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Abstract
In this work, we aim at the question of holographic phase transitions in two-dimensional systems with Lifshitz scaling. We 
consider the gravity side candidate for a dual description as the black hole solution of new massive gravity (NMG) with 
Lifshitz scaling. We discuss the effects due to the Lifshitz scaling in the AGGH (Ayon-Beato-Garbarz-Giribet-Hassaïne) 
solution in comparison with the BTZ (Bañados-Teitelboim-Zanelli) black hole. Likewise, we compute the order parameter 
and it indicates a second-order phase transition in a (1 + 1) dimension Lifshitz boundary.

Keywords New massive gravity · Phase transition · Lifshitz symmetry · Black hole

1 Introduction

The Anti-de Sitter/conformal field theories correspond-
ence (AdS/CFT) turned out to be a very useful tool to 
map the physics of a quantum field theory at strong cou-
pling in D − 1 dimensions to a classical gravity theory in 
D dimensions whose spatial infinity is isometric to the 
AdS spacetime [1–3].

Much attention has been given to the extensions of such 
a correspondence regarding the study of condensed matter 
systems defined at the AdS boundary, such as supercon-
ductivity and superfluidity [4, 5], non-fermi liquids [6] and 
strange metals [7].

In order to study condensed matter systems described 
by non-relativistic theories, we need solutions to the 
gravity side which exhibit the so-called Lifshitz scaling 
[8–10]. Recently, a black hole solution with such a sym-
metry was found in the context of new massive gravity 
(NMG) in three dimensions [11]. Therefore, temperature 
can be added to the holographic description resulting in 
a non-relativistic field theory at finite temperature at 
the boundary.

Such a black hole solution is stable under scalar and 
spinor perturbations [12] and from the point of view of the 
AdS/CFT correspondence the IR limit is a dual description 
of an integrable model system given by the Korteweg-de 
Vries (KdV) equation [13].

This paper is organized as follows. In Section 2, a brief 
review of the Lifshitz black hole in three dimensions is 
presented. In Section 3, the equations of motion for the 
matter fields in the bulk are derived and analyzed in the 
probe limit. In Section 4, using a semi analytical analysis, 
we obtain the phase transition in the Lifshitz boundary and 
the critical electric field where it occurs. In Section 5, we 
numerically solve the equations of motion and derive the 
order parameters. Finally in Section 6, we conclude and 
discuss some open questions.
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2  The Gravity Background  
and the Matter Fields

The NMG is a three-dimensional theory of a spin-2 field 
[14] equivalent to the unitary Pauli-Fierz theory [15] at the 
linearized level. Moreover, a version of NMG with a non-
vanishing cosmological constant was considered in [11] and 
the corresponding action reads

where R is the Ricci scalar, Λ is the three-dimensional cos-
mological constant and K encodes the higher curvature terms,

with m̄ being the graviton mass in three dimensions. Look-
ing for black hole solutions in the equations of motion of the 
action (1), is assumed a line element

where z is the dynamic exponent which determines two dif-
ferent black hole solutions.

The first one, when z = 3 , is a black hole solution named 
the AGGH black hole. It exhibits the anisotropic scale invari-
ance t → �zt , x → �x . The line element that describes the 
geometry for this black hole [11] is given by

where

with r+ = l
√
M denoting the event horizon location, M is 

related to the black hole mass and l =
√
−13∕32Λ is the AdS 

radius. The spacetime represented by such a solution has a 
light-like singularity at r = 0 . The spatial infinity ( r → ∞ ) 
has some properties similar to the AdS spacetime [12].

