 ≥ r∗, and λ ≥ 0, we have:
(a) There exists a constant C = C(p∗, p∗, r∗) > 0 such that

∣∣Ep,r (−λ)
∣∣ +

∣∣∣∣∂Ep,r

∂ p
(−λ)

∣∣∣∣ +
∣∣∣∣∂Ep,r

∂r
(−λ)

∣∣∣∣ ≤ C

1 + λ
.

We also have

0 ≤ Eα(−z) ≤ 1, 0 ≤ Eα,α(−z) ≤ 1

Γ (α)
for z ≥ 0. (3.1)
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(b) Let 0 < p∗ < p∗ < 1. There exist two constants C1,C2 which depend only on
p∗, p∗ such that

1

Γ (1 − p)

C1

1 + λ
≤ Ep(−λ) ≤ 1

Γ (1 − p)

C2

1 + λ
.

Moreover, we have limλ→+∞ λEp(−λ) = 1
Γ (1−p) .

(c) There exists a constant C = C(p∗, p∗) such that

∣∣Ep(−λr t p) − Ep0(−λr0 t p0)
∣∣ ≤ Cλr

∗
(1 + ln λ) (|p − p0| + |r − r0|) , ∀ λ ≥ 1.

(d) We denote

Ea,b(λ, t, τ ) = (t − τ)a−1Ea,a(−λb(t − τ)a).

Then, there exists a constant C = C(p∗, p∗, r∗) such that

∫ t

0

∣∣Ep,r (λ, t, τ ) − Ep0,r0(λ, t, τ )
∣∣ dτ ≤ C

(
(1 + λr )|p − p0| + |λr − λr0 |) .

(e) Put

Iα,ν,ω(t) =
∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)

τ−2ν

(1 + τ)2ω
dτ.

For t ≥ 1, ν + ω′ < 1/2, 0 < ω′ ≤ ω, there is a constant Dω,ω′ > 0 such that

0 ≤ Iα,ν,ω(t) ≤ Dω,ω′ t−2ν−2ω′
.

Proof We only prove (3.1) and (b), (e). The readers can see the proof of other cases
in [8]. From the complete monotonicity of the Mittag-Leffler function Eα(−z) for
z ≥ 0 (see [14], Ch. 3) we have (−1)n dn

dzn Eα(−z) ≥ 0 for z ≥ 0. Hence we have

Eα(−z), Eα,α(−z) is decreasing which give 0 ≤ Eα(−z) ≤ 1, 0 ≤ Eα,α(−z) ≤ 1
Γ (α)

for z ≥ 0.
We prove (b). Using the asymptotic expansion in [14,page 19, Ch. 3] we have

λEp(−λ) = 1
Γ (1−p) + O(λ−1). Hence limλ→+∞ λEp(−λ) = 1

Γ (1−p) .

We prove (e) next. In fact, noting that supτ≥0
τ 2ω

′
(1+τ)2ω

≤ 1, we have

Iα,ν,ω =
∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)

τ−2ν−2ω′
τ 2ω

′

(1 + τ)2ω
dτ

≤
∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)τ−2ν−2ω′

dτ

= tα−2ν−2ω′
(J1 + J2),
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where

J1 =
∫ 1/2

0
(1 − s)α−1Eα,α(−θβ tα(1 − s)α)s−2ν−2ω′

ds,

J2 =
∫ 1

1/2
(1 − s)α−1Eα,α(−θβ tα(1 − s)α)s−2ν−2ω′

ds.

Using Lemma 2 (a) and estimating directly J1 gives

J1 ≤ 21−αEα,α(−θβ tα2−α)

(1 − 2ν − 2ω′)21−2ν−2ω′

≤ 21−αC

(1 + θβ tα2−α)(1 − 2ν − 2ω′)21−2ν−2ω′ ≤ C ′

tα
.

Similarly, by Lemma 1, we have

J2 ≤ 22ν+2ω′
∫ 1

1/2
(1 − s)α−1Eα,α(−θβ tα(1 − s)α) ds

= 22ν+2ω′

θβαtα

∫ 1

1/2

d

ds
Eα(−θβ tα(1 − s)α) ds

= 22ν+2ω′

θβαtα
(1 − Eα(−θβ tα2−α)) ≤ 22ν+2ω′

θβαtα
.

From the estimation of J1, J2 we complete the proof of Part (e). ��
In this paper, we also need the following useful inequality.

Lemma 3 Let α, q ∈ R, 0 < α ≤ 1, q < α, and let v, g ∈ C[0, T ]. Then the equation

u(t) = v(t) + g(t)
∫ t

0
(t − τ)α−1τ−qu(τ ) dτ

has a unique solution u ∈ C[0, T ] which satisfies

|u(t)| ≤ Γ (1 − q)‖v‖C[0,t]Eα−q,1−q
(‖g‖C[0,t]Γ (α)tα−q) (3.2)

for t ∈ [0, T ]. As a consequence, if w ∈ C[0, T ] satisfies

0 ≤ w(t) ≤ v(t) + g(t)
∫ t

0
(t − τ)α−1τ−qw(τ)dτ for t ∈ [0, T ],

and if g(t) ≥ 0 for t ∈ [0, T ], then

w(t) ≤ CΓ (1 − q)‖v‖C[0,t]Eα−q,1−q
(‖g‖C[0,t]Γ (α)tα−q) for t ∈ [0, T ],
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where C = maxk≥1 dk with d1 = Γ ((α − q) + 1 − q)/Γ (α + 1 − q) and dk =
Γ (k(α − q) + 1 − q)/Γ (k(α − q) + 1).

Remark 6 We note that Γ (a) ≤ Γ (b) for any 2 ≤ a ≤ b, therefore, Γ (k(α − q) +
1 − q)/Γ (k(α − q) + 1) ≤ 1 for k large enough or dk+1 ≤ dk . This implies that
C = maxk≥1 dk < +∞.

Proof of Lemma 3 Put

Su(t) = v(t) + g(t)
∫ t

0
(t − τ)α−1τ−qu(τ ) dτ.

Using the similar technique as in Theorem1,we can prove that there exists k0 ∈ N such
that Sk0 is contraction in C[0, T ]. Consequently, there exists a unique u ∈ C[0, T ]
such that u = Su.

