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Abstract
In this article, we focus on the following fractional Choquard equation involving upper
critical exponent

ε2s(−Δ)su + V (x)u = P(x) f (u) + εμ−N Q(x)[|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s−2u, x ∈ R
N ,

where ε > 0, 0 < s < 1, (−Δ)s denotes the fractional Laplacian of order s, N > 2s,
0 < μ < N and 2∗

μ,s = 2N−μ
N−2s . Under suitable assumptions on the potentials V (x),

P(x) and Q(x), we obtain the existence and concentration of positive solutions and
prove that the semiclassical solutions wε with maximum points xε concentrating at a
special set Sp characterized by V (x), P(x) and Q(x). Furthermore, for any sequence
xε → x0 ∈ Sp, vε(x) := wε(εx+ xε) converges in Hs(RN ) to a ground state solution
v of

(−Δ)sv + V (x0)v = P(x0) f (v) + Q(x0)[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s−2v, x ∈ R
N .
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1074 Q. Li et al.

1 Introduction andmain results

Consider the following fractional Choquard equation involving upper critical expo-
nent

ε2s(−Δ)su + V (x)u = P(x) f (u) + εμ−N Q(x)[|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s−2u, x ∈ R
N ,

(1.1)

where ε > 0, 0 < s < 1, (−Δ)s denotes the fractional Laplacian of order s, N > 2s,
0 < μ < N and 2∗

μ,s = 2N−μ
N−2s . As ε goes to zero in (1.1), the existence and asymptotic

behavior of the solutions of the singularly perturbed equation (1.1) is known as the
semi-classical problem. It was used to describe the transition between of quantum
mechanics and classical mechanics.

The nonlinear evolution equation usually refers to a kind ofmathematicalmodel that
describes the physical phenomena evolving with time. It is one of the most advanced
topics in the study of the soliton theory for nonlinear science. Erection of soliton
solutions to the nonlinear evolution equations (NLEEs) arising in nonlinear science
plays an important role to understand nonlinear phenomena.We recall that the problem
(1.1) is motivated by the search of standing wave solutions for the following evolution
equation

i�∂tψ =
(

�
2

2m

)s

(−Δ)sψ + W (x)ψ −
(

�
2

2m

)μ−N
2

Q(x)[K (x) ∗ |ψ |2∗
μ,s ]|ψ |2∗

μ,s−2
ψ

− P(x)η(|ψ |2)ψ,

wherem is the mass of the bosons, � is the Planck constant,W is the external potential,
η : R

+ → R is a suitable function and K is the response function that admits infor-
mation on the mutual interaction between the bosons. An important issue concerning
the above nonlinear evolution equation is to study its standing wave solutions, and
a solution of the form ψ(x, t) = u(x)e−i Et is called a standing wave solution. It is

easy to see that u(x) solves (1.1) if and only if ψ(x, t) = u(x)e
−i E

�
t solves the above

equation, where V (x) = W (x) − E , ε2 = �
2

2m and f (u) = η(|u|2)u.
If the response function is the Dirac function, i.e., K (x) = δ(x), then the nonlinear

response is local indeed and the above equation becomes the following fractional
Schrödinger equation:

ε2s(−Δ)su + V (x)u = h(u), x ∈ R
N ,

where h : R → R is a suitable function. In recent years, such kind of equation
has attracted much attention, since it appears in diverse physical phenomena, such as
anomalous diffusion and quasi-geostrophic flows, turbulence and water waves, molec-
ular dynamics, relativistic quantum mechanics of stars and probability and finance.
There is a considerable amount of work on investigating the properties of this type
equation. We refer the readers to [2, 3, 24, 27, 29, 30] for subcritical case, [7, 11, 13,
26] for critical case, and [15] for supercritical case. Furthermore, the space derivative
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Concentration phenomenon of solutions for fractional... 1075

of order s = 1 (the standing Schrödinger equation) and its variants have been exten-
sively studied in the mathematical literature, and a fairly complete theory has been
developed to study them.

If the response function K (x) is a function of Coulomb type, for example |x |−μ,
then the above equation turns into doubly nonlocal fractional elliptic equation (1.1).
This type of nonlocal nonlinearities has attracted considerable interest as a means of
eliminating collapse and stabilizing multidimensional solitary waves.

When s = 1, Eq. (1.1) is usually called the nonlinear Choquard or Choquard-Pekar
equation. There are a lot of works on the existence, multiplicity and concentration
of solutions for such type of equations. It seems almost impossible for us to give
a complete list of references. We refer the readers to [9, 20, 21] and the refer-
ences therein. When s ∈ (0, 1), Eq. (1.1) is called fractional Choquard equation,
which has also attracted a lot of interest. In the light of penalization method and
Ljusternik-Schnirelmann category theory, Ambrosio [1] investigated the multiplicity
and concentration of positive solutions for the following fractional Choquard equation

ε2s(−Δ)su + V (x)u = εμ−N [|x |−μ ∗ F(u)] f (u), x ∈ R
N ,

but f is a superlinear continuous function with subcritical growth and satisfied mono-
tonic condition. Belchior et al. [5] dealt with existence, regularity and polynomial
decay for a fractional Choquard equation involving the fractional p-Laplacian. Espe-
cially, the authors in [18] investigated the Brézis-Nirenberg type problem

{
(−Δ)su − βu = [|x |−μ ∗ |u|2∗

μ,s ]|u|2∗
μ,s−2u, x ∈ Ω,

u = 0, x /∈ Ω,

in a bounded domain Ω and obtained some existence, multiplicity, regularity and
nonexistence results by using of variational methods. Using the same method, Ma and
Zhang [22] considered the following fractional Choquard equation

(−Δ)su + [λV (x) − β]u = [|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s−2u, x ∈ R
N ,

and established the existence and multiplicity of weak solutions. Guo and Hu [8]
gave existence and asymptotic behavior of the least energy solutions for fractional
Choquard equations with potential well. Specifically, they considered the equation

(−Δ)su + λV (x)u = [|x |−μ ∗ F(u)] f (u), x ∈ R
N ,

and proved the existence of least energy solution that localizes near the bottom of
potential well int(V−1(0)) for large λ. Recently, when V and f are asymptotically
periodic in x , we [16] studied the following fractional Choquard equation involving
upper critical exponent

(−Δ)su + V (x)u = [|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s−2u + λ f (x, u),
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1076 Q. Li et al.

and obtained the existence of a ground state solution for large λ by Nehari method.
With respect to super upper critical case p > 2∗

μ,s , please see [17].
A solution ψ is referred to as a bound state of (1.1) if ψ → 0 as |x | → +∞.

When ε > 0 is sufficiently small, bound states of (1.1) are called semiclassical states
and an important feature of semiclassical states is their concentration as ε → 0. To
our best knowledge, most of the existing papers consider the existence and property
of the solutions for the fractional Choquard equation with subcritical growth. In the
present paper, motivated by the works above, especially [7], we consider more general
equation and obtain the existence and concentration phenomenon of solutions for the
fractional Choquard equation (1.1) with upper critical growth.

To resume the statements for main results, we list the assumptions as follows:
( f1) f ∈ C(R, R) and there exists 2 < p < 2∗

s such that

| f (t)| ≤ C(1 + |t |p−1)

for all t ∈ R, where C is a positive constant.
( f2) f (t) = o(|t |) as |t | → 0.
( f3) f (t)t − 2F(t) ≥ f (τ t)τ t − 2F(τ t) for all t ∈ R and τ ∈ [0, 1].
( f4) f (t)t > 0 for all t > 0 and f (t) ≡ 0 for all t < 0.
In addition, we set

(V ) V ∈ C(RN , R), α∞ = lim inf|x |→∞ V (x) < +∞, αmin = min
x∈RN

V (x) > 0, αmax

= sup
x∈RN

V (x) < +∞ and V = {x ∈ R
N : V (x) = αmin}.

(P) P ∈ C(RN , R), β∞ = lim sup
|x |→∞

P(x) < +∞, βmax = max
x∈RN

P(x), βmin

= inf
x∈RN

P(x) > 0 and P = {x ∈ R
N : P(x) = βmax}.

(Q) Q ∈ C(RN , R), γ∞ = lim sup
|x |→∞

Q(x) < +∞, γmax = max
x∈RN

Q(x), γmin

= inf
x∈RN

Q(x) > 0 and Q = {x ∈ R
N : Q(x) = γmax}.

(V P) αQ = min
x∈Q

V (x) and βQ = max
x∈Q

P(x).

In what follows, we propose two kinds of assumptions that will give the concen-
tration sets. First, we assume

βQ > β∞ and there exists xp ∈ Cp such that V (xp) ≤ V (x) for all |x | ≥ R,

(1.2)

where Cp := {x ∈ Q : P(x) = βQ}. Set

Sp :={x ∈ Cp : V (x) ≤ V (xp)} ∪ {x ∈ Q \ Cp : V (x) < V (xp)}
∪ {x /∈ Q : P(x) > βQ or V (x) < V (xp)}.

Secondly, we assume
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Concentration phenomenon of solutions for fractional... 1077

αQ < α∞ and there exists xV ∈ CV such that P(xV ) ≥ P(x) for all |x | ≥ R,

(1.3)

where CV := {x ∈ Q : V (x) = αQ}. Set

SV :={x ∈ CV : P(x) ≥ P(xV )} ∪ {x ∈ Q \ CV : P(x) > P(xV )}
∪ {x /∈ Q : V (x) < αQ or P(x) > P(xV )}.

Before stating our main results, we introduce some useful notations and definitions.
For any 0 < s < 1, the fractional Sobolev space Hs(RN ) is defined as follows

Hs(RN ) = {u ∈ L2(RN ) : |u(x) − u(y)|
|x − y| N+2s

2

∈ L2(RN × R
N )},

equipped with the norm

‖u‖ := ‖u‖Hs (RN ) =
( ∫

RN
u2dx +

∫
R2N

|u(x) − u(y)|2
|x − y|N+2s dxdy

) 1
2
,

where the term

[u]Hs (RN ) :=
( ∫

R2N

|u(x) − u(y)|2
|x − y|N+2s dxdy

) 1
2

is the so-called Gagliardo semi-norm of u.
Set Ds,2(RN ) = {u ∈ L2∗

s (RN ) : ∫
RN |ξ |2s |û(ξ)|2dξ < +∞} with the norm

‖u‖2Ds,2 =
∫

RN
|ξ |2s |û(ξ)|2dξ.

