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Abstract
This paper deals with a survey of Lorenz-type systems. For the first time, a new
classification of the fractional-order Lorenz-type systems was introduced. Several
chaotic systems, as particular cases of the new general form, which belong to large
Lorenz family, are presented together with equilibria, eigenvalues as well as attractors
of these systems in 3-dimensional state space, respectively.

Keywords Fractional calculus (primary) · Fractional-order chaotic system · Chaotic
oscillator · Attractor
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1 Introduction

It is well-known that chaos theory concerns complex deterministic systems behaviour.
This behaviour is known as a deterministic chaos and its investigation attracted many
researcher during last few decades. Chaotic behaviour exists in many natural systems
and disciplines, as for instance, meteorology, sociology, economics, engineering, ecol-
ogy, chemistry, medicine, including covid-19 pandemic crisis management, and so on.
One of the most popular chaotic system is a Lorenz oscillator.

The Lorenz oscillator is a 3-dimensional dynamical system that exhibits chaotic
flow [11]. The Lorenz attractor was named according to Edward Norton Lorenz, who
derived it from the simplified equations of convection rolls arising in the equations
of the atmosphere in 1963. He for the first time used the term “butterfly effect" in
his lecture named “Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set
Off a Tornado in Texas?” presented on December 29, 1972, at the conference of the
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American Association for the Advancement of Science. In chaos theory it means
sensitive dependence on initial conditions and parameters. Small variations of initial
condition or parameters of a dynamical system may produce large variations in the
long term behaviour of the system. The phrase refers to the idea that a butterfly’s
wings might create tiny changes in the atmosphere that may ultimately alter the path
of a tornado or delay, accelerate or even prevent the occurrence of a tornado in a certain
location. The flapping wing represents a small change in the initial condition of the
system, which causes a chain of events leading to large-scale alterations of events.

Such behaviour of the chaotic system can be studied through the analysis of its
mathematical model, as well as its graphical outputs as strange attractors, bifurca-
tions, and Poincaré maps. The mathematical model is usually in the form of a set of
ordinary differential equations or even more complex form, a set of fractional differ-
ential equations, where a fractional dynamics is incorporated.

In this article we will focus on generalized Lorenz-like systems described by a set
of the fractional differential equations. Various known chaotic systems belong to this
special class of the chaotic systems. Here, we present seven popular chaotic systems
of this large family with butterfly wings-like attractors.

This paper is organized as follows. Section 1 introduced the problem. In Sec-
tion 2 some preliminaries, as fractional calculus, fractional-order system model and
its numerical solution are presented. Section 3 presents a survey of fractional-order
Lorenz-type systems togetherwith illustrative examples. In Section 4 some concluding
remarks and further research ideas are discussed.

2 Preliminaries

2.1 Definition of fractional operator

The history of fractional calculus begun in letter from Leibniz to l’Hopital dated on
September 30, 1695, where derivative of the order 1/2 was mentioned.

The fractional calculus is a generalization of integration and differentiation to joint
non-integer q-order operator aD

q
b , where a and b are the bounds of the operation. The

standard notation for denoting the common left-sided integro-differential operator of
a function f (t) defined within the interval [a, t] is aD

q
t f (t), with q ∈ R.

There exist many definitions for the fractional-order operator (fractional-order inte-
grals for q < 0 and derivatives for q > 0) but in this article we will restrict only on
the Caputo definition (CD) proposed in 1967 and the Grünwald-Letnikov definition
(GLD) proposed in 1867, respectively.

The CD, for n − 1 < q < n, can be written as [20]:

aD
q
t f (t) = 1

�(n − q)

∫ t

a

f (n)(τ )

(t − τ)q−n+1 dτ. (2.1)

In case of real systems with fractional dynamics, where the fractional derivative is
used, the Caputo definition can be used because the initial conditions for the fractional
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differential equations with the Caputo derivatives are in the same form as for ordinary
differential equations, i.e. f (n)(0) = cn , ∀n ∈ N.