We put u0 = 0, un+1 = Sun . The function can be represented by the series u =∑∞
n=0(un+1−un) . TheWeierstrass theorem shows that the series converges inC[0, T ]

and

|u(t)| ≤ ‖u1 − u0‖C[0,t]
∞∑
k=0

Γ (1 − q)(‖g‖C[0,t]Γ (α))k tk(α−q)

Γ (k(α − q) − q + 1)

= CΓ (1 − q)‖v‖C[0,t]Eα−q,1−q
(‖g‖C[0,t]Γ (α)tα−q) .

Now, we prove the final inequality. Put w0 = Sw, wn+1 = Swn . Since g(t) ≥ 0 for
t ∈ [0, T ], we have Sw1(t) ≤ Sw2(t) for w1(t) ≤ w2(t), t ∈ [0, T ]. We note that
w ≤ w0, hence, by induction we obtain wn ≤ wn+1. Using the contraction principle
we obtain limn→∞ ‖wn − u‖C[0,T ] = 0. Since wn ≤ wn+1 for every n = 0, 1, . . .,
we obtain w(t) ≤ w0(t) ≤ u(t) for t ∈ [0, T ]. From (3.2) we obtain the desired
inequality. ��

We also need the following results.

Lemma 4 Let T , θ > 0, α ∈ (0, 1], β > 0, s ∈ [0, β/2], r ≥ 0, t ∈ (0, T ], w ∈
C([0, T ]; D(Ar )).

(i) For ζ ∈ D(As+r ), we have Eα(−tαAβ)ζ ∈ D(As+r ) and ‖Eα(−tαAβ)ζ‖s+r

≤ ‖ζ‖s+r , and

lim
t→∞(1 + t)α‖Eα(−tαAβ)ζ‖s = 1

Γ (1 − α)
‖ζ‖s−β. (3.3)

For every 0 ≤ ω ≤ α/2, we also have

Λ2
ω := sup

ξ

sup
t>0

(1 + t)2ω‖Eα

( − tαAβ
)
ξ‖2s < ∞ for ξ ∈ D(As), ‖ξ‖s = 1 (3.4)

and
sup
t>0

(1 + t)2ω‖Eα

( − tαAβ
)
ζ‖2s ≤ Λ2

ω‖ζ‖2s . (3.5)
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(ii) Put

Qα,β,A(w)(t) =
∫ t

0
Eα,β(A, t, τ )w(τ) dτ, (3.6)

where

Eα,β(λ, t, τ ) = (t − τ)α−1Eα,α(−λβ(t − τ)α) = 1

λβ

d

dτ
Eα(−λβ(t − τ)α).

If w �≡ 0 on [0, t], then
∣∣∣∣Qα,β,A(w)(t)

∣∣∣∣2
s+r <sup

λ≥θ

λ2s−βH0(λ, t)
∫ t

0
(t − τ)α−1Eα,α(−θβ(t−τ)α)||w(τ)||2r dτ,

(3.7)
where

H0(λ, t) := 1 − Eα

( − λβ tα
)
.

Proof We first prove (i). One has

∣∣∣∣Eα(−tαAβ)ζ
∣∣∣∣2
s+r =

∫ ∞

θ

λ2(s+r)Eα(−tαλβ) d||Sλζ ||2

≤
∫ ∞

θ

λ2(s+r) d||Sλζ ||2 = ‖ζ‖2s+r .

We next prove (3.3). In fact, we have

(1 + t)2α
∣∣∣∣Eα(−tαAβ)ξ

∣∣∣∣2
s = (1 + t)2α

∫ ∞

θ

λ2s E2
α(−tαλβ) d||Sλξ ||2.

Using Lemma 2 we have limt→∞(1 + t)αEα(−tαλβ) = 1
λβΓ (1−α)

and

sup
t≥0

|(1 + t)αEα(−tαλβ)| < ∞.

Hence, applying the Lebesgue dominated convergence theorem yields

lim
t→∞(1 + t)2α

∫ ∞

θ

λ2s E2
α(−tαλβ) d||Sλξ ||2 = 1

Γ 2(1 − α)

∫ ∞

θ

λ2s−2β d||Sλξ ||2

= 1

Γ 2(1 − α)
‖ξ‖2s−β.

From (3.3), we deduce (3.4). Put ξ = ζ/‖ζ‖s we obtain (3.5).
Now, we consider Part (ii). We have Eα,α(z) ≥ 0 (see [14], Ch. 3). Hence, Lemma

1 yields
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∫ t

0
|Eα,β(λ, t, τ )| dτ =

∫ t

0
Eα,β(λ, t, τ ) dτ = 1

λβ
H0(λ, t). (3.8)

By the Hölder inequality, Lemma 2 and (2.1), we obtain for t ∈ (0, T ]

∣∣∣∣Qα,β,A(w)(t)
∣∣∣∣2
s+r =

∣∣∣∣
∣∣∣∣
∫ t

0
|Eα,β(A, t, τ )|w(τ) dτ

∣∣∣∣
∣∣∣∣
2

s+r

≤
∫ +∞

θ

λ2(s+r)
∫ t

0
|Eα,β(λ, t, τ )| dτ ×

∫ t

0
|Eα,β(λ, t, τ )| d||Sλw(τ)||2 dτ

≤
∫ t

0

∫ +∞

θ

λ2s

λβ
H0(λ, t)|Eα,β(λ, t, τ )|λ2r d||Sλw(τ)||2 dτ.

Noting that Eα,α(−λβ(t − τ)α) ≤ Eα,α(−θβ(t − τ)α) for λ ≥ θ , we obtain

∣∣∣∣Qα,β,A(w)(t)
∣∣∣∣2
s+r

<
1

Γ (α)
sup
λ≥θ

λ2s−βH0(λ, t)
∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)||w(τ)||2r dτ.