It follows from Propositions 3.4 and 3.6 in [23] that

2C−1
N ,s

∫
RN

|ξ |2s |û(ξ)|2dξ = 2C−1
N ,s‖(−Δ)

s
2 u‖2L2(RN )

= [u]2Hs (RN )
.

As a result, the norms on Hs(RN ),

u �→ ‖u‖Hs (RN ),

u �→ (‖u‖2
L2(RN )

+ ‖(−Δ)
s
2 u‖2

L2(RN )
)
1
2 ,

u �→ (‖u‖2
L2(RN )

+ ∫
RN |ξ |2s |û(ξ)|2dξ)

1
2

are equivalent. Hence,

‖u‖2 = ‖u‖2Hs (RN )
= ‖u‖2Ds,2 +

∫
RN

u2dx =
∫

RN
|ξ |2s |û(ξ)|2dξ +

∫
RN

u2dx .

123



1078 Q. Li et al.

By [23] we know that the embedding Hs(RN ) ↪→ Lt (RN ) is continuous for any
t ∈ [2, 2∗

s ], and is locally compact whenever t ∈ [2, 2∗
s ).

Our main results are the following:

Theorem 1 Suppose that (V ), (P), (Q), (V P) and ( f1) − ( f4) and (1.2) hold. Then
for any ε > 0 small enough, problem (1.1) admits a positive solution wε satisfying
lim
ε→0

dist(xε,SP ) = 0, where xε ∈ R
N is a maximum point of wε. Moreover, setting

vε(x) = wε(εx + xε), for any xε → x0 as ε → 0, vε converges in Hs(RN ) to a
positive ground state solution v of

(−Δ)sv + V (x0)v = P(x0) f (v) + Q(x0)[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s−2v, x ∈ R
N .

Theorem 2 Suppose that (V ), (P), (Q), (V P) and ( f1) − ( f4) and (1.3) hold. Then
for any ε > 0 small enough, problem (1.1) admits a positive solution wε satisfying
lim
ε→0

dist(xε,SV ) = 0, where xε ∈ R
N is a maximum point of wε. Moreover, setting

vε(x) = wε(εx + xε), for any xε → x0 as ε → 0, vε converges in Hs(RN ) to a
positive ground state solution v of

(−Δ)sv + V (x0)v = P(x0) f (v) + Q(x0)[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s−2v, x ∈ R
N .

Making the change of variable x �→ εx , we can rewrite (1.1) as the following
equivalent equation

(−Δ)su + V (εx)u = P(εx) f (u) + Q(εx)[|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s−2u, x ∈ R
N ,

(1.4)

whose Euler-Lagrange energy functional is

Iε(u) =1

2

∫
RN

|ξ |2s |û(ξ)|2dξ + 1

2

∫
RN

V (εx)u2dx −
∫

RN
P(εx)F(u)dx

− 1

22∗
μ,s

∫
RN

Q(εx)[|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s dx .

Set

‖u‖ε =
( ∫

RN
|ξ |2s |û(ξ)|2dξ +

∫
RN

V (εx)u2]dx
) 1

2
.

In view of (V ), the norms ‖u‖ε and ‖u‖ are equivalent and by [23] the embedding
Hs(RN ) ↪→ Lt (RN ) is continuous for each 2 ≤ t ≤ 2∗

s and locally compact for
each 2 ≤ t < 2∗

s . It is easy to see that Iε is well defined on Hs(RN ) and Iε ∈
C1(Hs(RN ), R). Let

Nε = {u ∈ Hs(RN )\{0} : 〈I ′
ε(u), u〉 = 0}.
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Concentration phenomenon of solutions for fractional... 1079

Remark 1 Since we are going to discuss the existence of positive solution of problem
(1.4), we rewrite the corresponding variational functional Iε(u) in the following form:

Iε(u) =1

2

∫
RN

|ξ |2s |û(ξ)|2dξ + 1

2

∫
RN

V (εx)u2dx −
∫

RN
P(εx)F(u)dx

− 1

22∗
μ,s

∫
RN

Q(εx)[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx,

where u+ := max{u, 0}. Then, for ϕ ∈ Hs(RN ) we have

〈I ′
ε(u), ϕ〉 =

∫
RN

(−Δ)suϕdx +
∫

RN
V (εx)uϕdx −

∫
RN

P(εx) f (u)ϕdx

−
∫

RN
Q(εx)[|x |−μ ∗ (u+)2

∗
μ,s ](u+)2

∗
μ,s−1ϕdx

=
∫

RN
|ξ |2s û(ξ) ¯̂ϕ(ξ)dξ +

∫
RN

V (εx)uϕdx −
∫

RN
P(εx) f (u)ϕdx

−
∫

RN
Q(εx)[|x |−μ ∗ (u+)2

∗
μ,s ](u+)2

∗
μ,s−1ϕdx

=1

2
CN ,s

∫
R2N

[u(x) − u(y)][ϕ(x) − ϕ(y)]
|x − y|N+2s dxdy +

∫
RN

V (εx)uϕdx

−
∫

RN
P(εx) f (u)ϕdx −

∫
RN

Q(εx)[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s−1ϕdx .

We assert that all nontrivial critical points of Iε are the positive solutions of (1.4).

Remark 2 We would like to remark that there are some difficulties in studying the
existence and concentration of positive solutions for (1.1). The first difficulty origins
from the competition of potentials. The linear potential V has global minimum, the
nonlinear potentials P and Q have global maximum, there is a competition between
V , P and Q, which makes finding the concentration points become more complex.
The second one comes from that the appearance of critical exponent leads to the lack
of compactness. It is very difficult for us to verify that the (PS)c condition holds.
We shall borrow the idea in [7] to overcome this difficulty and furthermore study the
concentration of solutions. But we require some fine estimates that are complicated
because of the appearance of fractional Laplacian operator and the convolution-type
nonlinearity. The third one is that there is no Ambrosetti-Rabinowitz-type assumption
that plays a quite important role in studying variational problems, whose role consists
in ensuring the boundedness of the Palais-Smale sequences of the energy functional
associated with the problem under consideration. The fourth one is that Eq. (1.1)
possesses double nonlocal terms.

Remark 3 Condition ( f3) is weaker than the following condition:

( f̃3) the map t �→ f (t)

|t | is nondecreasing for all t ∈ R\{0}.
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1080 Q. Li et al.

Such a function satisfying ( f3) and not satisfying ( f̃3) can be found in [14].

Remark 4 The authors of [7] considered the following fractional Schrödinger equa-
tions with critical growth

ε2s(−Δ)su + V (x)u = P(x) f (u) + Q(x)|u|2∗
s−2u, x ∈ R

N

and proved the existence and concentration of positive solutions, where f satisfies
monotone condition ( f̃3). Differently from this, in our setting a more accurate investi-
gation is needed due to the presence of two nonlocal terms. Moreover, the nonlinearity
f appearing in Eq. (1.1) satisfies ( f3), while f satisfies monotone condition ( f̃3) in
[7]. In this article, we have considered a class of fractional Choquard equation more
general than the considered in the above references. Simultaneously, the equation we
considered is more complicated than the fractional Schrödinger equation that is con-
sidered in [7], since the nonlinearity is also nonlocal. Hence our results are different
from their results, and improve and extend their results to some extent.

2 Coefficient problem

To begin with, we give some auxiliary results.

Proposition 1 ( [12]) (Hardy-Littlewood-Sobolev inequality) Let r , t > 1 and 0 <

μ < N with 1
r + μ

N + 1
t = 2. Let g ∈ Lr (RN ) and h ∈ Lt (RN ). Then there exists a

sharp constant Cr ,N ,μ,t independent of g and h such that

∣∣ ∫
RN

∫
RN

g(x)h(y)

|x − y|μ dxdy
∣∣ ≤ Cr ,N ,μ,t‖g‖r‖h‖t .

Remark 5 In general, set H(u) = |u|q for some q > 0. By the Hardy-Littlewood-
Sobolev inequality,

∫
RN

∫
RN

H(u(x))H(u(y))
|x−y|μ dxdy is well defined if H(u) ∈ Lt (RN )

for t > 1 such that 2t + μ
N = 2. Thus, recalling that Hs(RN ) is continuously embedded

into Lr (RN ) for any r ∈ [2, 2∗
s ], for u ∈ Hs(RN ), there must hold tq ∈ [2, 2∗

s ], which
leads to assume that

2N − μ

N
≤ q ≤ 2N − μ

N − 2s
= 2∗

μ,s .

Thus 2N−μ
N is called the lower critical exponent and 2N−μ

N−2s is the upper critical exponent
due to the Hardy-Littlewood-Sobolev inequality. Let SH be the best constant

SH = inf
u∈Ds,2(RN )\{0}

‖u‖2Ds,2( ∫
RN [|x |−μ ∗ |u|2∗

μ,s ]|u|2∗
μ,s dx

) N−2s
2N−μ

.
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Concentration phenomenon of solutions for fractional... 1081

In the following, we consider the constant coefficient equations. For any α ∈
[αmin, αmax], β ∈ [βmin, βmax] and γ ∈ [γmin, γmax], we study the following con-
stant coefficient equation

(−Δ)su + αu = β f (u) + γ [|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s−1, x ∈ R

N , (2.1)

whose energy functional is

Jα,β,γ (u) =1

2

∫
RN

|ξ |2s |û(ξ)|2dξ + 1

2
α

∫
RN

u2dx − β

∫
RN

F(u)dx

− γ

22∗
μ,s

∫
RN

[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx .

Set

‖u‖α =
( ∫

RN
|ξ |2s |û(ξ)|2dξ + α

∫
RN

u2dx
) 1

2
,

which is equivalent to the norm ‖u‖. By ( f1) and ( f2), for any τ > 0, there exists
Cτ > 0 such that

| f (t)| ≤ τ |t | + Cτ |t |p−1 (2.2)

and

|F(t)| ≤ τ |t |2 + Cτ |t |p (2.3)

for all t ∈ R. It follows by the Hardy-Littlewood-Sobolev inequality and the embed-
ding theorem that the functional Jα,β,γ (u) is well defined on Hs(RN ) and belongs to
C1(Hs(RN ), R). Set

Nα,β,γ := {u ∈ Hs(RN ) \ {0} : 〈J ′
α,β,γ (u), u〉 = 0}.