The GLD is given as follows [15, 20]:

aD
q
t f (t) = lim

hs→0

1

hqs

⌊
t−a
hs

⌋
∑
j=0

(−1) j
(
q

j

)
f (t − jhs), (2.2)

where �z� is the floor function, i.e. the greatest integer smaller than z, and

(
q

j

)
= �(q + 1)

�( j + 1) �(q − j + 1)
(2.3)

are the binomial coefficients with
(q
0

) = 1. This form of the derivative definition is
very helpful for obtaining a numerical solution of the fractional differential equations.

2.2 Fractional-order systems

Here, we will consider the following general incommensurate fractional-order non-
linear system represented as [19]:

0D
qi
t xi (t) = fi (t, x1(t), x2(t), . . . , xn(t)),

xi (0) = ci , i = 1, 2, . . . , n, (2.4)

where fi are nonlinear functions and ci are initial conditions. The vector representation
of (2.4) is:

Dqx = f(x), (2.5)

where q = [q1, q2, . . . , qn]T for 0 < qi < 2, (i = 1, 2, . . . , n) and x ∈ Rn .
The equilibrium points of system (2.5) are calculated via solving the following

equation
f(x) = 0 (2.6)

and we suppose that E∗ = (x∗
1 , x

∗
2 , . . . , x

∗
n ) is equilibrium point of system (2.5).

2.3 Numerical solution of initial value problem

It is known that both mentioned definitions, CD and GLD, are equivalent for a wide
class of the functions. For numerical calculation of fractional-order derivative we can
use the relation (2.7) derived from the GLD (2.2). The expression for the numerical
approximation of q-th derivative at the points khs, (k = 1, 2, 3, . . . ) has the following
general form [20]:

(k−Lm/hs )D
q
tk f (t) ≈ h−q

s

k∑
j=0

w
(q)
j f (tk− j ), (2.7)
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where Lm is the “memory length”, tk = khs , hs is the time step of calculation (defi-
nition (2.7) is valid only as hs tends towards 0 and that the accuracy of the simulation
depends on the value of hs) and w

(q)
j ( j = 0, 1, 2, . . . ) are the binomial coefficients.

For their calculation the following expression can be used:

w
(q)
0 = 1, w

(q)
j =

(
1 − 1 + q

j

)
w

(q)
j−1. (2.8)

Thus, the numerical solution of the fractional differential equation (initial value
problem) of the form

0D
q
t u(t) = f (t, u(t)), 0 ≤ t ≤ T ,

can be expressed as follows [19]:

u(tk) = f (tk, u(tk)) h
q
s −

k∑
j=1

w
(q)
j u(tk− j ). (2.9)

For the memory term expressed by the sum, a “short memory” principle for various
memory length Lm can be used.

An evaluation of the short memory effect and convergence relation of the error
between short and long memory were described and proved in [20].

3 Fractional-order Lorenz-type systems

The generalized Lorenz system is a 3-dimensional dynamical system with real param-
eters a11, a12, a21, a22, and λ3 is given in the following form [1–3]:

⎡
⎢⎣

dx(t)
dt

dy(t)
dt

dz(t)
dt

⎤
⎥⎦ =

⎡
⎣a11 a12 0
a21 a22 0
0 0 λ3

⎤
⎦

⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ + x(t)

⎡
⎣ 0 0 0
0 0 −1
0 1 0

⎤
⎦

⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ , (3.1)

where
a11a22 − a12a21 < 0, a11 + a22 < 0, λ3 < 0. (3.2)

System (3.1) consists of separated linear part and quadratic part and it was a largest
possible form that can be considered as a generalized Lorenz system in sense of
structural features and the condition given by inequalities in (3.2).

It is easy to see that the above system (3.1) contains as special cases the familiar
Lorenz system [11] when a12a21 > 0, the Chen system [7] when a12a21 < 0 and the
Lü system [13] when a12a21 = 0.