��

3.2 Proof of Theorem 1

For w ∈ C([0, T ], D(As)), we put

F(w)(t) = Eα

( − tαAβ
)
ζ +

∫ t

0
Eα,β(A, t, τ ) f (τ, w(τ)) dτ.

Choosing r = 0 in Lemma 4 (ii) gives supλ≥θ λ2s−βH0(λ, t1, t2) ≤ θ2s−β and

||F(w1)(t) − F(w2)(t)||2s (3.9)

≤ 1

Γ (α)
θ2s−β

∫ t

0
(t − τ)α−1|| f (τ, w1(τ )) − f (τ, w2(τ )||2 dτ

≤ 1

Γ (α)
θ2s−βκ2

T ,s

∫ t

0
(t − τ)α−1τ−2ν ||w1(τ ) − w2(τ )||2s dτ. (3.10)

So we have

||F(w1)(t) − F(w2)(t)||2s ≤ 1

Γ (α)
θ2s−βκ2

T ,s |w1 − w2|2s,T
∫ t

0
(t − τ)α−1τ−2νdτ

= 1

Γ (α)
B(α, 1 − 2ν)θ2s−βκ2

T ,s |w1 − w2|2s,T tα−2ν

= d1
Γ (1 − 2ν)

Γ (α + 1 − 2ν)
θ2s−βκ2

T ,s |w1 − w2|2s,T tα−2ν,
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where d1 = Γ ((α − 2ν) + 1 − 2ν)/Γ (α + 1 − 2ν). We consider the case ν < α/2.
For w1, w2 ∈ C([0, T ], D(As)), using the similar technique as in [8], we can prove
by induction that

∣∣∣∣∣∣Fk(w1)(t) − Fk(w2)(t)
∣∣∣∣∣∣2
s

≤ dk
Γ (1 − 2ν)

(
θ2s−βκ2

T ,s

)k
tk(α−2ν)

Γ (k(α − 2ν) − 2ν + 1)
|w1 − w2|2s,T

≤ C
Γ (1 − 2ν)

(
θ2s−βκ2

T ,s

)k
tk(α−2ν)

Γ (k(α − 2ν) − 2ν + 1)
|w1 − w2|2s,T ,

where dk = Γ (k(α − 2ν) + 1 − 2ν)/Γ (k(α − 2ν) + 1)dk−1 with k ≥ 2 and C =
maxk≥1 dk . This gives

lim
k→∞C

Γ (1 − 2ν)
(
θ2s−βκ2

T ,s

)k
T k(α−2ν)

Γ (k(α − 2ν) − 2ν + 1)
= 0.

Hence there is a k0 ∈ N such that

C
Γ (1 − 2ν)

(
θ2s−βκ2

T ,s

)k0
T k0(α−2ν)

Γ (k0(α − 2ν) − 2ν + 1)
≤ 1

2

which gives

|Fk0(w1) − Fk0(w2)|2s,T ≤ C
Γ (1 − 2ν)

(
θ2s−βκ2

T ,s

)k0
T k0(α−2ν)

Γ (k0(α − 2ν) − 2ν + 1)
|w1 − w2|2s,T

≤ 1

2
|w1 − w2|2s,T ,

i.e., Fk0 is a contraction in C([0, T ], D(As)). Hence, the exists a unique fixed point
u ∈ C([0, T ], D(As)) satisfying u = Fk0(u). We deduce that Fu = Fk0(Fu), i.e.,
Fu is also a fixed point of the operator Fk0 . Hence u = Fu.

We give the estimate of u. In fact, from (3.10) we obtain

‖u(t) − g‖2s = ||Fu(t) − F(0)(t)||2s
≤ 1

Γ (α)
θ2s−βκ2

T ,s

∫ t

0
(t − τ)α−1τ−2ν ||u(τ ) − 0||2s dτ.

(3.11)

Hence

‖u(t)‖2s ≤ 2‖g(t)‖2s + 2‖u(t) − g‖2s
≤ 2‖g(t)‖2s + 2

Γ (α)
θ2s−βκ2

T ,s

∫ t

0
(t − τ)α−1τ−2ν ||u(τ )||2s dτ.

(3.12)
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Using (3.2) of Lemma 3, we obtain the inequality of the theorem.
Finally, we consider the case ν = α/2. We can find a ξ ∈ (0, T ] such that

||F(w1)(ξ) − F(w2)(ξ)||2s = sup0≤t≤T ||F(w1)(t) − F(w2)(t)||2s . Lemma 4 gives

||F(w1)(ξ)−F(w2)(ξ)||2s <
1

Γ (α)
θ2s−β

∫ ξ

0
(ξ−τ)α−1|| f (τ, w1(τ ))− f (τ, w2(τ )||2 dτ

≤ 1

Γ (α)
θ2s−βκ2T ,s

∫ ξ

0
(ξ−τ)α−1τ−α ||w1(τ )−w2(τ )||2s dτ

≤ 1

Γ (α)
B(α, 1 − α)θ2s−βκ2T ,s |w1 − w2|2s,T

= Γ (1 − α)θ2s−βκ2T ,s |w1 − w2|2s,T .

If κT ,s < θβ/2−s (Γ (1 − α))−1/2 then F is a contraction in C([0, T ], D(As)). Con-
sequently, the problem (1.3) has a unique solution in C([0, T ], D(As)). ��

3.3 Proof of Theorem 2

In the proofwedenoteu = uζ,α,β for short.Weverify that supt≥0(1+t)ω‖u(t)‖s < ∞.
Assume by contradiction that supt≥0(1 + t)ω‖u(t)‖s = ∞. For every λ > 0, we put

Tλ = inf{T > 0 : (1 + t)ω‖u(t)‖s ≤ λ for every t ∈ [0, T ]}.

By the continuity of u, we have

(1 + Tλ)
ω‖u(Tλ)‖s = λ, lim

λ→∞ Tλ = ∞, (1 + t)ω‖u(t)‖s ≤ λ, ∀t ∈ [0, Tλ].

We note that

‖ f (t, u(t))‖ ≤ ‖ f (t, u(t)) − f (t, 0)‖ + ‖ f (t, 0)‖ ≤ κ1t
−ν(1 + t)�‖u(t)‖s + ‖ f (t, 0)‖.

As in the proof of Theorem 1, choosing r = 0 in Lemma 4 gives

sup
λ≥θ

λ2s−βH0(λ, t1, t2) ≤ θ2s−β

and we have

||u(t)||2s
≤ 2‖Eα

( − tαAβ
)
ζ‖2s

+ 2θ2s−β

∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)|| f (τ, u(τ ))||2 dτ

≤ 2‖Eα

( − tαAβ
)
ζ‖2s
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+ 4θ2s−β

∫ t

0
(t − τ)α−1τ−2νκ2

1 (1 + τ)2�Eα,α(−θβ(t − τ)α)||u(τ )||2s dτ

+ 4θ2s−β

∫ t

0
(t − τ)α−1τ−2νEα,α(−θβ(t − τ)α)‖ f (τ, 0)‖2 dτ. (3.13)

For every λ > 0, denoting w(t) = (1 + t)ωu(t) and using (3.13) yield

||w(t)||2s ≤ 4Λ2
ω‖ζ‖2s + (1 + t)2ωV 2

1 + (1 + t)2ωV 2
2 , (3.14)

where 0 < t ≤ Tλ and

V 2
1 = 4θ2s−βλ2

∫ t

0
(t − τ)α−1τ−2νκ2

1 (1 + τ)2�−2ωEα,α(−θβ(t − τ)α) dτ,

V 2
2 = 4θ2s−β

∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)κ2

f τ
−2ν f (1 + τ)2� f dτ.