Lemma 1 For t > 0, let h(t) := Jα,β,γ (tu). For each u ∈ Hs(RN ) \ {0}, there exists
a unique tu > 0 such that h(tu) = max

t≥0
h(t), h′(t) > 0 for 0 < t < tu and h′(t) < 0

for t > tu . Moreover, tu ∈ Nα,β,γ if and only if t = tu .

Proof By (2.3), we have

∣∣∣∣
∫

RN
F(u)dx

∣∣∣∣ ≤ τ‖u‖2 + CCτ‖u‖p (2.4)

for all u ∈ R. By virtue of the Hardy-Littlewood-Sobolev inequality one has

∣∣ ∫
RN

[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx

∣∣ ≤ C‖|u|2∗
μ,s‖2 2N

2N−μ

= C‖u‖22
∗
μ,s

2∗
s

≤ C‖u‖22∗
μ,s .

(2.5)
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1082 Q. Li et al.

Consequently, it follows from (2.4)-(2.5) that

h(t) =Jα,β,γ (tu) ≥ 1

2
min{1, αmin}t2‖u‖2 − β(τ t2‖u‖2 + CCτ t

p‖u‖p)

− Cγ t22
∗
μ,s‖u‖22∗

μ,s > 0

for small τ > 0 and t > 0. Moreover,

h′(t) =〈J ′
α,β,γ (tu), u〉 ≥ min{1, αmin}t‖u‖2 − β(τ t‖u‖2 + CCτ t

p−1‖u‖p)

− Cγ t22
∗
μ,s−1‖u‖22∗

μ,s > 0

for small τ > 0 and t > 0. In view of ( f4) we get that

h(t) =Jα,β,γ (tu) ≤ 1

2
max{1, αmax}t2‖u‖2

− γ

22∗
μ,s

t22
∗
μ,s

∫
RN

[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx → −∞

as t → +∞. Hence h has a positive maximum and there exists tu > 0 such that
h′(tu) = 0 and h′(t) > 0 for 0 < t < tu .

We assert that h′(t) �= 0 for all t > tu . Otherwise, we can suppose that there exists
tu < t2 < +∞ such that h′(t2) = 0 and h(tu) ≥ h(t2). By means of ( f3) we obtain
that

h(t2) =h(t2) − t2
2
h′(t2)

=β

∫
RN

[1
2
f (t2u)t2u − F(t2u)]dx

+ γ

(
1

2
− 1

22∗
μ,s

)
t
22∗

μ,s
2

∫
RN

[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx

>β

∫
RN

[1
2
f (tuu)tuu − F(tuu)]dx

+ γ

(
1

2
− 1

22∗
μ,s

)
t
22∗

μ,s
u

∫
RN

[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx

=h(tu) − tu
2
h′(tu)

=h(tu),

a contradiction.
Combining the claim with prior arguments, we obtain the first conclusion of

(i). The second conclusion is an immediate consequence of the fact that h′(t) =
t−1〈J ′

α,β,γ (tu), tu〉. This completes the proof. ��
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For any ρ > 0, set Sρ := {u ∈ Hs(RN ) : ‖u‖ = ρ}. Then the following lemma
holds.

Lemma 2 (i) There exists t0 > 0 such that tu ≥ t0 for each u ∈ S1 and for each
compact subset W ⊂ S1, there exists CW > 0 such that tu ≤ CW for all u ∈ W.

(ii) There exists ρ > 0 such that

mα,β,γ := inf
u∈Nα,β,γ

Jα,β,γ (u) ≥ inf
u∈Sρ

Jα,β,γ (u) > 0.

(iii) There exists r∗ > 0 such that ‖u‖ ≥ r∗ for all u ∈ Nα,β,γ .

Proof (i) Set

Σ(u) := 1

22∗
μ,s

∫
RN

[|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s dx

for u ∈ Hs(RN ) and set

h(t) :=Σ

(
tu

‖u‖
)

= 1

22∗
μ,s

∫
RN

[|x |−μ ∗ | tu

‖u‖ |2∗
μ,s ]| tu

‖u‖ |2∗
μ,s dx

= 1

22∗
μ,s

t22
∗
μ,s

1

‖u‖22∗
μ,s

∫
RN

[|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s dx

for t > 0. Clearly,

h′(t) = t22
∗
μ,s−1 1

‖u‖22∗
μ,s

∫
RN

[|x |−μ ∗ |u|2∗
μ,s ]|u|2∗

μ,s dx

= 1

t

∫
RN

[|x |−μ ∗ | tu

‖u‖ |2∗
μ,s ]| tu

‖u‖ |2∗
μ,s dx

= 22∗
μ,s

t
h(t).

Integrating on [1, t‖u‖] with t > 1
‖u‖ , we have h(t‖u‖) ≥ h(1)t22

∗
μ,s‖u‖22∗

μ,s , i.e.,

Σ(tu) ≥ Σ

(
u

‖u‖
)
t22

∗
μ,s‖u‖22∗

μ,s := Ct22
∗
μ,s‖u‖22∗

μ,s . (2.6)

For u ∈ S1, by Lemma 1 there exists tu > 0 such that tuu ∈ Nα,β,γ . It follows from
(2.2) and (2.5) that

0 =〈J ′
α,β,γ (tuu), tuu〉

≥min{1, αmin}t2u‖u‖2 − β(τ t2u‖u‖2 + CCτ t
p
u ‖u‖p) − Ct

22∗
μ,s

u ‖u‖22∗
μ,s

≥1

2
min{1, αmin}t2u − βCCτ t

p
u − Ct

22∗
μ,s

u
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1084 Q. Li et al.

for τ > 0 small, which means that there exists t0 > 0 such that tu ≥ t0 for all u ∈ S1.
Suppose there exists {un} ⊂ W ⊂ S1 such that tn := tun → +∞ as n → ∞. Since
W is compact, there exists u ∈ W such that un → u in Hs(RN ). By (2.6) and ( f4),

Jα,β,γ (tnun) ≤1

2
max{1, αmax}t2n‖un‖2 − Σ(tnun) ≤ 1

2
max{1, αmax}t2n‖un‖2

− Ct
22∗

μ,s
n ‖un‖22∗

μ,s

→ − ∞

as n → ∞. Nevertheless, by ( f3) we can see that

Jα,β,γ (tnun) =Jα,β,γ (tnun) − 1

2
〈J ′

α,β,γ (tnun), tnun〉

=β

∫
RN

[1
2
f (tnun)tnun − F(tnun)]dx

+
(
1

2
− 1

22∗
μ,s

)
γ t

22∗
μ,s

n

∫
RN

[|x |−μ ∗ (u+
n )2

∗
μ,s ](u+

n )2
∗
μ,s dx

≥0,

a contradiction.
(i i) For u ∈ Sρ and small τ > 0, combining (2.4) with (2.5) we obtain that

Jα,β,γ (u) ≥1

2
min{1, αmin}‖u‖2 − β(τ‖u‖2 + CCτ‖u‖p) − C‖u‖22∗

μ,s

≥1

8
‖u‖2 = 1

8
ρ2 > 0

for small ρ > 0. Moreover, for every u ∈ Nα,β,γ , there exists t0 > 0 such that
t0u ∈ Sρ . Hence

0 <
1

8
ρ2 ≤ inf

u∈Sρ

Jα,β,γ (u) ≤ Jα,β,γ (t0u) ≤ max
t>0

Jα,β,γ (tu) = Jα,β,γ (u)

and so mα,β,γ = inf
u∈Nα,β,γ

Jα,β,γ (u) ≥ inf
u∈Sρ

Jα,β,γ (u) > 0.

(i i i) Assuming by contradiction that there exists a sequence {un} ⊂ Nα,β,γ ⊂
Hs(RN ) \ {0} such that ‖un‖ → 0 as n → ∞. By virtue of (2.2) and (2.5), we can
see that

0 = 〈J ′
α,β,γ (un), un〉 ≥min{1, αmin}‖un‖2 − β(τ‖un‖2 + CCτ‖un‖p)

− Cγ ‖un‖22∗
μ,s

≥1

4
min{1, αmin}‖un‖2
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Concentration phenomenon of solutions for fractional... 1085

for small τ > 0 and large n, which contradictswith un ∈ Hs(RN )\{0}. This completes
the proof. ��
Lemma 3 Jα,β,γ is coercive on Nα,β,γ , i.e., Jα,β,γ (u) → +∞ as u ∈ Nα,β,γ and
‖u‖ → ∞.

Proof For any u ∈ Nα,β,γ , by ( f3) and (2.6) we can conclude that

Jα,β,γ (u) =Jα,β,γ (u) − 1

2
〈J ′

α,β,γ (u, u〉

=β

∫
RN

[
1

2
f (u)u − F(u)

]
dx

+
(
1

2
− 1

22∗
μ,s

)
γ

∫
RN

[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx

≥C‖u‖22∗
μ,s → +∞

as ‖u‖ → ∞. This completes the proof. ��
Lemma 4 LetW ⊂ Hs(RN ) \ {0} be a compact subset. Then there exists r > 0 such
that Jα,β,γ (u) < 0 on (R+W) \ Br for each u ∈ W , where R

+W := {tw : t >

0, w ∈ W}.
Proof Without loss of generality, we may assume that ‖u‖ = 1 for every u ∈ W .
Arguing by contradiction, suppose there exist un ∈ W and wn = tnun such that
Jα,β,γ (wn) ≥ 0 and tn → ∞ as n → ∞. Up to a subsequence, we may assume that
un → u ∈ S1 = {u ∈ Hs(RN ) : ‖u‖ = 1} in W ⊂ Hs(RN ) \ {0}. Consequently, it
follows from ( f4) and (2.6) that

0 ≤Jα,β,γ (wn) = Jα,β,γ (tnun) ≤ 1

2
max{1, αmax}t2n‖un‖2 − Ct

22∗
μ,s

n ‖un‖22∗
μ,s

→ − ∞

as n → ∞, a contradiction. This completes the proof. ��
Obviously, Jα,β,γ exhibits the mountain pass geometry.