The second solution, for z = 1 , is the well-known BTZ 
(Bañados-Teitelboim-Zanelli) black hole solution [16]

where f(r) is given by (5), the event horizon is located at 
r+ = l

√
M covering the singularity at r = 0 and in the limit 

r → ∞ the solution is AdS-like. Thus, the NMG allows us 
to study the relativistic case z = 1 and the non-relativistic 

(1)Sg =
1

16�G ∫ d3x
√
−g(R − 2Λ − K),

(2)K =
1

m̄2

[
R𝜇𝜈R

𝜇𝜈 −
3

8
R2

]
,

(3)ds2 = −
r2z

l2z
f (r)dt2 +

l2

r2f (r)
dr2 + r2d�2 ,

(4)ds2 = −
r6

l6
f (r)dt2 +

l2

r2f (r)
dr2 + r2d�2 ,

(5)f (r) =

(
1 −

r2
+

r2

)
,

(6)ds2 = −
r2

l2
f (r)dt2 +

l2

r2f (r)
dr2 + r2d�2 ,

case z = 3 in the same setup. The theory provides a scenario 
to observe the role of Lifshitz symmetry in the formation 
of the holographic phase transitions in comparison to the 
relativistic case z = 1.

Thus, we take as a background, the geometry given by 
the three-dimensional black holes of NMG. These solu-
tions have all the main features needed in order to apply the 
gauge/gravity holographic prescription for phase transitions: 
there is an AdS-like spatial infinity and a regular event hori-
zon, whose presence is necessary for the condensation of a 
charged scalar field.

The action describing a charged scalar field Ψ coupled to 
gravity and to the electromagnetic field in three dimensions 
can be written as

where F�� = ∇�A� − ∇�A� , q is the scalar field charge and 
m its mass. Here, we consider the scalar and gauge fields 
in the probe limit. This means that the fields do not back-
react on the geometry. Thus, in order to describe the phase 
transition, it is enough to consider the equations of motion 
for the matter fields evolving in the fixed background of 
the metrics (4) or (6). If we perform the field rescaling 
Ψ → Ψ∕q , A� → A�∕q , the probe limit can be understood 
as the limit q → ∞ . Since in this limit, the action of mat-
ter fields behaves as q−2 they decouple from gravity, whose 
action behaves as q0.

Finally, an important question arises when we work in 
(2 + 1)-dimensional gravity. Clement [17] pointed out that 
rotating charged three-dimensional black holes present a log-
arithmic divergence in the mass and angular momentum. In 
such a case, the author introduced a Chern-Simons term in 
the Einstein-Maxwell action in order to heal those divergen-
cies. However, Bañados et al. [16] have shown that for static 
charged BTZ such a divergence in the mass can be handled. 
Thus, we expect that not to be a problem in our cases. In fact, 
in a quick inspection, we observe that the introduction of a 
Chern-Simons term in the action 7 modifies the coupling 
between Abelian and scalar fields. The effect of this term in 
the phase transition of the system described on the boundary 
will be addressed in future work.

3  Equations of Motion and Symmetries

In this section, we are going to present the equations of 
motion for the fields Ψ and A� in the probe limit, show-
ing the role of the scaling symmetries of these fields in 
the equations.

The equations of motion for Ψ and A� are, respectively,

(7)

Sf = ∫ d3x
√
−g

�
−
1

4
F��F

�� − �∇Ψ − iqAΨ�2 − m2�Ψ�2
�
,
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where we have taken Ψ to be real, without loss of generality. 
For our purposes, it is enough to consider the fields depend-
ing only on the radial coordinate r as

Then, Eqs. (8)–(9) reduce to

where � = ml and z = 1 , z = 3 correspond to the dynami-
cal exponents for BTZ and AGGH cases, respectively. 
The coordinate u = r+∕r is the new radial coordinate 
which maps the event horizon and the boundary to the 
interval [1, 0] and ′ represents the derivative with respect 
to u coordinate.

The above system of differential equations exhibits a very 
useful scaling symmetry for the fields Ψ(u) and �(u) . If we 
perform the redefinitions

where TH is the Hawking temperature,

the equations of motion (11)–(12) can be cast in the dimen-
sionless form

without an explicit dependence on the black hole tempera-
ture. As we will see in detail in the next section, the phase 
transition will be governed by the value of the electric field 
due the scalar field condensate in the neighborhood of the 
event horizon.

(8)
∇�∇�Ψ + 2iqA�g

��∇�Ψ + iqg��Ψ∇�A�

− q2g��A�A�Ψ − m2Ψ = 0 ,

(9)∇�F�� = 2q2A�Ψ
2 ,

(10)Ψ = Ψ(r), A = �(r)dt.