To prove the theorem, we will use two necessary inequalities. In fact, we can find two
constants γ1, γ2 > 0 such that

(1 + t)2ωV 2
1 ≤ Ct−2γ1 , (1 + t)2ωV2 ≤ Ct−2γ2 . (3.15)

The proof of these inequalities will be postponed to the end of the proof of the theorem.

(i) We first consider the case �, � f < ν, α > 1
2 − ν.

Using the inequalies (3.14), (3.15) yield

‖w(t)‖2s ≤ 4Λ2
ω‖ζ‖2s + Ct−2γ1 + Ct−2γ2 .

Choosing t = Tλ, we obtain

λ2 ≤ 4Λ2
ω‖ζ‖2s + C ′λ2T−2γ1

λ + C ′T−2γ2
λ

which implies

4λ−2Λ2
ω‖ζ‖2s + C ′T−2γ1

λ + C ′λ−2T−2γ1
λ ≥ 1. (3.16)

Noting that limλ→∞ Tλ = ∞, we obtain in view of (3.16) that 0 ≥ 1 which is
a contradiction.

(ii) We consider the case �, � f ≤ 1
2 −α. For the upper bound of ‖u(t)‖s we can use

the same argument as Part (i) with ω > α. We verify the asymptotic value for
(1 + t)α‖u(t)‖s . Using Lemma 2 yields

lim
t→∞(1 + t)2α

∣∣∣∣Eα(−tαAβ)ζ
∣∣∣∣2
s = 1

Γ 2(1 − α)
‖ζ‖2s−β.
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Choose ω = α, denoting w(t) = (1 + t)ωu(t) and using (3.13) yield

∣∣∣∣w(t) − (1 + t)ωEα

( − tαAβ
)
ζ
∣∣∣∣
s

≤
(
4θ2s−β

∫ t

0
(t − τ)α−1τ−2νκ2

1 (1 + τ)2�−2ωEα,α(−θβ(t − τ)α)||w(τ)||2s dτ

+4θ2s−β(1 + t)2ω
∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)‖ f (τ, 0)‖2 dτ

)1/2

≤
√

(1 + t)2ωV 2
1 + (1 + t)2ωV 2

2 .

Combining the latter inequality with (3.15) yields

∣∣∣∣w(t) − (1 + t)ωEα

( − tαAβ
)
ζ
∣∣∣∣
s ≤

√
Ct−2γ1 + Ct−2γ2 .

Hence

lim
t→∞ ‖w(t)‖s = lim

t→∞ ‖(1 + t)αEα

( − tαAβ
)
ζ‖s = 1

Γ (1 − α)
‖ζ‖s−β.

Finally, we prove (3.15). Since the proof for the case � ≤ 0 is different from the
one of the case � > 0, we divide the proof into two cases.

In the case � ≤ 0, since 0 < ω < 1/2, ν > 0weobtainω−ν < min{1/2−ν, ω−�}.
Hence we can choose ω′ such that

ω − ν < ω′ < min{1/2 − ν, ω − �}

which gives ω′ < ω − �, ν + ω′ < 1/2, γ1 := −ω + ν + ω′ > 0. We can use (3.14)
to obtain

V 2
1 ≤ θ2s−βλ2κ2

1 Iα,ν,ω−� ≤ Ct−2ν−2ω′
,

where Iα,ν,ω is defined in Lemma 2. Applying Lemma 2 (e) we can find a C > 0 such
that

(1 + t)2ωV 2
1 ≤ Ct−2γ1 .

Next, we consider the case 0 ≤ � < ν we haveω+�−ν < 1/2−ν andω+�−ν < ω.
Hence we can find ω′ such that ω + � − ν < ω′ < min{1/2 − ν, ω}. It follows that
ω′ + ν < 1/2, ω′ ≤ ω and γ2 := −ω − � + ν + ω′ > 0. Using Lemma (2) (e) gives

V 2
1 ≤ θ2s−βλ2κ2

1 (1 + t)2� Iα,ν,ω ≤ Ct−2γ1 .

In the second case, if 0 < � ≤ 1
2 − α, we can choose ω = α.

123



1186 N. M. Dien et al.

Similarly, we can prove that there is a γ2 > 0 such that

(1 + t)ωV 2
2 ≤ Ct−2γ2 .

This completes the proof of the theorem. ��

3.4 Proof of Theorem 3

We denote

Fζ,α,β,A(v)(t) = Eα

( − tαAβ
)
ζ +

∫ t

0
Eα,β(A, t, τ ) f (τ, v(τ )) dτ,

where Ea,b(., t, τ ) defined in Lemma 4. Using (3.7) and direct computations, one has

∣∣∣
∣∣∣Fξ,̃α,β̃,A(w)(t) − Fζ,̃α,β̃,A(v)(t)

∣∣∣
∣∣∣2
s

≤ 2
∣∣∣∣∣∣Eα̃

( − Aβ̃ t α̃
)
(ξ − ζ )

∣∣∣∣∣∣2
s
+ 2

∣∣∣∣∣∣Qα̃,β̃,A( f (·, w))(0, t) − Qα̃,β̃,A( f (·, v))(0, t)
∣∣∣∣∣∣2
s

≤ 2||ζ − ξ ||2s + 2

Γ (̃α)
θ2s−β̃

∫ t

0
(t − τ)α̃−1|| f (τ, w) − f (τ, v)||2 dτ

≤ 2||ζ − ξ ||2s + 2

Γ (̃α)
θ2s−β̃κ2

T ,s

∫ t

0
(t − τ)α̃−1τ−2ν ||w(τ) − v(τ)||2s dτ.

Since uξ,̃α,β̃ and uζ,̃α,β̃ are solution of equations Fξ,̃α,β̃,A(w) = w and Fξ,̃α,β̃,A(v)

= v, respectively, by Lemma 3, we conclude that

∣∣∣∣∣∣uξ,̃α,β̃ (t) − uζ,̃α,β̃ (t)
∣∣∣∣∣∣2
s

≤ 2Γ (1 − 2ν)Eα̃−2ν,1−2ν

(
2θ2s−β̃κ2

T ,s t
α̃−2ν

)
||ζ − ξ ||2s .