Lemma 5 The functional Jα,β,γ satisfies the following conditions:

(i) there exist δ, ρ > 0 such that Jα,β,γ (u) ≥ δ for ‖u‖ = ρ;
(ii) there exists an e ∈ Hs(RN ) with ‖e‖ > ρ such that Jα,β,γ (e) < 0.

Combiningwith theMountain Pass Theoremwithout (PS) condition ( [28]) and the
characterization ofminimax value, there exists a (PS)mα,β,γ sequence {un} ⊂ Hs(RN )

such that Jα,β,γ (un) → mα,β,γ and J ′
α,β,γ (un) → 0 in H−s(RN ) at theminimax level

mα,β,γ = inf
g∈Γ

sup
t∈[0,1]

Jα,β,γ (g(t)),
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1086 Q. Li et al.

where

Γ := {g ∈ C([0, 1], Hs(RN )) : g(0) = 0, Jα,β,γ (g(1)) < 0}.

Moreover,

mα,β,γ = inf
u∈Hs (RN )\{0}

max
t≥0

Jα,β,γ (tu) > 0.

Lemma 6 Let α ∈ [αmin, α∞], β ∈ (β∞, βmax] and γ ∈ [γmin, γmax], then

mα,β,γ <
1

γ
N−2s

N+2s−μ

· N + 2s − μ

2(2N − μ)
· S

2N−μ
N+2s−μ

H ,

and Eq. (2.1) admits a positive ground state solution u satisfying Jα,β,γ (u) = mα,β,γ

and u ∈ Nα,β,γ .

Proof By [4, 10] we easily know

mα,β,γ <
1

γ
N−2s

N+2s−μ

· N + 2s − μ

2(2N − μ)
· S

2N−μ
N+2s−μ

H .

By Lemma 5, let {un} ⊂ Hs(RN ) be a (PS)mα,β,γ sequence for Jα,β,γ , then by
Lemma 3 we know that {un} is bounded in Hs(RN ). By using of the fact that

(u − v)(u− − v−) ≥ |u− − v−|2

for any u, v ∈ R, we can prove that

o(1) =〈J ′
α,β,γ (un), u

−
n 〉 ≥ 1

2
CN ,s

∫
R2N

|u−
n (x) − u−

n (y)|2
|x − y|N+2s dxdy

+αmin

∫
RN

|u−
n |2dx ≥ min{1, αmin}‖u−

n ‖2,

i.e., ‖u−
n ‖ → 0, so we can assume that un ≥ 0, ∀n ∈ N. We assert that there exist a

sequence {yn} ⊂ R
N and constants R, σ > 0 such that

lim inf
n→∞

∫
BR(yn)

u2ndx ≥ σ. (2.7)

Otherwise, by virtue of Lemma 1.21 in [28], we have un → 0 in Lt (RN ) for 2 < t <

2∗
s . Consequently, by (2.2)-(2.3) we know that

∫
RN

F(un)dx → 0 and
∫

RN
f (un)undx → 0
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Concentration phenomenon of solutions for fractional... 1087

as n → ∞. As a consequence,

o(1) = ‖un‖2α − γ

∫
RN

[|x |−μ ∗ (u+
n )2

∗
μ,s ](u+

n )2
∗
μ,s dx .

Assume that ‖un‖2α → l as n → ∞. Then γ
∫

RN [|x |−μ ∗ (u+
n )2

∗
μ,s ](u+

n )2
∗
μ,s dx → l

as n → ∞. Consequently, by the fact that

mα,β,γ + o(1) =Jα,β,γ (un)

=1

2
‖un‖2α − γ

22μ,s

∫
RN

[|x |−μ ∗ (u+
n )2

∗
μ,s ](u+

n )2
∗
μ,s dx

− β

∫
RN

F(un)dx,

we deduce that

0 < mα,β,γ = 1

2
l − 1

22μ,s
l, (2.8)

which implies that l > 0. Hence, by the definition of SH we have

SH ≤ ‖un‖2α( ∫
RN [|x |−μ ∗ |un|2∗

μ,s ]|un|2∗
μ,s dx

) N−2s
2N−μ

→ l(
l
γ

) N−2s
2N−μ

= γ
N−2s
2N−μ · l N+2s−μ

2N−μ ,

(2.9)

as n → ∞. It follows from (2.8) and (2.9) that

mα,β,γ = 1

2
l − 1

22μ,s
l ≥ 1

γ
N−2s

N+2s−μ

· N + 2s − μ

2(2N − μ)
· S

2N−μ
N+2s−μ

H ,

a contradiction. Therefore, (2.7) holds. Set ūn(·) = un(· + yn). Up to a subsequence,
there exists ū ∈ Hs(RN ) such that ūn⇀ū in Hs(RN ), ūn → ū in Lt

loc(R
N ) for

2 ≤ t < 2∗
s and ūn(x) → ū(x) a.e. on R

N . By (2.7) we have ū �= 0. Using a standard
argument we can conclude that J ′

α,β,γ (ū) = 0, and so ū ∈ Nα,β,γ . Indeed, since

Jα,β,γ is invariant under translations of the form u �→ u(· + k) with k ∈ R
N , we may

assume that {ūn} ⊂ Hs(RN ) is a (PS)mα,β,γ sequence for Jα,β,γ . Consequently, for
all ϕ ∈ C∞

0 (RN ),

o(1) =〈J ′
α,β,γ (ūn), ϕ〉

=
∫

RN
ϕ(−Δ)s ūndx + α

∫
RN

ūnϕdx − β

∫
RN

f (ūn)ϕdx

− γ

∫
RN

[|x |−μ ∗ |ūn|2∗
μ,s ]|ūn|2∗

μ,s−2ūnϕdx .
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1088 Q. Li et al.

Since ūn⇀ū in Hs(RN ),

∫
RN

ϕ(−Δ)s ūndx →
∫

RN
ϕ(−Δ)s ūdx

and

∫
RN

ūnϕdx →
∫

RN
ūϕdx

as n → ∞. By ūn → ū in Lt
loc(R

N ) for 2 ≤ t < 2∗
s , together with (2.2) we get

∫
RN

f (ūn)ϕdx →
∫

RN
f (ū)ϕdx

as n → ∞. Moreover,

∫
RN

∣∣|ūn|2∗
μ,s

∣∣ 2N
2N−μ dx =

∫
RN

|ūn| 2N
N−2s dx ≤ C‖ūn‖2∗

s ≤ C .

Thereby, by the Hölder inequality and [19], we conclude that

∫
RN

∣∣[|x |−μ ∗ |ūn|2∗
μ,s ]|ūn|2∗

μ,s−2ūn
∣∣ 2N
N+2s dx

=
∫

RN

∣∣[|x |−μ ∗ |ūn|2∗
μ,s ]| 2N

N+2s
∣∣ūn∣∣(2∗

μ,s−1) 2N
N+2s dx

≤
(∫

RN

∣∣|x |−μ ∗ |ūn|2∗
μ,s

∣∣ 2N
N+2s · N+2s

μ dx

) μ
N+2s

×
(∫

RN

∣∣ūn∣∣(2∗
μ,s−1)· 2N

N+2s · N+2s
N+2s−μ dx

) N+2s−μ
N+2s

=
(∫

RN

∣∣|x |−μ ∗ |ūn|2∗
μ,s

∣∣ 2Nμ dx

) μ
N+2s ·

(∫
RN

∣∣ūn∣∣ 2N
N−2s dx

) N+2s−μ
N+2s

≤C

(∫
RN

∣∣ūn∣∣2∗
μ,s · 2N

2N−μ dx

) 2N−μ
N+2s ·

(∫
RN

∣∣ūn∣∣ 2N
N−2s dx

) N+2s−μ
N+2s

=C

(∫
RN

∣∣ūn∣∣2∗
s dx

) 3N+2s−2μ
N+2s ≤ C‖ūn‖2∗

s · 3N+2s−2μ
N+2s ≤ C .

Then we may assume that

[|x |−μ ∗ |ūn|2∗
μ,s ]|ūn|2∗

μ,s−2ūn⇀[|x |−μ ∗ |ū|2∗
μ,s ]|ū|2∗

μ,s−2ū
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in L
2N

N+2s (RN ). Hence,∫
RN

[|x |−μ ∗ |ūn|2∗
μ,s ]|ūn|2∗

μ,s−2ūnϕdx →
∫

RN
[|x |−μ ∗ |ū|2∗

μ,s ]|ū|2∗
μ,s−2ūϕdx

as n → ∞. It follows that

0 =
∫

RN
ϕ(−Δ)s ūdx + α

∫
RN

ūϕdx − β

∫
RN

f (ū)ϕdx

− γ

∫
RN

[|x |−μ ∗ |ū|2∗
μ,s ]|ū|2∗

μ,s−2ūϕdx .

For any ϕ ∈ Hs(RN ), there exists a sequence {ϕn} ⊂ C∞
0 (RN ) such that ϕn → ϕ in

Hs(RN ). As a consequence,

0 =
∫

RN
ϕn(−Δ)s ūdx + α

∫
RN

ūϕndx − β

∫
RN

f (ū)ϕndx

− γ

∫
RN

[|x |−μ ∗ |ū|2∗
μ,s ]|ū|2∗

μ,s−2ūϕndx .

Let n → ∞, then

0 =
∫

RN
ϕ(−Δ)s ūdx + α

∫
RN

ūϕdx − β

∫
RN

f (ū)ϕdx

− γ

∫
RN

[|x |−μ ∗ |ū|2∗
μ,s ]|ū|2∗

μ,s−2ūϕdx,

i.e., 〈J ′
α,β,γ (ū), ϕ〉 = 0 for all ϕ ∈ Hs(RN ). And so J ′

α,β,γ (ū) = 0. Hence by Fatou
Lemma and ( f3) we deduce that

mα,β,γ ≤ max
t≥0

Jα,β,γ (t ū) = Jα,β,γ (ū) = Jα,β,γ (ū) − 1

2
〈J ′

α,β,γ (ū), ū〉

=β

∫
RN

[1
2
f (ū)ū − F(ū)]dx +

(
1

2
− 1

22∗
μ,s

)
γ

∫
RN

[|x |−μ ∗ (ū+)2
∗
μ,s ](ū+)2

∗
μ,s dx

≤β lim inf
n→∞

∫
RN

[1
2
f (ūn)ūn − F(ūn)]dx

+
(
1

2
− 1

22∗
μ,s

)
γ lim inf

n→∞

∫
RN

[|x |−μ ∗ (ū+
n )2

∗
μ,s ](ū+

n )2
∗
μ,s dx

≤ lim inf
n→∞ [Jα,β,γ (ūn) − 1

2
〈J ′

α,β,γ (ūn), ūn〉] = mα,β,γ ,

and so Jα,β,γ (ū) = mα,β,γ . Again by virtue of the fact that

(u − v)(u− − v−) ≥ |u− − v−|2
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1090 Q. Li et al.

for any u, v ∈ R, we can derive that ū is positive. This completes the proof. ��
Lemma 7 For i = 1, 2, let αi ∈ [αmin, α∞], βi ∈ (β∞, βmax], γi ∈ [γmin, γmax].
If min{α2 − α1, β1 − β2, γ1 − γ2} ≥ 0, then mα1,β1,γ1 ≤ mα2,β2,γ2 . Moreover, if
additionally max{α2 − α1, β1 − β2, γ1 − γ2} > 0, then mα1,β1,γ1 < mα2,β2,γ2 .