Following above generalized Lorenz system (3.1) with the conditions (3.2) and
taking into account the fractional calculus technique, let us define a new generalized
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fractional-order Lorenz-type system as follows:

⎡
⎣ 0D

q1
t x(t)

0D
q2
t y(t)

0D
q3
t z(t)

⎤
⎦ =

⎡
⎣a11 a12 0
a21 a22 0
0 0 a33

⎤
⎦

⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ + x(t)

⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦

⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ , (3.3)

where q1, q2, and q3 are arbitrary derivative orders and λ3 = a33. In case of q1 = q2 =
q3 = 1 we obtain a classical integer order case defined by expression (3.1). Vector
form of (3.3) is given as

Dqx = Ax + Q(x),

where A = [ai j ]3×3 is a real matrix and Q(x) is quadratic cross-product term.
Relation (3.3) covers the fractional-order version of the Lorenz system [8] for

a12a21 > 0, the Chen system [12] for a12a21 < 0, and the Lü system [4] system for
a12a21 = 0, respectively.

In order to covermoreLorenz-type systems froma huge family and bridges between
themderived from the original Lorenz systemduring last fewdecades (see e.g. [16, 23])
as well as their fractional-order versions, we can define even more general fractional-
order Lorenz-type system with a class of single quadratic cross-product term Q(x),
limited to forms x2(t), x(t)y(t) and x(t)z(t), which can be written as:

Dqx = Ax + Q(x) + d,

where d = [d1, d2, d3]T is vector of constants. Extended matrix representation has
the form:

⎡
⎣ 0D

q1
t x(t)

0D
q2
t y(t)

0D
q3
t z(t)

⎤
⎦ =

⎡
⎣a11 a12 0
a21 a22 0
0 0 a33

⎤
⎦

⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ + x(t)

⎡
⎣ 0 0 0
0 0 τ

μ δ 0

⎤
⎦

⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ +

⎡
⎣ d1
d2
d3

⎤
⎦

(3.4)

or shorted form for a33 = λ3 as

⎡
⎣ 0D

q1
t x(t)

0D
q2
t y(t)

0D
q3
t z(t)

⎤
⎦ =

[
A 0
0 λ3

]⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ + x(t)

⎡
⎣ 0 0 0
0 0 τ

μ δ 0

⎤
⎦

⎡
⎣ x(t)
y(t)
z(t)

⎤
⎦ +

⎡
⎣ d1
d2
d3

⎤
⎦ , (3.5)

where matrix A is given as

A =
[
a11 a12
a21 a22

]
(3.6)

and the matrix A has eigenvalues λ1, λ2 ∈ R, where conditions are λ1,3 < 0 and
λ2 > 0. It is valid only for equilibrium point at the origin E∗ = (0; 0; 0). For other
equilibria these conditions are not satisfied.

Except the parameters in the matrix A and in vector d, we can moderate other
parameters τ ,μ, and δ and obtain an additional known Lorenz-type systems, which are
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Table 1 The values of parameters in (3.5) and (3.6) for various Lorenz-type chaotic systems with d1 =
d2 = 0.

System a11 a12 a21 a22 a33 τ δ μ d3

Lorenz (3.8) −a a c −1 −b −1 1 0 0

Chen (3.11) −a a c − a c −b −1 1 0 0

Lü (3.14) −a a 0 c −b −1 1 0 0

Yang (3.17) −a a c 0 −b −1 1 0 0

Liu (3.20) −a a c 0 −b −1 0 h 0

Shimizu-Morioka (3.23) 0 a 1 −c −b −1 0 1 0

Burke-Shaw (3.26) −a a 0 −1 0 −1 g 0 d

presented in this article, as for example, Yang system [25], Liu system [10], Shimizu-
Morioka system [22], and Burke-Shaw system [21].

In Table 1 are listed the sets of the model parameters for various chaotic systems
presented in this article. It is obvious that by changing the selected system parameters
the other type chaotic systems could be obtained as well.

In addition, we present the simulation results for seven chaotic systems presented
in Table 1 for certain values of the model parameters as well as the fractional orders
in the fractional differential equations, respectively. All presented simulations were
performed by using relation (2.9) for simulation time T = 100 s and calculation time
step hs = 0.005 without using the short memory principle. It means that whole data
history was considered for calculation of new value.

We also investigate the stability of these systems in each equilibrium point through
eigenvalues [18].