This leads to the result of Theorem 3. ��

3.5 Proof of Theorem 4

We first state the following lemma necessary to prove the theorem. The proof of this
lemma is postponed to the next subsection.

Lemma 5 Let T > 0, ζ ∈ D(As), α, α̃ ∈ [α∗, α∗] , β, β̃ ∈ [β∗, β∗]. Let the
source function f satisfy Assumption F1(α∗) and Assumption G1. Then the ini-
tial problems have the unique solutions uζ,̃α,β̃ , uζ,α,β ∈ C([0, T ], D(As)) with

s ∈ [0,min{β/2, β̃/2}]. Then, for any ε > 0, there exist two constants P, Pε > 0
which are independent of α, α̃, β, β̃ and t such that

∣∣∣
∣∣∣uζ,̃α,β̃ (t) − uζ,α,β(t)

∣∣∣
∣∣∣
s

≤ P
(
ε + Pε

(|α − α̃| + |β − β̃|))1/2
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for every t ∈ [0, T ]. Suppose further that ζ ∈ D
(
Aβ∗/2+r1

)
for some r1 > 0 and

f (., uζ,α,β(.)) ∈ C([0, T ], D (Ar2)). Then, there exists a constant Q0 > 0 which is
independent of α, α̃, β, β̃, N and t such that

∣∣∣∣∣∣uζ,̃α,β̃ (t) − uζ,α,β(t)
∣∣∣∣∣∣
s

≤ Q0

(
2γ1+2 + 1

) (|α − α̃| + |β − β̃|) γ2
2(γ1+γ2+2)

for every t ∈ [0, T ]. Herein, γ1 = 2β∗, γ2 = min{β∗ + 2r1 − 2s, 2r2}.
Proof of Theorem 4 Using Theorem 3 and Lemma 5, we will prove the results of the
theorem. Using the triangle inequality, we obtain

∣∣∣∣uζk ,αk ,βk (t) − uζ,α,β(t)
∣∣∣∣
min{βk/2, s}

≤ ∣∣∣∣uζk ,αk ,βk (t) − uζ,αk ,βk (t)
∣∣∣∣
min{βk/2, s} + ∣∣∣∣uζ,αk ,βk (t) − uζ,α,β(t)

∣∣∣∣
min{βk/2, s}

≤ P1||ζ − ζk ||s + P (ε + Pε(|α − αk | + |β − βk |))1/2 ,

for any t ∈ [0, T ]. In addition, we note that

||w||p ≤ θ p−q ||w||q for any 0 ≤ p ≤ q. (3.17)

From the latter result, we can verify directly the main results (2.5), (2.6), (2.7)
and (2.8) of the theorem. In fact, if s ∈ [0, β/2) then with k large enough, we have
βk/2 ≥ s. Hence, we can combine Lemma 3, Lemma 5 with (3.17) to obtain (2.5). We
also use Lemmas 3 and 5 to deduce (2.6)-(2.7). Finally, combining Lemmas 3 with 5
(ii), we obtain (2.8). This completes the core of the proof. ��

3.6 The proof of Lemma 5

By a direct computation, we have

∣∣∣∣∣∣Fζ,̃α,β̃,A(v)(t) − Fζ,α,β,A(u)(t)
∣∣∣∣∣∣2
s

≤ 2
∣∣∣∣∣∣(Eα̃

( − Aβ̃ t α̃
) − Eα

( − Aβ tα
))

ζ

∣∣∣∣∣∣2
s

+2
∣∣∣∣∣∣Qα̃,β̃,A(v)(t) − Qα,β,A(u)(t)

∣∣∣∣∣∣2
s

≤ 2I1 + 4(I2 + I3), (3.18)

where

I1 =
∣∣∣∣∣∣(Eα̃

( − Aβ̃ t α̃
) − Eα

( − Aβ tα
))

ζ

∣∣∣∣∣∣2
s
,

I2 =
∣∣∣
∣∣∣Qα̃,β̃,A(v)(t) − Qα̃,β̃,A(u)(t)

∣∣∣
∣∣∣2
s
,

I3 =
∣∣∣
∣∣∣Qα̃,β̃,A(u)(t) − Qα,β,A(u)(t)

∣∣∣
∣∣∣2
s
,

and the function Q is defined in (3.6). We will estimate Ik(k = 1, 2, 3) one by one.

123



1188 N. M. Dien et al.

Estimate for I1. To give an estimation for I1, we separate the sum I1 into two sums
as follows:

I1 = I11(N ) + I12(N ), (3.19)

where

I11(N ) =
∫ N

θ

λ2s
∣∣∣Eα̃

( − λβ̃ t α̃
) − Eα

( − λβ tα
)∣∣∣2 d||Sλζ ||2,

I12(N ) =
∫

λ>N
λ2s

∣∣∣Eα̃

( − λβ̃ t α̃
) − Eα

( − λβ tα
)∣∣∣2 d||Sλζ ||2.

For convenience in estimating for I11(N ), I12(N ), let us assume N > max{e, θ}.
Estimate for I11(N ). By Lemma 2, there exist two constants
C = C(α∗, α∗, β∗, β∗, T ) > 0 , C0 = C0(α∗, α∗, β∗, β∗, θ, T ) > 0 such that

I11(N ) ≤ C
(|α − α̃| + |β − β̃|)2

(∫ N

θ

λ2(β
∗+s)(1 + | ln λ|)2 d||Sλζ ||2

)

≤ C0
(|α − α̃| + |β − β̃|)2 N 2β∗

ln2 N
∫ N

θ

λ2s d||Sλζ ||2

≤ CN
(|α − α̃| + |β − β̃|)2 , (3.20)

where CN = C0||ζ ||2s N 2β∗
ln2 N .