Proof By Lemma 6, let u be a positive solution of (2.1) with coefficients α2, β2, γ2
such that Jα2,β2,γ2(u) = mα2,β2,γ2 and u ∈ Nα2,β2,γ2 . Then arguing as in Lemma 1
by ( f1) − ( f4) we can deduce that Jα2,β2,γ2(u) = max

t≥0
Jα2,β2,γ2(tu) and there exists

t0 > 0 such that t0u ∈ Nα1,β1,γ1 and

Jα1,β1,γ1(t0u) = max
t≥0

Jα1,β1,γ1(tu).

Consequently, if min{α2 − α1, β1 − β2, γ1 − γ2} ≥ 0,

mα1,β1,γ1 ≤ max
t≥0

Jα1,β1,γ1(tu) = Jα1,β1,γ1(t0u)

=Jα2,β2,γ2(t0u) + α1 − α2

2
t20

∫
RN

u2dx − (β1 − β2)

∫
RN

F(t0u)dx

− γ1 − γ2

22∗
μ,s

t
22∗

μ,s
0

∫
RN

[|x |−μ ∗ (ū+)2
∗
μ,s ](ū+)2

∗
μ,s dx

≤Jα2,β2,γ2(t0u) ≤ max
t≥0

Jα2,β2,γ2(tu) = Jα2,β2,γ2(u) = mα2,β2,γ2 .

If additionally max{α2 − α1, β1 − β2, γ1 − γ2} > 0, the above proof implies that
mα1,β1,γ1 < mα2,β2,γ2 . This completes the proof. ��

3 Auxiliary problem

In what follows, we introduce some auxiliary problems for Eq. (1.4). Without loss of
generality, we may assume that xP = 0 ∈ CP in (1.2) or xP = 0 ∈ V ∩ P ∩ Q if
V ∩ P ∩ Q �= ∅. Consequently, by (1.2) we set

e := V (0) ≤ V (x) for all |x | ≥ R. (3.1)

For any a ∈ [αmin, α∞], b ∈ (β∞, βmax] and d ∈ [γmin, γmax], by Lemma 6 one has

ma,b,d <
1

γ
N−2s

N+2s−μ

· N + 2s − μ

2(2N − μ)
· S

2N−μ
N+2s−μ

H .

Define the truncated potentials by

V a
ε (x) := max{a, V (εx)}, Pb

ε (x) := min{b, P(εx)}, Qd
ε (x) := min{d, Q(εx)}

and consider the auxiliary problem
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Concentration phenomenon of solutions for fractional... 1091

(−Δ)su + Va
ε (x)u = Pb

ε (x) f (u) + Qd
ε (x)[|x |−μ ∗ (u+)

2∗
μ,s ](u+)

2∗
μ,s−2u+, x ∈ R

N ,

(3.2)

whose energy functional is

I a,b,d
ε (u) =1

2

∫
RN

|ξ |2s |û(ξ)|2dξ + 1

2

∫
RN

V a
ε (x)u2dx −

∫
RN

Pb
ε (x)F(u)dx

− 1

22∗
μ,s

∫
RN

Qd
ε (x)[|x |−μ ∗ (u+)2

∗
μ,s ](u+)2

∗
μ,s dx .

Set

N a,b,d
ε = {u ∈ Hs(RN )\{0} : 〈(I a,b,d

ε )′(u), u〉 = 0}

and

ca,b,d
ε := inf

u∈N a,b,d
ε

I a,b,d
ε (u).

Lemma 8 (i) ma,b,d ≤ ca,b,d
ε .

(ii) Let u be a solution of (2.1) with coefficients α := V a(0) = max{a, V (0)}, β :=
Pb(0) = min{b, P(0)} and γ := Qd(0) = min{d, Q(0)} such that

JV a(0),Pb(0),Qd (0)(u) = mVa(0),Pb(0),Qd (0).

Then

lim sup
ε→0

ca,b,d
ε ≤ mVa(0),Pb(0),Qd (0).

Proof (i) It is easy to see that

I a,b,d
ε (u) =Ja,b,d(u) + 1

2

∫
RN

[V a
ε (x) − a]u2dx +

∫
RN

[b − Pb
ε (x)]F(u)dx

+ 1

22∗
μ,s

∫
RN

[d − Qd
ε (x)][|x |−μ ∗ (u+)2

∗
μ,s ](u+)2

∗
μ,s dx ≥ Ja,b,d(u).

Therefore, for any u ∈ Hs(RN )\{0},

ma,b,d ≤ max
t≥0

Ja,b,d(tu) ≤ max
t≥0

I a,b,d
ε (tu),

which implies that

ma,b,d ≤ inf
u∈Hs (RN )\{0}

max
t≥0

I a,b,d
ε (tu) = ca,b,d

ε .
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1092 Q. Li et al.

(ii) By Lemma 6, let u be a positive solution of problem (2.1) with coefficients
α := V a(0), β := Pb(0) and γ := Qd(0) such that JV a(0),Pb(0),Qd (0)(u) =
mVa(0),Pb(0),Qd (0) and u ∈ NVa(0),Pb(0),Qd (0). Then again arguing as in Lemma
1 by ( f1) − ( f4), there exists a unique tε := tε(u) > 0 such that tεu ∈ N a,b,d

ε .
Hence

0 < ca,b,d
ε ≤ I a,b,d

ε (tεu) = max
t≥0

I a,b,d
ε (tu).

Taking into account the boundedness of V , P , Q and ( f4) we can deduce that

I a,b,d
ε (tu) =1

2
t2

∫
RN

|ξ |2s |û(ξ)|2dξ + 1

2
t2

∫
RN

V a
ε (x)u2dx

−
∫

RN
Pb

ε (x)F(tu)dx

− 1

22∗
μ,s

t22
∗
μ,s

∫
RN

Qd
ε (x)[|x |−μ ∗ (u+)2

∗
μ,s ](u+)2

∗
μ,s dx

≤C1t
2 − C2t

22∗
μ,s ,

which yields that there exists T > 0 independent of ε such that I a,b,d
ε (tu) < 0 for

t ≥ T . Consequently, tε < T and we may assume that tε → t0 as ε → 0. Combining
with the continuity and boundedness of V , P , Q, by virtue of Lebesgue dominated
convergence theorem we obtain∫

RN
[V a

ε (x) − V a(0)]|tεu|2dx → 0

and ∫
RN

[Pb(0) − Pb
ε (x)]F(tεu)dx → 0

and ∫
RN

[Qd(0) − Qd
ε (x)][|x |−μ ∗ (tεu

+)2
∗
μ,s ](tεu+)2

∗
μ,s dx → 0

as ε → 0. Consequently,

I a,b,d
ε (tεu) =JV a(0),Pb(0),Qd (0)(tεu) + 1

2

∫
RN

[V a
ε (x) − V a(0)]|tεu|2dx

+
∫

RN
[Pb(0) − Pb

ε (x)]F(tεu)dx

+ 1

22∗
μ,s

∫
RN

[Qd(0) − Qd
ε (x)][|x |−μ ∗ (tεu

+)2
∗
μ,s ](tεu+)2

∗
μ,s dx

=JV a(0),Pb(0),Qd (0)(tεu) + oε(1).
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Therefore,

lim sup
ε→0

ca,b,d
ε ≤ lim sup

ε→0
I a,b,d
ε (tεu) = lim sup

ε→0
[JV a(0),Pb(0),Qd (0)(tεu) + oε(1)]

=JV a(0),Pb(0),Qd (0)(t0u) ≤ JV a(0),Pb(0),Qd (0)(u)

=mVa(0),Pb(0),Qd (0).

This completes the proof. ��
It is not difficult to see that the functional Iε possesses aMountain Pass level defined

by

cε := inf
u∈Hs (RN )\{0}

max
t≥0

Iε(tu).

Moreover, there exists some c > 0 independent of ε such that cε ≥ c.

Lemma 9 lim sup
ε→0

cε ≤ me,βQ,γmax , where e comes from (3.1).

Proof Take a = αmin, b = βmax and d = γmax. Then

V a
ε (x) = V (εx), Pb

ε (x) := P(εx), Qd
ε (x) = Q(εx).

Hence the fact that I a,b,d
ε = Iε implies that ca,b,d

ε = cε. Noting that 0 ∈ CP , by
Lemma 8 (i i) we conclude that

lim sup
ε→0

cε = lim sup
ε→0

ca,b,d
ε ≤ mVa(0),Pb(0),Qd (0) = me,βQ,γmax .

This completes the proof. ��
Finally, we may only truncate the potentials V (x) and P(x) with a = e and b ∈

(β∞, βQ). Simultaneously, we define the truncated energy functional by

I e,bε (u) =1

2

∫
RN

|ξ |2s |û(ξ)|2dξ + 1

2

∫
RN

V e
ε (x)u2dx −

∫
RN

Pb
ε (x)F(u)dx

− 1

22∗
μ,s

∫
RN

Q(εx)[|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx .

Set N e,b
ε := {〈(I e,bε )′(u), u〉 = 0} and ce,bε := inf

u∈N e,b
ε

I e,bε (u).

Lemma 10 ce,bε ≥ me,b,γmax .