3.1 Lorenz system

The famous Lorenz chaotic system is defined as [11]:

dx(t)

dt
= a(y(t) − x(t)),

dy(t)

dt
= x(t)(c − z(t)) − y(t),

dz(t)

dt
= x(t)y(t) − bz(t), (3.7)

where a is called the Prandtl number and c is called the Rayleigh number. All a, b, c >

0, but usually a = 10, b = 8/3, and c = 28.
The fractional-order Lorenz system is described as [8]:

0D
q1
t x(t) = a(y(t) − x(t)),

0D
q2
t y(t) = x(t)(c − z(t)) − y(t),

0D
q3
t z(t) = x(t)y(t) − bz(t), (3.8)
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Fig. 1 Strange attractor of the
fractional-order Lorenz system
(3.8) in state space

where q1, q2, and q3 are derivative orders, which could be arbitrary real numbers.
The Lorenz system has three equilibria, where one is obviously in origin E1 =

(0; 0; 0) and the additional two for above values of the parameters a, b, and c are:
E2 = (8.4853; 8.4853; 27), and E3 = (−8.4853;−8.4853; 27). The Jacobian matrix
J of the Lorenz system at the equilibrium point E∗ = (x∗, y∗, z∗) is given as:

J =
⎡
⎣ −a a 0
c − z∗ −1 −x∗
y∗ x∗ −b

⎤
⎦ . (3.9)

For the equilibrium E1 the eigenvalues are λ1 ≈ −22.8277, λ2 ≈ 11.8277, and
λ3 = −8/3, and for the equilibria E2 and E3 we get the same eigenvalues λ1 ≈
−13.8546, and λ2,3 ≈ 0.0940 ± i10.1945. All three equilibria are unstable.

In Fig. 1 is depicted the simulation result (double-scroll attractor) of the Lorenz
system (3.8) for the following parameters: a = 10, b = 8/3, c = 28, orders q1 =
q2 = q3 = 0.993 and initial conditions (x(0), y(0), z(0)) = (1, 1, 1).

3.2 Chen system

In 1999, Chen found another a simple 3-dimensional autonomous system, which is
not topologically equivalent to Lorenz system and which has a chaotic attractor too.
The Chen chaotic system is described by the following equations [13, 26]:

dx(t)

dt
= a(y(t) − x(t)),

dy(t)

dt
= (c − a)x(t) − x(t)z(t) + cy(t),

dz(t)

dt
= x(t)y(t) − bz(t), (3.10)

123



The fractional-order... 369

Fig. 2 Strange attractor of the
fractional-order Chen system
(3.11) in state space

where (a, b, c) ∈ R3. When parameters (a, b, c) = (35, 3, 28), the chaotic attractor
exists.

The fractional-order Chen system is described as follows [12]:

0D
q1
t x(t) = a(y(t) − x(t)),

0D
q2
t y(t) = (c − a)x(t) − x(t)z(t) + cy(t),

0D
q3
t z(t) = x(t)y(t) − bz(t), (3.11)

where q1, q2, and q3 are real derivative orders and where 0 < q1, q2, q3 ≤ 1.
The equilibrium points of the system with above parameters are: E1 = (0; 0; 0),

E2 = (7.9373; 7.9373; 21), and E3 = (−7.9373;−7.9373; 21). The Jacobian matrix
J of the Chen system at the equilibrium point E∗ = (x∗, y∗, z∗) is given as

J =
⎡
⎣ −a a 0
c − a − z∗ c −x∗

y∗ x∗ −b

⎤
⎦ . (3.12)

For the equilibrium E1 we obtain the eigenvalues λ1 = −30.8359, λ2 ≈ 23.8359,
and λ3 = −3, for the equilibria E2 and E3 we get the same eigenvalues λ1 ≈
−18.4280, and λ2,3 ≈ 4.2140 ± i14.8846. All three equilibria are unstable.

In Fig. 2 is depicted the simulation result (double-scroll attractor) of the fractional-
order Chen system (3.11) with the parameters a = 35, b = 3, c = 28, orders
q1 = q2 = q3 = 0.9, and initial conditions (x(0), y(0), z(0)) = (−9,−5, 14).