Estimate for I12(N ). We note that 0 ≤ Eα(−x) ≤ 1 for x > 0. This gives

I12(N ) ≤
∫

λ>N
λ2s d||Sλζ ||2. (3.21)

Substituting (3.20) and (3.21) into (3.19), we obtain

I1 ≤ CN (|α − α̃| + |β − β̃|)2 +
∫

λ>N
λ2s d||Sλζ ||2, (3.22)

where CN is defined in (3.20).
Estimate for I2. Similarly to the proof of Lemma 3, we get

I2 ≤ 1

Γ (̃α)
θ2s−β̃κ2

T ,s

∫ t

0
(t − τ)α̃−1τ−2ν ||v(τ) − u(τ )||2s dτ. (3.23)

Estimate for I3. Recall that Q is defined in (3.6) as follows:

Qα,β,A( f (·, u))(t) =
∫ t

0
Eα,β(A, t, τ ) f (τ, u) dτ.

By the Hölder inequality and direct computation, we have
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I3 ≤
∫ +∞

θ

λ2s
∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ dτ

×
∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ d||Sλ f (τ, u(τ ))||2 dτ
= I31(N ) + I32(N ), (3.24)

where

I31(N ) =
∫ N

θ

λ2s
∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ dτ

×
∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ d||Sλ f (τ, u(τ ))||2 dτ,

I32(N ) =
∫

λ>N
λ2s

∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ dτ

×
∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ d||Sλ f (τ, u(τ ))||2 dτ. (3.25)

We will estimate I31(N ) and I32(N ) one by one.
Estimate for I31(N ). By Lemma 2, we have

∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ dτ ≤ C1

(
(1 + λβ)|α − α̃| + |λβ − λβ̃ |

)
.

By the mean value theorem, for λ ≤ N with N large enough, we obtain

∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ dτ

≤ C2λ
β∗ | ln λ| (|α − α̃| + |β − β̃|) . (3.26)

On the other hand, there exists C3 = C3(α∗, α∗, β∗) such that

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ ≤ C3

(
(t − τ)α−1 + (t − τ)α̃−1

)

≤ 2C3

(
(t − τ)α∗−1 + (t − τ)α

∗−1
)

. (3.27)

Plugging (3.26) and (3.27) into (3.25), we obtain

I31(N ) ≤ C4N
β∗+2s ln N

(|α − α̃| + |β − β̃|)

×
∫ N

θ

∫ t

0

(
(t − τ)α

∗−1+(t − τ)α∗−1
)
d||Sλ f (τ, u(τ ))||2 dτ (3.28)
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for N large enough and C4 = 2C2C3. Furthermore, thanks to the condition (2.2), we
get that

∫ N

θ

∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
)
d||Sλ f (τ, u(τ ))||2 dτ

≤
∫ +∞

θ

∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
)
d||Sλ f (τ, u(τ ))||2 dτ

≤
∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
) (

|| f (τ, 0)||2 + κ2
T ,sτ

−2ν‖u(τ )‖2s
)
dτ

:= C5, (3.29)

where C5 = C5(α∗, α∗, β∗, M). Combining the inequality (3.28) with (3.29), we
obtain

I31(N ) ≤ DN
(|α − α̃| + |β − β̃|) , (3.30)

where DN = C4C5Nβ∗+2s ln N .
Estimate for I32(N ). Thanks to (3.8), one has

∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ dτ

≤
∫ t

0
Eα,β(λ, t, τ ) dτ +

∫ t

0
Eα̃,β̃ (λ, t, τ ) dτ

≤ 1

λβ
+ 1

λβ̃
.

Consequently,

λs
∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ ≤ C6,

where C6 = C6(β∗, β∗, θ), and that

I32(N ) ≤ C6

∫
λ>N

∫ t

0

∣∣∣Eα,β(λ, t, τ ) − Eα̃,β̃ (λ, t, τ )

∣∣∣ d||Sλ f (τ, u(τ ))||2 dτ

≤ 2C6C3

∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
)

×
∫ +∞

N
d||Sλ f (τ, u(τ ))||2 dτ. (3.31)

From (3.22), (3.24), (3.30) and (3.31), for |α − α̃| + |β − β̃| ≤ 1, we obtain

I1 + I3 ≤ EN
(|α − α̃| + |β − β̃|) + 2

∫
λ>N

λ2s d||Sλζ ||2
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+4C6C3

∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
)

×
∫ +∞

N
d||Sλ f (τ, u(τ ))||2 dτ, (3.32)

where EN = 2CN + 6DN with CN defined in (3.20) and DN defined in (3.30).
Let us mention (3.29) that

∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
) ∫ +∞

θ

d||Sλ f (τ, u(τ ))||2 dτ

≤
∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
) (

|| f (τ, 0)||2 + κ2
T ,sτ

−2ν‖u(τ )‖2s
)
dτ = C5

and ζ ∈ D(As). This leads to the fact that there exists N = N (ε) independent of α, α̃

and β, β̃ such that

2
∫

λ>N
λ2s d||Sλζ ||2

+ 4C6C3

∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
) ∫ +∞

N
d||Sλ f (τ, u(τ ))||2 dτ

< ε.

Combining (3.32) and the latter inequality, one gets

I1 + I3 ≤ ε + Pε(|α − α̃| + |β − β̃|). (3.33)

Substituting (3.23) and (3.33) into (3.18), we obtain

∣∣∣
∣∣∣Fζ,̃α,β̃,A(v)(t) − Fζ,α,β,A(u)(t)

∣∣∣
∣∣∣2
s

≤ 4(ε + Pε(|α − α̃|
+|β − β̃|)) + 4

Γ (̃α)
θ2s−β̃κ2

T ,s

∫ t

0
(t − τ)α̃−1τ−2ν ||v(τ) − u(τ )||2s dτ.

Since uζ,̃α,β̃ and uζ,α,β are the solution of the equations Fζ,̃α,β̃,A(v) = v and
Fζ,α,β,A(u) = u, respectively. We conclude from Lemma 3 that

∣∣∣
∣∣∣uζ,̃α,β̃ (t) − uζ,α,β(t)

∣∣∣
∣∣∣2
s

≤ P0
(
ε + Pε(|α − α̃| + |β − β̃|)) Eα̃−2ν,1−2ν

(
4κ2

T ,sθ
2s−β̃ t α̃−2ν

)
,

where P0 = 4Γ (1 − 2ν). This completes the proof of the first part of Theorem 5.

123



1192 N. M. Dien et al.

Now we consider the proof of the second part of the theorem. From (3.32) in the
proof of Theorem 5, we obtain

I1 + I3 ≤ CN 2β∗
ln2 N

(|α − α̃| + |β − β̃|) + J1 + J2,

where

J1 = 2
∫

λ>N
λ2s d||Sλζ ||2,

J2 = 4C6C3

∫ t

0

(
(t − τ)α

∗−1 + (t − τ)α∗−1
) ∫ +∞

N
d||Sλ f (τ, u(τ ))||2 dτ.