Proof Similarly,

I e,bε (u) =Je,b,γmax(u) + 1

2

∫
RN

[V e
ε (x) − e]u2dx +

∫
RN

[b − Pb
ε (x)]F(u)dx

+ 1

22∗
μ,s

∫
RN

[γmax− Q(εx)][|x |−μ ∗ (u+)2
∗
μ,s ](u+)2

∗
μ,s dx ≥ Je,b,γmax(u).
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1094 Q. Li et al.

Consequently,

inf
u∈Hs (RN )\{0}

max
t≥0

I e,bε (tu) ≥ inf
u∈Hs (RN )\{0}

max
t≥0

Je,b,γmax(tu),

which indicates that the conclusion holds. This completes the proof. ��
Arguing as in Lemmas 1, 2 and 4, we can conclude that the following Lemmas

11-13 hold.

Lemma 11 For each u ∈ Hs(RN ) \ {0}, there exists a unique tu > 0 such that
h(tu) = max

t≥0
h(t), h′(t) > 0 for 0 < t < tu and h′(t) < 0 for t > tu . Moreover,

tu ∈ Nε if and only if t = tu . Here h(t) := Iε(tu).

Lemma 12 For any ε > 0 fixed,

(i) there is a constant ρ > 0 such that cε = inf
Nε

Iε ≥ inf
Sρ

Iε > 0, where

Sρ = {u ∈ Hs(RN ) : ‖u‖ = ρ},

(ii) there exists r0 > 0 such that ‖u‖ ≥ r0 for all u ∈ Nε.

Lemma 13 LetW ⊂ Hs(RN )\ {0} be a compact subset. Then there exists r > 0 such
that Iε(u) < 0 on (R+W)\Br for each u ∈ W , whereR

+W := {tw : t > 0, w ∈ W}.
Define the mapping m̃ε : Hs(RN ) \ {0} → Nε and mε : S → Nε by setting

m̃ε(u) = tuu and mε = m̃ε|S,

where S is the unit sphere in Hs(RN ). We also consider the functionals ψ̃ε : Hs(RN )\
{0} → R and ψε : S → R defined by

ψ̃ε(u) = Iε(m̃ε(u)) and ψε = ψ̃ε|S .

Since Hs(RN ) is a Hilbert space and Lemmas 11-13 imply that the hypotheses A2
and A3 hold in [25], Hence, the following Lemmas 14-15 are valid.

Lemma 14 ( [25]) The mapping m̃ε : Hs(RN ) \ {0} → Nε is continuous and mε is a
homeomorphism between S andN↑, and the inverse of mε is given by m−1

ε (u) = u
‖u‖ .

Lemma 15 ( [25]) For each ε > 0,

(i) ψε ∈ C1(S, R) and

ψ ′
ε(w)z = ‖mε(w)‖I ′

ε(mε(w))z

for all z ∈ Tw(S) := {u ∈ Hs(RN ) : 〈w, u〉 = 0}.
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(ii) If {wn} is a Palais-Smale sequence for ψε, then {mε(wn)} is a Palais-Smale
sequence for Iε. If {un} ⊂ Nε is a bounded Palais-Smale sequence for Iε, then
{m−1

ε (un)} is a Palais-Smale sequence for ψε.
(iii) w ∈ S is a critical point of ψε if and only if mε(w) is a nontrivial critical point of

Iε. Moreover, the corresponding values of ψε and Iε coincide and inf
S

ψε = inf
Nε

Iε.

(iv) If Iε is even, then so is ψε.

Lemma 16 The level cε is achieved if ε > 0 is small enough, i.e., problem (1.4) admits
a positive solution if ε > 0 is small enough.

Proof Set

ζ(u) =
∫

RN
|ξ |2s |û(ξ)|2dξ +

∫
RN

u2dx − 1, ∀u ∈ Hs(RN ).

Notice that S = {u ∈ Hs(RN ) : ζ(u) = 0} and for each u ∈ S, one has

〈ζ ′(u), u〉 = 2‖u‖2 = 2 > 0.

By Proposition 9 in [25] we know that ψ̃ε : Hs(RN ) \ {0} → R is class of C1, and

〈ψ̃ ′
ε(u), v〉 = ‖m̃ε(u)‖

‖u‖ 〈I ′
ε(m̃ε(u)), v〉, ∀0 �= u, v ∈ Hs(RN ).

Hence, Corollary 3.4 in [6] implies that there exists a sequence {wn} ⊂ S such that
ψε(wn) → cε and there exists αn ∈ R such that

‖ψ̃ ′
ε(wn) − αnζ

′(wn)‖H−s (RN ) → 0.

It implies

αn = 〈ψ̃ ′
ε(wn), ζ

′(wn)〉
‖ζ ′(wn)‖2H−s (RN )

+ o(1).

Hence

ψ̃ ′
ε(wn) − 〈ψ̃ ′

ε(wn), ζ
′(wn)〉

‖ζ ′(wn)‖2H−s (RN )

ζ ′(wn) = o(1), i.e., ψ ′
ε(wn) = o(1).

Set un = mε(wn) ∈ Nε. Then Lemma 15 (i i) implies that Iε(un) = ψε(wn) → cε

and I ′
ε(un) → 0 in H−s(RN ). As before, we can assume that un ≥ 0, ∀n ∈ N. It
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follows from ( f3) and (2.6) that

cε + o(1) + o(1)‖un‖
=Iε(un) − 〈I ′

ε(un), un〉
=

∫
RN

P(εx)[1
2
f (un)un − F(un)]dx

+
(
1

2
− 1

22∗
μ,s

) ∫
RN

Q(εx)[|x |−μ ∗ |un|2∗
μ,s ]|un|2∗

μ,s dx

≥γmin

(
1

2
− 1

22∗
μ,s

) ∫
RN

[|x |−μ ∗ |un|2∗
μ,s ]|un|2∗

μ,s dx ≥ C‖un‖22∗
μ,s ,

which indicates that {un} is bounded in Hs(RN ). Consequently, up to a subsequence,
there exists uε ∈ Hs(RN ) such that un⇀uε in Hs(RN ), un → uε in Lt

loc(R
N ) for

2 ≤ t < 2∗
s and un(x) → uε(x) a.e. on R

N . Arguing as in Lemma 6, we can prove
that I ′

ε(uε) = 0. In the following, we prove that uε �= 0 if ε > 0 is small enough.
Indeed, if the conclusion is false, there exists a sequence ε j → 0 as j → +∞

with uε j = 0. Clearly, by Lemma 12 (i i) there exists a constant C > 0 such that
‖un‖2 ≥ C > 0. Choose b ∈ (β∞, βQ) and consider the truncated functional I e,bε j

.

For each un , there exists a unique tn := tun > 0 such that tnun ∈ N e,b
ε j

. Consequently,
it follows by (2.6) and Lemma 12 (i i) that

Ct2n ≥t2n‖un‖2Ds,2 + t2n

∫
RN

V e
ε j

(x)u2ndx

=
∫

RN
Pb

ε j
(x) f (tnun)tnundx + t

22∗
μ,s

n

∫
RN

Q(ε j x)[|x |−μ ∗ |un|2∗
μ,s ]|un|2∗

μ,s dx

≥ t
22∗

μ,s
n γmin

∫
RN

[|x |−μ ∗ |un|2∗
μ,s ]|un|2∗

μ,s dx ≥ Ct
22∗

μ,s
n ‖un‖22∗

μ,s ≥ Ct
22∗

μ,s
n ,

which yields that {tn} is bounded in R. Hence, up to a subsequence we may assume
that tn → t0 as n → ∞. Noticing that (3.1) implies that {x ∈ R

N : V (ε j x) ≤ e} is
bounded in R

N for each j ∈ N, we have

∫
RN

[V e
ε j

(x) − V (ε j x)]|tnun|2dx =
∫

{x∈RN :V (ε j x)≤e}
[e − V (ε j x)]|tnun|2dx → 0

as n → ∞. Simultaneously, by b > β∞ we know that {x ∈ R
N : P(ε j x) ≥ b} is

bounded in R
N for each j ∈ N. And so

∫
RN

[P(ε j x) − Pb
ε j

(x)]F(tnun)dx =
∫

{x∈RN :P(ε j x)≥b}
[P(ε j x) − b]F(tnun)dx → 0

123



Concentration phenomenon of solutions for fractional... 1097

as n → ∞. As a consequence, altogether with the above estimates we have

ce,bε j
≤I e,bε j

(tnun) = Iε j (tnun) + 1

2

∫
RN

[V e
ε j

(x) − V (ε j x)]|tnun|2dx

+
∫

RN
[P(ε j x) − Pb

ε j
(x)]F(tnun)dx

=Iε j (tnun) + o(1) ≤ Iε j (un) + o(1) = cε j + o(1).

It yields that ce,bε j
≤ cε j . It follows fromLemma 10 thatme,b,γmax ≤ cε j . Let j → +∞,

by Lemma 9 one has me,b,γmax ≤ me,βQ,γmax . But b < βQ and Lemma 7 imply that
me,βQ,γmax < me,b,γmax , a contradiction. Therefore, uε �= 0 as long as ε > 0 is small
enough. Furthermore, as before, one has uε > 0 if ε > 0 is small enough. Combining
with Fatou Lemma and ( f3) we deduce that

cε ≤Iε(uε) = Iε(uε) − 1

2
〈I ′

ε(uε), uε〉

=
∫

RN
P(εx)[1

2
f (uε)uε − F(uε)]dx

+
(
1

2
− 1

22∗
μ,s

) ∫
RN

Q(εx)[|x |−μ ∗ |uε|2∗
μ,s ]|uε|2∗

μ,s dx

≤ lim inf
n→∞

∫
RN

P(εx)[1
2
f (un)un − F(un)]dx

+
(
1

2
− 1

22∗
μ,s

)
lim inf
n→∞

∫
RN

Q(εx)[|x |−μ ∗ |un|2∗
μ,s ]|un|2∗

μ,s dx

≤ lim inf
n→∞ [Iε(un) − 1

2
〈I ′

ε(un)un〉] = cε,

that is, Iε(uε) = cε. This completes the proof. ��
Lemma 17 Let {un} be the positive solution obtained in Lemma 16 with εn → 0. Then
there exists yn ∈ R

N with εn yn → y0 ∈ SP , i.e.,

lim
n→∞ dist(εn yn,SP ) = 0,

such that the sequence vn(x) := un(x+ yn) converges in Hs(RN ) to a positive ground
state solution v of

(−Δ)sv + V (y0)v = P(y0) f (v) + Q(y0)[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s−2v, x ∈ R
N .