(11)

Ψ��(u) +

[
f �(u)

f (u)
−

z

u

]
Ψ�(u)

+

[
q2l2(z+1)u2(z−1)

f (u)2r2z+
�(u)2 −

�2

f (u)u2

]
Ψ(u) = 0 ,

(12)���(u) +
z

u
��(u) −

2q2l2Ψ(u)2

f (u)u2
�(u) = 0 ,

(13)Ψ(u) →
1

ql
Ψ̂(u), 𝜙(u) →

2𝜋TH

q
�̂�(u),

(14)TH =
1

2�

rz+

lz+1
,

(15)�̂���(u) +
z

u
�̂��(u) −

2Ψ̂(u)2

f (u)u2
�̂� = 0 ,

(16)

Ψ̂��(u) +

[
f �(u)

f (u)
−

z

u

]
Ψ̂�(u) +

[
u2(z−1)

f (u)2
�̂�2(u) −

𝛼2

f (u)u2

]
Ψ̂(u) = 0 ,

Furthermore, it is worth mentioning that the equations 
of motion (15) (16) are invariant under the anisotropic scale 
invariance t → �z , r → �−1r if

and the Hawking temperature scales as

Looking into the solutions (21), we see that

Thus, comparing (19) and (18), we can build up the vari-
able TH∕� as playing the role of our temperature parameter 
in order to eliminate the scale factor � from the description. 
Therefore, we set

implying that the critical temperature Tc ∝ �.

4  The Phase Transition and the Critical 
Electric Field

In this section, we obtain an approximate expression for 
the dual operators ⟨O1⟩ and ⟨O2⟩ in terms of the asymptotic 
behavior of the solutions for the fields Ψ and � following 
the standard AdS/CFT correspondence [4, 18]. In summary, 
the process consists in finding the leading order solutions in 
the region near the black hole event horizon u = 1 and in the 
spatial infinity u = 0 , then match the two sets of solutions 
at an intermediate radius u = u0 requiring continuity of the 
functions Ψ and � . The validity of these approximations and 
matching conditions are discussed in [19].

The result is an approximate expression for the phase 
transition and consequently the critical value of the order 
parameter which controls the charged scalar field condensa-
tion. Therefore, we will be able to see explicitly the conden-
sate dependence on the Lifshitz exponent z.

4.1  Solutions at Spatial Infinity u → 0

The solutions for the fields �(u) and Ψ(u)1 from the Eqs. (15) 
and (16) in the spatial infinity are given by

(17)� → �−z�, Ψ → Ψ ,

(18)TH → �−zTH .

(19)� → �−z�, � → �−z� .

(20)T̂ =
TH

𝜇
,

(21)�(u) =

⎧⎪⎨⎪⎩

� + � ln u if (z = 1),

� + �
u1−z

1−z
if (z ≠ 1).

1 We omit the hat notation.
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with

where � is identify as the charge density of the dual field the-
ory living at u = 0 and � its chemical potential. The factors 
C1 and C2 will be identified as the expectation value ⟨O1⟩ and 
⟨O2⟩ of the dual operators in the AdS-like border. As we see 
in the expression (21) the leading term is ln(u) (for z = 1 ), 
and u1−z (for z ≠ 1 ), its coefficient is interpreted as a chemi-
cal potential and the subleading term as the charge density.

An interesting effect of the Lifshitz symmetry in the 
evolution of the scalar field can be observed by inspect-
ing the conformal dimension of its dual operator in Eq. 
(23). Besides the evident fact that the Lifshitz exponent z 
increases the conformal dimension, when z ≠ 0 a new BF 
bound to the mass of the scalar field is obtained

For z = 3 the BF-Lifshitz bound �2

BFL
= −4 is smaller 

than the traditional BF bound �2

BF
= −1 for (2 + 1) dimen-

sions. Thus, the presence of the Lifshitz symmetry expands 
the range of mass of the scalar field affecting the conformal 
dimension of the operator living on the boundary.