3.3 Lü system

The so-called Lü system is known as a bridge between the Lorenz system and the
Chen system and can be written as [13]:

123



370 I. Petráš

Fig. 3 Strange attractor of the
fractional-order Lü system
(3.14) in state space

dx(t)

dt
= a(y(t) − x(t)),

dy(t)

dt
= −x(t)z(t) + cy(t),

dz(t)

dt
= x(t)y(t) − bz(t), (3.13)

where the parameters are a = 36, b = 3, and c varies.
Its fractional-order version is described as follows [4]:

0D
q1
t x(t) = a(y(t) − x(t)),

0D
q2
t y(t) = −x(t)z(t) + cy(t),

0D
q3
t z(t) = x(t)y(t) − bz(t), (3.14)

where 0 < q1, q2, q3 ≤ 1, are arbitrary orders of derivatives, and a, b, c are model
parameters.

The Lü system (3.14) has three equilibrium points: E1 = (0; 0; 0), E2 =
(7.7460; 7.7460; 20) and E3 = (−7.7460;−7.7460; 20).

The Jacobian matrix J of the Lü system at the equilibrium point E∗ = (x∗, y∗, z∗)
is defined as follows

J =
⎡
⎣ −a a 0

−z∗ c −x∗
y∗ x∗ −b

⎤
⎦ . (3.15)

Let us consider the following parameters a = 36, b = 3, c = 20 of the system
(3.13). For equilibrium points E1 we obtain the following eigenvalues: λ1 = −36,
λ2 = 20 and λ3 = −3. For the equilibria E2 and E3 we have the same eigenvalues
λ1 ≈ −22.6516 and λ2,3 ≈ 1.8258 ± i13.6887. All three equilibria are unstable.

In Fig. 3 is depicted the simulation result (double-scroll attractor) of the fractional-
order Lü system (3.14) with the parameters a = 36, b = 3, c = 20, orders q1 = 0.98,
q2 = 0.99, q3 = 0.98, and initial conditions (x(0), y(0), z(0)) = (0.2, 0.5, 0.3).
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3.4 Yang system

The Yang chaotic system is described as follows [25]:

dx(t)

dt
= a(y(t) − x(t)),

dy(t)

dt
= cx(t) − x(t)z(t),

dz(t)

dt
= x(t)y(t) − bz(t), (3.16)

where a, b, c are real parameters with a, b > 0 and c ∈ R. When a = 10, b = 8/3,
and c = 16, this system is chaotic. The algebraical form of the chaotic attractor is very
similar to the Lorenz-type systems but they are different and, in fact, nonequivalent in
topological structures.

Its fractional-order version can be described as follows:

0D
q1
t x(t) = a(y(t) − x(t)),

0D
q2
t y(t) = cx(t) − x(t)z(t),

0D
q3
t z(t) = x(t)y(t) − bz(t), (3.17)

where q1, q2, and q3 are derivative orders, which could be arbitrary real numbers.
The Yang system (3.17) with above parameters has three equilibrium points: E1 =

(0; 0; 0), E2 = (6.5320; 6.5320; 16) and E3 = (−6.5320;−6.5320; 16).
The Jacobian matrix J of the Yang system for the equilibrium point E∗ =

(x∗, y∗, z∗) is defined as follows

J =
⎡
⎣ −a a 0
c − z∗ 0 −x∗
y∗ x∗ −b

⎤
⎦ . (3.18)

For equilibrium points E1 we obtain the following eigenvalues: λ1 ≈ −18.6015,
λ2 ≈ 8.6015 and λ3 = −8/3. For the equilibria E2 and E3 we have the same
eigenvalues λ1 ≈ −12.5570 and λ2,3 ≈ −0.0548 ± i8.2434. The equilibrium E1
is unstable and the equilibria E2 and E3 are stable.

In Fig. 4 is depicted the simulation result (double scroll-attractor) of the fractional-
order Yang system (3.17) with parameters a = 10, b = 8/3, c = 16, orders q1 =
q2 = q3 = 0.99, and initial conditions (x(0), y(0), z(0)) = (0.1, 0.1, 0.1).