(3.3)

Proof Let {un} be the positive solution obtained in Lemma 16 with εn → 0. Then
Iεn (un) = cεn and I ′

εn
(un) = 0 and un > 0, ∀n ∈ N. Following the arguments in
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Lemma 16, using ( f3) and (2.6) we obtain that {un} is bounded in Hs(RN ), and there
exist a sequence {yn} ⊂ R

N and constants r , δ > 0 such that

lim inf
n→∞

∫
Br (yn)

|un|2dx ≥ δ > 0. (3.4)

If not, arguing as in the proof of Lemma 6 we can infer that

lim inf
n→∞ cεn ≥ 1

γ
N−2s

N+2s−μ
max

· N + 2s − μ

2(2N − μ)
· S

2N−μ
N+2s−μ

H .

But by Lemmas 6 and 3.2 we get

lim sup
n→∞

cεn ≤ me,βQ,γmax <
1

γ
N−2s

N+2s−μ
max

· N + 2s − μ

2(2N − μ)
· S

2N−μ
N+2s−μ

H ,

a contradiction. Set vn(x) = un(x+yn), Ṽεn (x) = V (εn(x+yn)), P̃εn (x) = P(εn(x+
yn)) and Q̃εn (x) = Q(εn(x + yn)). Then vn satisfies

(−Δ)sv + Ṽεn (x)v = P̃εn (x) f (v) + Q̃εn (x)[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s−2v, x ∈ R
N ,

whose energy functional is

Ĩεn (v) =1

2

∫
RN

|ξ |2s |v̂(ξ)|2dξ + 1

2

∫
RN

Ṽεn (x)v
2dx −

∫
RN

P̃εn (x)F(v)dx

− 1

22∗
μ,s

∫
RN

Q̃εn (x)[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s dx .

By (3.4) we may assume that vn⇀v in Hs(RN ), vn → v in Lt
loc(R

N ) for 2 ≤ t < 2∗
s

and vn(x) → v(x) a.e. on R
N , where v ≥ 0 and v �= 0. We next continue our

arguments by dividing the proof into three steps.
Step 1. We prove that {εn yn} is bounded in R

N . Or else, up to a subsequence, we
may assume that εn yn → +∞. By the boundedness of V , P , Q and (3.1), there
exist V0, P0 and Q0 such that V (εn yn) → V0 ≥ e, P(εn yn) → P0 < βQ and
Q(εn yn) → Q0 ≤ γmax. For all ϕ ∈ C∞

0 (RN ), it is easy to see that

0 =
∫

RN
ϕ(−Δ)svndx +

∫
RN

Ṽεn (x)vnϕdx −
∫

RN
P̃εn (x) f (vn)ϕdx

−
∫

RN
Q̃εn (x)[|x |−μ ∗ |vn|2∗

μ,s ]|vn|2∗
μ,s−2vnϕdx .

By the continuity and boundedness of V , P and Q one has∫
RN

Ṽεn (x)vnϕdx → V0

∫
RN

vϕdx
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and ∫
RN

P̃εn (x) f (vn)ϕdx → P0

∫
RN

f (v)ϕdx

and
∫

RN
Q̃εn (x)[|x |−μ ∗ |vn |2∗

μ,s ]|vn |2∗
μ,s−2

vnϕdx → Q0

∫
RN

[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s−2
vϕdx

as n → ∞. The proof of last formula follows from Lemma 6. It follows that

(−Δ)sv + V0v = P0 f (v) + Q0[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s−2v, x ∈ R
N .

By the fact that Iεn (un) = Ĩεn (vn), Fatou Lemma, ( f3) and Lemmas 7, 3.2 we deduce
that

me,βQ,γmax < mV0,P0,Q0 ≤ JV0,P0,Q0(v) = JV0,P0,Q0(v) − 1

2
〈J ′

V0,P0,Q0
(v), v〉

=P0

∫
RN

[1
2
f (v)v − F(v)]dx +

(
1

2
− 1

22∗
μ,s

)
Q0

∫
RN

[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s dx

≤ lim inf
n→∞

∫
RN

P̃εn (x)[
1

2
f (vn)vn − F(vn)]dx

+
(
1

2
− 1

22∗
μ,s

)
lim inf
n→∞

∫
RN

Q̃εn (x)[|x |−μ ∗ |vn|2∗
μ,s ]|vn|2∗

μ,s dx

≤ lim inf
n→∞ [ Ĩεn (vn) − 1

2
〈 Ĩ ′

εn
(vn), vn〉]

= lim inf
n→∞ [Iεn (un) − 1

2
〈I ′

εn
(un), un〉] = lim inf

n→∞ cεn ≤ lim sup
n→∞

cεn ≤ me,βQ,γmax ,

a contradiction. Therefore, {εn yn} is bounded in R
N and we may assume that εn yn →

y0 ∈ R
N as n → ∞.

Step 2. We prove that y0 ∈ SP and

lim
n→∞ Ĩεn (vn) = mV (y0),P(y0),Q(y0) = JV (y0),P(y0),Q(y0)(v).

Otherwise,

y0 /∈ Sp ={x ∈ Cp : V (x) ≤ V (xp)} ∪ {x ∈ Q \ Cp : V (x) < V (xp)}
∪ {x /∈ Q : P(x) > βQ or V (x) < V (xp)}.

If y0 ∈ Cp, then V (y0) > V (xp) = V (0) = e and P(y0) = βQ. Therefore,

max{V (y0) − e, βQ − P(y0), γmax − Q(y0)} > 0.
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If y0 ∈ Q\Cp, then V (y0) ≥ V (xp) = V (0) = e and P(y0) < βQ and Q(y0) = γmax.
Consequently,

max{V (y0) − e, βQ − P(y0), γmax − Q(y0)} > 0.

If y0 /∈ Q, then V (y0) ≥ V (xp) = V (0) = e and P(y0) ≤ βQ and Q(y0) < γmax.
Hence

max{V (y0) − e, βQ − P(y0), γmax − Q(y0)} > 0.

In summary,

max{V (y0) − e, βQ − P(y0), γmax − Q(y0)} > 0,

which implies that

me,βQ,γmax < mV (y0),P(y0),Q(y0)

by Lemma 7. Similar to the arguments as in Step 1, we conclude that v solves Eq.
(3.3) and

me,βQ,γmax < lim inf
n→∞ cεn ≤ lim sup

n→∞
cεn ≤ me,βQ,γmax ,

a contradiction. Consequently, y0 ∈ SP and lim
n→∞ dist(εn yn,SP ) = 0. Moreover, by

the above argument we have

mV (y0),P(y0),Q(y0) ≤JV (y0),P(y0),Q(y0)(v)

=JV (y0),P(y0),Q(y0)(v) − 1

2
〈J ′

V (y0),P(y0),Q(y0)(v), v〉

≤ lim inf
n→∞ [ Ĩεn (vn) − 1

2
〈 Ĩ ′

εn
(vn), vn〉]

= lim inf
n→∞ [ Ĩεn (vn) − 1

2
〈I ′

εn
(un), un〉]

= lim inf
n→∞ Ĩεn (vn) = lim inf

n→∞ Iεn (un) = lim inf
n→∞ cεn .

On the other hand,

lim sup
n→∞

Ĩεn (vn) ≤ mV (y0),P(y0),Q(y0).

Taking into account the above two inequalities we can see that

lim
n→∞ Ĩεn (vn) = mV (y0),P(y0),Q(y0) = JV (y0),P(y0),Q(y0)(v). (3.5)

Hence v is a ground state solution of (3.3).
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Step 3. We show that vn → v in Hs(RN ). Indeed, by the continuity of V , P and
Q we obtain

∫
RN

Ṽεn (x)|v|2dx → V (y0)
∫

RN
|v|2dx

and

∫
RN

P̃εn (x)F(v)dx → P(y0)
∫

RN
F(v)dx

and

∫
RN

Q̃εn (x)[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s dx → Q(y0)
∫

RN
[|x |−μ ∗ |v|2∗

μ,s ]|v|2∗
μ,s dx

as n → ∞, which implies that Ĩεn (v) → JV (y0),P(y0),Q(y0)(v) as n → ∞. Noting
that

Ĩεn (vn − v) − Ĩεn (vn) + Ĩεn (v)

=1

2
[〈vn − v, vn − v〉Ds,2 − 〈vn, vn〉Ds,2 + 〈v, v〉Ds,2 ]

+ 1

2

∫
RN

Ṽεn (x)[|vn − v|2 − |vn|2 + |v|2]dx

−
∫

RN
P̃εn (x)[F(vn − v) − F(vn) + F(v)]dx

− 1

22∗
μ,s

∫
RN

Q̃εn (x)
{[|x |−μ ∗ |vn − v|2∗

μ,s ]|vn − v|2∗
μ,s − [|x |−μ ∗ |vn|2∗

μ,s ]|vn|2∗
μ,s

+ [|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s
}
dx .

(3.6)

It is easy to prove that

〈vn − v, vn − v〉Ds,2 − 〈vn, vn〉Ds,2 + 〈v, v〉Ds,2 → 0 (3.7)

and

∫
RN

Ṽεn (x)[|vn − v|2 − |vn|2 + |v|2]dx = 2
∫

RN
Ṽεn (x)v(v − vn)dx → 0

(3.8)
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as n → ∞. By (2.2)-(2.3), differential mean value theorem, Young inequality and the
boundedness of P , there exists θ ∈ (0, 1) such that

∣∣P̃εn (x)[F(vn − v) − F(vn) + F(v)]∣∣
≤βmax

∣∣|vn − θv||v| + C |vn − θv|p−1|v| + |v|2 + C |v|p∣∣
≤C[|vn||v| + |v|2 + C |vn|p−1|v| + C |v|p]
≤C[|vn − v||v| + C |vn − v|p−1|v| + C |v|2 + C |v|p]
≤δ|vn − v|2 + δ|vn − v|p + CCδ|v|2 + CCδ|v|p.

Set

Gδ,n(x) := max{∣∣P̃εn (x)[F(vn − v) − F(vn) + F(v)]∣∣ − δ|vn − v|2 − δ|vn − v|p, 0}.