In fact, using the assumption ζ ∈ D(Aβ∗/2+r1), f (., u(.)) ∈ C([0, T ], D(Ar2)) yields

J1 ≤ 2N−(β∗+2r1−2s)
∫

λ>N
λβ∗+2r1 d||Sλζ ||2 ≤ 2N−(β∗+2r1−2s)‖ζ‖2β∗/2+r1

and J2 ≤ CN−2r2 . Hence, putting γ1 = 2β∗, γ2 = min{β∗ + 2r1 − 2s, 2r2}, we get

I1 + I3 ≤ CN−γ2 + CN 2γ1 ln2 N
(|α − α̃| + |β − β̃|) .

Hence, we can use Lemma 3 to prove that

∣∣∣∣∣∣uζ,̃α,β̃ (t) − uζ,α,β(t)
∣∣∣∣∣∣
s

≤ Q0

(
N−γ2 + N γ1 ln2 N

(|α − α̃| + |β − β̃|))1/2 ,

where Q0 is independent of N , α, α̃, β, β̃.
Since ln N < N , we obtain

∣∣∣∣∣∣uζ,̃α,β̃ (t) − uζ,α,β(t)
∣∣∣∣∣∣
s

≤ Q0

(
N−γ2 + N γ1+2 (|α − α̃| + |β − β̃|))1/2 . (3.34)

Let us suppose that |α − α̃| + |β − β̃| ≤ 1, and we can choose

N =
[
(|α − α̃| + |β − β̃|)−1/(γ1+γ2+2)

]
+ 1.

It is easy to see that

(|α − α̃| + |β − β̃|)−1/(γ1+γ2+2) < N ≤ 2(|α − α̃| + |β − β̃|)−1/(γ1+γ2+2).

Hence, by (3.34), we obtain

∣∣∣∣∣∣uζ,̃α,β̃ (t) − uζ,α,β(t)
∣∣∣∣∣∣
s

≤ Q0

(
2γ1+2 + 1

) (|α − α̃| + |β − β̃|)γ2/(2(γ1+γ2+2))
.

This completed the proof of Lemma 5. ��
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3.7 Proof of Theorem 5

Proof Before proving the theorem, we set up some notations. We will use Theorem 1
to prove Part (i). For M > 0, we put

fM (t, v) = f

(
t,

Mv

max{M, ‖v‖s}
)

for v ∈ D(As).

Verifying directly, we can prove that the function fM is global Lipschitz with respect
to the variable v, i.e.,

|| fM (t, w1) − fM (t, w2)|| ≤ κMt−ν ||w1 − w2||s for all w1, w2 ∈ D(As),

where κM > 0 depends on M . We consider the problem of finding U ∈
C([0, T ], D(As)) satisfying

U (t) = Eα

( − tαAβ
)
ζ +

∫ t

0
Eα,β(A, t, τ ) fM (τ,U (τ )) dτ. (3.35)

From Theorem 1, for any T > 0, the equation (3.35) has a unique solution

UM,T ∈ C([0, T ], D(As)).

(i) For anym > 0,we putM = 2‖ζ‖+m. SinceUT (0) = ζ , we can use the continu-
ity ofUT to find a constant TM ∈ (0, T ] such that sup0≤t≤TM ‖UM,T (t)‖s ≤ M .
In this case fM (t,UM,T (t)) = f (t,UM,T (t)) for all t ∈ [0, TM ] and UM,T (t)
satisfies (1.3) for t ∈ [0, TM ].

(ii) If V ,W ∈ C([0, T ]; D(As)) are solutions of (1.3), we denote

μ = 1 + max

{
sup

0≤t≤T
‖V (t)‖s, sup

0≤t≤T
‖W (t)‖s

}

and consider the equation

U (t) = Eα

( − tαAβ
)
ζ +

∫ t

0
Eα,β(A, t, τ ) fμ(τ,U (τ )) dτ. (3.36)

From Theorem 1, the equation (3.36) has a unique solution

Uμ,T ∈ C([0, T ]; D(As)).

Since ‖V (t)‖s, ‖W (t)‖s ≤ μ for t ∈ [0, T ], we have

f (t, V (t)) = fμ(t, V (t)), f (t,W (t)) = fμ(t,W (t)).

Hence, V ,W satisfy (3.36). By Theorem 1, we have V = Uμ,T = W .
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(iii) For every T ∈ (0, Tζ,α,β), the equation (1.3) has a unique solution UT ∈
C([0, T ]; D(As). From Part (ii), for T1, T2 ∈ (0, Tζ,α,β), T1 < T2, we have
UT1(t) = UT2(t) for t ∈ [0, T1]. Hence, we can put uζ,α,β(t) = UT (t) for all
t ∈ [0, T ], T ∈ (0, Tζ,α,β). The function uζ,α,β is the unique solution of (1.3)
on [0, Tζ,α,β).
We prove the second result of Part (iii). Assumeby contradiction that Tζ,α,β < ∞
and ‖uζ,α,β(t)‖s ≤ M for every t ∈ [0, Tζ,α,β). We consider the equation

U (t) = Eα

( − tαAβ
)
ζ +

∫ t

0
Eα,β(A, t, τ ) fM (τ,U (τ )) dτ. (3.37)

From Theorem 1, the equation (3.37) has a unique solutionUM,δ+Tζ,α,β with δ >

0. From Part (ii) we have uζ,α,β(t) = UM,δ+Tζ,α,β (t) for every t ∈ [0, Tζ,α,β).
SinceUM,δ+Tζ,α,β ∈ C([0, δ+Tζ,α,β ]; D(As)), we can find a constant δ′ ∈ (0, δ)
such that ‖UM,δ+Tζ,α,β (t)‖s ≤ M for t ∈ [0, δ′ + Tζ,α,β ]. Hence the equation
(1.3) has a unique solution on [0, Tζ,α,β +δ′]. It follows that Tζ,α,β +δ′ ≤ Tζ,α,β ,
which is a contradiction.
Finally, the proof of the last inequality of the theorem is similar to the inequality
(2.3). Hence we omit it.

(iv) Choose T ∈ (0, Tζ,α,β) and M = 1 + |uζ,α,β |s,T and consider the problem
(3.37) and

U (t) = Eαk

( − tαk Aβk
)
ζk +

∫ t

0
Eαk ,βk (A, t, τ ) fM (τ,U (τ )) dτ. (3.38)

Denote the solution of (3.37), (3.38) by Uζ,α,β and Uζk ,αk ,βk respectively. From
the stability result, we obtain

Uζk ,αk ,βk → Uζ,α,β in C([0, T ]; D(As)) as k → ∞. (3.39)

Since |uζ,α,β |s,T < M , we have uζ,α,β = Uζ,α,β . From (3.39), there is a k0 ∈ N

such that |Uζk ,αk ,βk |s,T < M which gives Uζk ,αk ,βk = uζk ,αk ,βk is the solution
of Problem Pζk ,αk ,βk . It follows that T < Tζk ,αk ,βk for k > k0 which implies
lim infk→∞ Tζk ,αk ,βk ≥ Tζ,α,β . Using (3.39) yields

lim
k→∞ |uζk ,αk ,βk − uζ,α,β |s,T = 0.