3.5 Liu system

Another system similar to the Lorenz chaotic system was proposed in [10]:

dx(t)

dt
= a(y(t) − x(t)),
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Fig. 4 Strange attractor of the
fractional-order Yang system
(3.17) in state space

dy(t)

dt
= cx(t) − kx(t)z(t),

dz(t)

dt
= −bz(t) + hx2(t). (3.19)

The system exhibits chaotic behaviour for parameters a = 10, b = 2.5, c = 40, k = 1,
and h = 4.

Following the previously published fractional-order version of the Lorenz family
systems, let us define a fractional-order version of system described by (3.19), which
has the following form:

0D
q1
t x(t) = a(y(t) − x(t)),

0D
q2
t y(t) = cx(t) − kx(t)z(t),

0D
q3
t z(t) = −bz(t) + hx2(t), (3.20)

where q1, q2, q3 are derivative orders, which could be arbitrary real numbers.
The Liu system (3.20) with above parameters has three equilibrium points: E1 =

(0; 0; 0), E2 = (5; 5; 40) and E3 = (−5;−5; 40).
The Jacobianmatrix J of the Liu system for the equilibrium point E∗ = (x∗, y∗, z∗)

is defined as follows

J =
⎡
⎣ −a a 0
c − kz∗ 0 −kx∗
2hx∗ 0 −b

⎤
⎦ . (3.21)

For equilibrium points E1 we obtain the following eigenvalues: λ1 ≈ −25.6155,
λ2 ≈ 15.6155 and λ3 = −2.5. For the equilibria E2 and E3 we get the same eigenval-
ues λ1 ≈ −17.5614 and λ2,3 ≈ 2.5307 ± i10.3673. All three equilibria are unstable.

In Fig. 5 is depicted the simulation result (double scroll-attractor) of the fractional-
order Liu system (3.20) with parameters a = 10, b = 2.5, c = 40, k = 1, h = 4,
orders q1 = q2 = q3 = 0.95, and initial conditions (x(0), y(0), z(0)) = (0.2, 0, 0.5).

123



The fractional-order... 373

Fig. 5 Strange attractor of the
fractional-order Liu system
(3.20) in state space

Obviously, the strange attractor of the fractional-order Liu system (3.20), shown in
Fig. 5, is slightly different to the Lorenz attractor depicted in Fig. 1.

3.6 Shimizu-Morioka system

A simple model, the solution of which shows a behaviour as in the Lorenz model for
high Rayleigh numbers was proposed in [22]:

dx(t)

dt
= ay(t),

dy(t)

dt
= x(t)(1 − z(t)) − cy(t),

dz(t)

dt
= −bz(t) + x2(t), (3.22)

where we added an additional parameter a in the first equation.
Its fractional-order version was suggested in [27] and has the form:

0D
q1
t x(t) = ay(t),

0D
q2
t y(t) = x(t)(1 − z(t)) − cy(t),

0D
q3
t z(t) = −bz(t) + x2(t), (3.23)

where q1, q2, q3 are derivative orders, which could be arbitrary real numbers.
The Shimizu-Morioka system (3.23) with above parameters has three equilibrium

points: E1 = (0; 0; 0), E2 = (0.61237; 0; 1) and E3 = (−0.61237; 0; 1).
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Fig. 6 Strange attractor of the
fractional-order
Shimizu-Morioka system (3.23)
in state space

The Jacobian matrix J of the Shimizu-Morioka system for the equilibrium point
E∗ = (x∗, y∗, z∗) is defined as follows

J =
⎡
⎣ 0 a 0
1 − z∗ −c −x∗
2x∗ 0 −b

⎤
⎦ . (3.24)

For equilibrium points E1 we obtain the following eigenvalues: λ1 ≈ −1.4839,
λ2 ≈ 0.6739 and λ3 = −0.375. For the equilibria E2 and E3 we have the same
eigenvalues λ1 ≈ −1.3650 and λ2,3 ≈ 0.0900 ± i0.7358. All three equilibria are
unstable.