Then 0 ≤ Gδ,n(x) ≤ CCδ|v|2+CCδ|v|p ∈ L1(RN ) andGδ,n(x) → 0 a.e. onR
N . By

Lebesgue dominated convergence theorem we have
∫

RN Gδ,n(x)dx → 0 as n → ∞.
Hence

lim sup
n→∞

∣∣ ∫
RN

P̃εn (x)[F(vn − v) − F(vn) + F(v)]dx∣∣
≤ lim sup

n→∞

∫
RN

Gδ,n(x)dx + δ lim sup
n→∞

∫
RN

|vn−v|2dx + δ lim sup
n→∞

∫
RN

|vn−v|pdx
≤Cδ.

By the arbitrariness of δ,

lim
n→∞

∫
RN

P̃εn (x)[F(vn − v) − F(vn) + F(v)]dx = 0. (3.9)

In the following, we prove that

∫
RN

Q̃εn (x)
{[|x |−μ ∗ |vn − v|2∗

μ,s ]|vn − v|2∗
μ,s − [|x |−μ ∗ |vn|2∗

μ,s ]|vn|2∗
μ,s

+[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s
}
dx → 0

(3.10)

as n → ∞. In fact, by differential mean value theorem and Young inequality, we have

∣∣|vn|2∗
μ,s − |vn − v|2∗

μ,s − |v|2∗
μ,s

∣∣ 2N
2N−μ

≤C
(|vn − v|2∗

μ,s−1 · |v| + |v|2∗
μ,s

) 2N
2N−μ

≤C |vn − v|(2∗
μ,s−1)· 2N

2N−μ · |v| 2N
2N−μ + C |v|2∗

μ,s · 2N
2N−μ

=C |vn − v| N+2s−μ
N−2s · 2N

2N−μ · |v| 2N
2N−μ + C |v|2∗

s

≤δ|vn − v|2∗
s + Cδ|v|2∗

s .
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Set

Hδ,n(x) := max{∣∣|vn|2∗
μ,s − |vn − v|2∗

μ,s − |v|2∗
μ,s

∣∣ 2N
2N−μ − δ|vn − v|2∗

s , 0}.

Then 0 ≤ Hδ,n(x) ≤ Cδ|v|2∗
s ∈ L1(RN ) and Hδ,n(x) → 0 a.e. on R

N . Again
by the Lebesgue dominated convergence theorem we have

∫
RN Hδ,n(x)dx → 0 as

n → ∞. Hence, with a similar argument as the proof of (3.9) we can prove that

|vn|2∗
μ,s − |vn − v|2∗

μ,s − |v|2∗
μ,s → 0 in L

2N
2N−μ (RN ). Noting that -10pt

I :=
∫

RN
Q̃εn (x)

{[|x |−μ ∗ |vn|2∗
μ,s ]|vn|2∗

μ,s − [|x |−μ ∗ |vn − v|2∗
μ,s ]|vn − v|2∗

μ,s
}
dx

=
∫

RN
Q̃εn (x)[|x |−μ ∗ (|vn|2∗

μ,s − |vn − v|2∗
μ,s )](|vn|2∗

μ,s − |vn − v|2∗
μ,s )dx

+ 2
∫

RN
Q̃εn (x)[|x |−μ ∗ (|vn|2∗

μ,s − |vn − v|2∗
μ,s )]|vn − v|2∗

μ,s dx

:=I1 + I2.

For I1, by (Q) and the boundedness of {‖vn‖}, which together with Hardy-Littlewood-
Sobolev inequality we deduce that

∣∣ ∫
RN

Q̃εn (x)[|x |−μ ∗ (|vn|2∗
μ,s − |vn − v|2∗

μ,s )](|vn|2∗
μ,s − |vn − v|2∗

μ,s )dx

−
∫

RN
Q̃εn (x)[|x |−μ ∗ |v|2∗

μ,s ]|v|2∗
μ,s dx

∣∣
=

∣∣∣∣
∫

RN
Q̃εn (x)[|x |−μ ∗ (|vn|2∗

μ,s − |vn − v|2∗
μ,s − |v|2∗

μ,s )]

× (|vn|2∗
μ,s − |vn − v|2∗

μ,s )dx

+
∫

RN
Q̃εn (x)[|x |−μ ∗ |v|2∗

μ,s ](|vn|2∗
μ,s − |vn − v|2∗

μ,s − |v|2∗
μ,s )dx

∣∣∣∣
≤C

∥∥|vn|2∗
μ,s − |vn − v|2∗

μ,s − |v|2∗
μ,s

∥∥ 2N
2N−μ

· ∥∥|vn|2∗
μ,s − |vn − v|2∗

μ,s
∥∥ 2N

2N−μ

+ C
∥∥|vn|2∗

μ,s − |vn − v|2∗
μ,s − |v|2∗

μ,s
∥∥ 2N

2N−μ
· ∥∥|v|2∗

μ,s
∥∥ 2N

2N−μ

≤C
∥∥|vn|2∗

μ,s − |vn − v|2∗
μ,s − |v|2∗

μ,s
∥∥ 2N

2N−μ

→ 0

as n → ∞. Moreover,

I2 = 2
∫

RN
Q̃εn (x)[|x |−μ ∗ (|vn|2∗

μ,s − |vn − v|2∗
μ,s )]|vn − v|2∗

μ,s dx

= 2
∫

RN
Q̃εn (x)[|x |−μ ∗ (|vn|2∗

μ,s − |vn − v|2∗
μ,s − |v|2∗

μ,s )]|vn − v|2∗
μ,s dx
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+2
∫

RN
Q̃εn (x)[|x |−μ ∗ |v|2∗

μ,s ]|vn − v|2∗
μ,s dx

= I 12 + I 22 .

By [19], we have |x |−μ ∗ |v|2∗
μ,s ∈ L

2N
μ (RN ). Combining the fact that |vn − v|2∗

μ,s⇀0

in L
2N

2N−μ (RN ), by the definition of weak convergence one has I 22 → 0 as n → ∞.
Again by (Q), the boundedness of {‖vn‖} and Hardy-Littlewood-Sobolev inequality,
we deduce that

|I 12 | ≤ C
∥∥|vn|2∗

μ,s − |vn − v|2∗
μ,s − |v|2∗

μ,s
∥∥ 2N

2N−μ
· ∥∥|vn − v|2∗

μ,s
∥∥ 2N

2N−μ

≤ C
∥∥|vn|2∗

μ,s − |vn − v|2∗
μ,s − |v|2∗

μ,s
∥∥ 2N

2N−μ

→ 0

as n → ∞. So (3.10) is completely proved. It follows from (3.5)-(3.10) and Step 2
that

Ĩεn (vn − v) = Ĩεn (vn) − Ĩεn (v) + o(1) = Ĩεn (vn)

−JV (y0),P(y0),Q(y0)(v) + o(1) = o(1).

Similarly,

lim
n→∞〈 Ĩ ′

εn
(vn − v), vn − v〉 = 0.

Consequently, by ( f3), (Q) and (2.6) we deduce that

o(1) = Ĩεn (vn − v) − 1

2
〈 Ĩ ′

εn
(vn − v), vn − v〉

=
∫

RN
P̃εn (x)[

1

2
f (vn − v)(vn − v) − F(vn − v)]dx

+
(
1

2
− 1

22∗
μ,s

)∫
RN

Q̃εn (x)[|x |−μ ∗ |vn − v|2∗
μ,s ]|vn − v|2∗

μ,s dx

≥
(
1

2
− 1

22∗
μ,s

)
γmin

∫
RN

[|x |−μ ∗ |vn − v|2∗
μ,s ]|vn − v|2∗

μ,s dx

≥C‖vn − v‖22∗
μ,s ,

which indicates that vn → v in Hs(RN ). This completes the proof. ��
In the following, we give the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1 By Lemma 16, problem (1.4) admits a positive solution uε for
ε > 0 small enough. Hence wε(x) = uε

( x
ε

)
is a positive solution of (1.1). Let

xε and zε be the maximum points of wε and uε, respectively. Then xε = εzε. Set
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vε(x) := wε(εx + xε). Then wε(x) = vε

( x−xε

ε

)
. By Lemma 17, for any xε → x0,

lim
ε→0

dist(xε,SP ) = 0 and vε converges in Hs(RN ) to a positive ground state solution

of

(−Δ)sv + V (x0)v = P(x0) f (v) + Q(x0)[|x |−μ ∗ |v|2∗
μ,s ]|v|2∗

μ,s , x ∈ R
N .

This completes the proof. ��

Proof of Theorem 2 Without loss of generality, we may assume that xV = 0 ∈ CV in
(1.3). Consequently, by (1.3) we set e := P(0) ≥ P(x) for all |x | ≥ R. By the proof
of Lemma 6, for any α ∈ [αmin, α∞), β ∈ [β∞, βmax] and γ ∈ [γmin, γmax] we have

mα,β,γ <
1

γ
N−2s

N+2s−μ

· N + 2s − μ

2(2N − μ)
· S

2N−μ
N+2s−μ

H . (3.11)

Arguing as before, the same conclusion in Lemma 8 holds for the present case. Instead
of Lemma 9, one has

lim sup
ε→0

cε ≤ mαQ,e,γmax .

Moreover, by only truncating the potential V and P with a ∈ (αQ, α∞) we deduce
that ca,e

ε ≥ ma,e,γmax . Consequently, by (3.11) we have

lim sup
ε→0

cε <
1

γ
N−2s

N+2s−μ

· N + 2s − μ

2(2N − μ)
· S

2N−μ
N+2s−μ

H .

By the characterization of cε we can choose a minimizing sequence {un} ⊂ Nε of Iε
at cε, which is positive and bounded (PS)cε for Iε and un⇀uε in Hs(RN ). Using a
standard argument (see Lemma 6), we can prove that I ′

ε(uε) = 0.We claim that uε �= 0
for ε > 0 small enough. Otherwise, there exists a sequence ε j → 0 as j → +∞
with uε j = 0. Take a ∈ (αQ, α∞). Considering the functional I a,e

ε j
, we repeat the

arguments in Lemma 16 to obtain a contradiction. Hence the assertion is valid. The
rest proof is similar to the analysis in that of Theorem 1. This completes the proof. ��
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