This completes the proof of the theorem.

��

3.8 Proof of Theorem 6

Proof ω′ ≤ ω(η + 1) − �, ω′ < 1/2 − ν, ω − ν − ω′ < 0. We have ω − ν < ω′ ≤
ω(η + 1) − � which gives −ν < ωη − � or ω > �−ν

η
. We also need ω − ν < 1/2− ν
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which gives ω < 1/2. Hence �−ν
η

< 1/2 Since η > max {2(� − ν), 0} we can choose
ω such that

max

{
� − ν

η
, 0

}
< ω < 1/2

which gives

max{ω − ν, 0} < min{ω(η + 1) − �, 1/2 − ν}.

Choosing ω′ such that

max{ω − ν, 0} < ω′ < min{ω(η + 1) − �, 1/2 − ν}

we obtain
ω′ < min{ω(η + 1) − �, 1/2 − ν}, ω − ν − ω′ < 0. (3.40)

The maximal solution u = uζ,α,β ∈ C([0, Tζ,α,β), D(As)) satisfies

u(t) = Eα

( − tαAβ
)
ζ +

∫ t

0
Eα,β(A, t, τ ) f (τ, u(τ )) dτ for all t ∈ [0, Tζ,α,β).

We claim that Tζ,α,β = ∞ and supt>0(1 + t)ω‖u(t)‖s < ∞. We note that

‖ f (t, u(t))‖ ≤ ‖ f (t, u(t)) − f (t, 0)‖ + ‖ f (t, 0)‖
≤ κ1t

−ν(1 + t)�‖u(t)‖1+η
s + ‖ f (t, 0)‖.

As in the proof of Theorem 1, choosing r = 0 in Lemma 4 gives

sup
λ≥θ

λ2s−βH0(λ, t1, t2) ≤ θ2s−β

and we have

||u(t)||2s
≤ 2‖Eα

( − tαAβ
)
ζ‖2s

+ 2θ2s−β

∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)|| f (τ, u(τ ))||2 dτ

≤ 2‖Eα

( − tαAβ
)
ζ‖2s

+ 4θ2s−β

∫ t

0
(t − τ)α−1τ−2νκ2

1 (1 + τ)2�Eα,α(−θβ(t − τ)α)||u(τ )||2(η+1)
2 dτ

+ 4θ2s−β

∫ t

0
(t − τ)α−1Eα,α(−θβ(t − τ)α)‖ f (τ, 0)‖2 dτ. (3.41)
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Putting w(t) = (1 + t)ωu(t) and, for Λ > ‖ζ‖s , denoting

Tbound = sup{T0 ∈ [0, Tζ,α,β) : ‖w(t)‖s < Λ for 0 ≤ t ≤ T0}.

We claim that there are Λ > 0, δ0 > 0 such that Tbound = Tζ,α,β for every
‖ζ‖2s +m2∞,α,ω < δ0. Assume by contradiction that Tbound < Tζ,α,β . Then, we obtain
‖w(Tbound)‖s = Λ. The inequality (3.41) yields

||w(t)||2s ≤ K1 + K2 for 0 ≤ t < Tbound,

where

K1 = 2(1 + t)2ω‖Eα

( − tαAβ
)
ζ‖2s + 4θ2s−βm2∞,α,ω,

K2 = 4θ2s−β(1 + t)2ωκ2
1

∫ t

0
(t − τ)α−1τ−2νEα,α(−θβ(t − τ)α)

× (1 + τ)2�−2ω(η+1)‖w(τ)‖2(η+1)
s dτ.

From (3.4) we obtain

K1 ≤ 2Λ0‖ζ‖2s + 4θ2s−βm2∞,α,ω < ζ 2
0 .

Next, we consider K2. For t ≥ 1, we obtain in view of Lemma 2 and (3.40) that

K2 ≤ 4Λ2(η+1)θ2s−β(1 + t)2ωκ2
1 Iα,ν,ω(η+1)−�

≤ 4CΛ2(η+1)θ2s−β(1 + t)2ωκ2
1 t

−2ν−2ω′ ≤ C"Λ2(η+1),

where ω′ ≤ ω(η + 1) − �, ω′ < 1/2 − ν, ω − ν − ω′ < 0. We estimate for the case
0 < t < 1. We have

K2 ≤ 4Λ2(η+1)θ2s−β(1 + t)2ω)κ2
1

∫ t

0
(t − τ)α−1τ−2νEα,α(−θα(t − τ)α)

× (1 + τ)2�−2ω(η+1) dτ

≤ 4Λ2(η+1)

Γ (α)
θ2s−β22ωκ2

1

∫ t

0
(t − τ)α−1τ−2ν dτ

≤ 4Λ2(η+1)

Γ (α)
θ2s−β22ωκ2

1 t
α−2νB(α, 1 − 2ν)

≤ 4Λ2(η+1)

Γ (α)
θ2s−β22ωκ2

1 B(α, 1 − 2ν).

Combining the two cases gives

K2 ≤ CΛ2(η+1).
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From the estimates for K1, K2 we obtain

Λ2 = ‖w(Tbound)‖2s = sup
0≤t<Tbound

‖w(t)‖2s ≤ ζ 2
0 + CΛ2(η+1).

Since 2(η + 1) > 2 we can choose Λ, ζ0 > 0 such that 1 > CΛ2η, ζ 2
0 < Λ2 −

CΛ2(η+1) and

δ20 = ζ 2
0

(
2Λω + 4

Γ (α)
θ2s−β

)−1

.

In this case we get Λ2 = ‖w(Tbound)‖2s ≤ ζ 2
0 + CΛ2(η+1) < Λ2 which is a contra-

diction. Hence, we have to obtain Tbound = Tζ,α,β . So we have

‖u(t)‖s ≤ (1 + t)−ωΛ for every t ∈ [0, Tζ,α,β).

Using the continuation result in Theorem 5 leads to Tζ,α,β = ∞. Finally, we consider
the case �−ν

η
< α < 1/2. In this case, we can choose ω = α and obtain the desired

result by a similar argument as in Theorem 2. This completes the proof of the theorem.
��
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