In Fig. 6 is depicted the simulation result (double scroll-attractor) of the fractional-
order Shimizu-Morioka system (3.23) with parameters a = 1, b = 0.375, c = 0.81,
orders q1 = 0.95, q2 = 0.97, q3 = 0.99, and initial conditions (x(0), y(0), z(0)) =
(0.1, 0.1, 0.2).

It can be proved that there is a large open region in the (b, c)-plane where the
Shimizu-Morioka system has a strange attractor very similar to the classical attractor
of the Lorenz model.

3.7 Burke-Shaw system

TheBurke-Shaw systemwas derived by Burke and Shaw from the Lorenz system [21].
This system has similar algebraic structure to the Lorenz system but is topologically
nonequivalent to the generalized Lorenz-type system and can be expressed as follows:

dx(t)

dt
= −a(x(t) + y(t)),

dy(t)

dt
= −kx(t)z(t) − y(t),

dz(t)

dt
= gx(t)y(t) + d, (3.25)
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Fig. 7 Strange attractor of the
fractional-order Burke-Shaw
system (3.26) in state space

where for parameters a = k = g = 10 and d = 13 or d = 4.272 chaos is observed.
Its fractional-order version can be expressed as [14]:

0D
q1
t x(t) = −a(x(t) + y(t)),

0D
q2
t y(t) = −kx(t)z(t) − y(t),

0D
q3
t z(t) = gx(t)y(t) + d, (3.26)

where q1, q2, q3 are derivative orders, which could be arbitrary real numbers.
The Burke-Shaw system (3.26) with above parameters has two equilibrium points:

E1 = (1.1402;−1.1402; 0.1) and E2 = (−1.1402; 1.1402; 0.1). Obviously, due to
parameter d in the model there is no equilibrium point at the origin.

The Jacobian matrix J of the Burke-Shaw system for the equilibrium point E∗ =
(x∗, y∗, z∗) is defined as follows

J =
⎡
⎣ −a −a 0

−kz∗ −1 −kx∗
gy∗ gx∗ 0

⎤
⎦ . (3.27)

For the equilibria E1 and E2 we obtain the same eigenvalues λ1 ≈ −14.4527 and
λ2,3 ≈ 1.7263 ± i13.3013. Both equilibria are unstable.

In Fig. 7 is depicted the simulation result (double scroll-attractor) of the fractional-
order Burke-Shaw system (3.26) with parameters a = k = g = 10, d = 13, orders
q1 = 0.95, q2 = 0.97, q3 = 0.99, and initial conditions (x(0), y(0), z(0)) =
(0.1, 0.1, 0.1).

It should be noted, that various Lorenz-type systems are interconnected and they
could be topologically equivalent or not. The Burke-Shaw system is topologically
equivalent to the Lorenz system under the transformation [6].
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4 Conclusions

In this survey paper we tried to classified a wide scale of the Lorenz-type sys-
tems, which were investigated during last years by many authors. Those authors
detailed investigated the Lorenz-type chaotic systems and their characteristics as Lya-
punov exponents, fractal dimensions, stability, attractors, biffurcation diagrams as
well Poincaré maps, etc. However, we did not repeated this investigation again. Here
we considered the fractional-order modifications of these type systems by illustra-
tive examples. Moreover, for the first time a new general form of the fractional-order
Lorenz-type system (3.5) was presented as well. New general form defined in this
paper covers not only known systems and bridges between them but even conjugate
systems [24] also know as hyperbolic system [3], when parameter τ = 1 in (3.5).
Some other Lorenz-type systems, which are not considered in this article are also
particular cases of the general form (3.5), defined in this paper, as for example, Sprott
systems (a few of 19 examples in [23]), Li system [9], Pehlivan-Uyaroǧlu system [17],
model for El-Niño weather phenomenon [5] as well as a whole zoo of systems from
the Lorenz-type family (several of 150 examples described in [16]).

There are also higher dimension Lorenzmodel aswell as other Lorenz-type systems
with a different quadratic form. However, in this brief survey presented in this article
we did not consider them. It is an idea for further research.
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1. Čelikovský, S., Vaněček, A.: Bilinear systems and chaos. Kybernetika 30(4), 403–423 (1994)
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