It is important to stress that to obtain the asymptotic 
fields presented in Eqs. (21) and (22), we had to impose 
restrictions on the values of the scalar field mass. In order 
to obtain the asymptotic solution to � , we had to impose that 
Ψ → 0 faster than u near to the boundary (u → 0) resulting in 
a condition that must be satisfied, that is, Δ± > 1 . Because of 
this restriction the permitted range of the mass of the scalar 
field changes.

In Fig. 1, we show these ranges according to the confor-
mal dimension Δ for BTZ and AGGH black holes. For the 
BTZ black hole such a restriction excludes Δ− as a possible 
conformal dimension for all range of mass while for Δ+ the 
permitted range will be −1 ≤ �2 ≤ 0 . For the AGGH black 

(22)Ψ(u) = C1u
Δ+ + C2u

Δ− ,

(23)Δ± =
(z + 1)

2
±

1

2

√
(1 + z)2 + 4�2 , and � = ml ,

(24)�2

BFL
= −

(1 + z)2

4
.

hole, the conformal dimension Δ− will have the range 
restricted to −4 ≤ �2 ≤ −3 while for Δ+ the range will be 
−4 ≤ �2 ≤ 0 . This limit is consistent with [9]. We exclude 
positive values of �2 for both cases because Δ− < 0 and Ψ 
would diverge as u tends to 0.

4.2  Solutions at the Event Horizon u → 1

In order to have a finite electric potential at the event hori-
zon, we must impose

and Eq. (16) implies

We expand the fields Ψ and � near the event horizon 
u = 1 as

Expanding the equation of motion for Ψ (16) near u = 1 
an substituting Ψ��(1) in the expansion (27), we have

The same procedure for the electric potential � leads to

where in the above two expressions, we have imposed the 
regularity conditions at the event horizon (25) and (26).

(25)�(1) = 0,

(26)Ψ�(1) = −
�2

2
Ψ(1).

(27)Ψ(u) = Ψ(1) + (u − 1)Ψ�(1) +
1

2
(u − 1)2Ψ��(1) +⋯ ,

(28)�(u) = �(1) + (u − 1)��(1) +
1

2
(u − 1)2���(1) +⋯ .

(29)

Ψ(u) = Ψ(1) −
1

2
�2(u − 1)Ψ(1)

−
[
1

8
�2(3 − z) +

1

16
�4 −

1

2
��(1)2

]

(u − 1)2Ψ(1)2.

(30)�(u) =

[
(u − 1) −

z + Ψ(1)2

2
(u − 1)2

]
��(1),

Fig. 1  Limits of mass for Δ± for 
BTZ case (left) and in AGGH 
(right)
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4.3  Matching the Solutions at u = u
0

Having the solutions (21) and (22) at spatial infinity and (30) 
and (29) near the event horizon, we can connect these two 
sets of solutions smoothly at a radius u = u0 , which can be 
arbitrary without changing the main features of the phase 
transition. We begin by the BTZ black hole (z = 1) , whose 
connection relations at u = u0 are

where we have defined a ≡ Ψ(1) and b ≡ −��(1) and taken 
C2 = 0 in order to find C1 . On the other hand, if we take 
C1 = 0 , we get C2.

Solving Eq. (32) for a2,

For the charged scalar field to condense near the event 
horizon, we see that b∕� must be negative, since a is 
assumed to be real, therefore, a2 > 0.

From Eqs. (33) and (34), we find

where the critical value for b, denoted by bc , is given by

and

Using the AdS/CFT dictionary, Eq. (36) can be read off 
as the expectation value ⟨O1⟩ of the operator dual to the 
charged scalar field Ψ,

(31)� + � ln u0 =
[
(1 − u0) +

1

2

(
1 + a2

)
(1 − u0)

2

]
b ,

(32)
�

u0
= −

[
1 + (1 + a2)(1 − u0)

]
b ,

(33)

C1u
Δ+

0
=

{
1 −

�2

2
(u0 − 1) +

1

2
(u0 − 1)2

[
�2

2
+

�4

8
−

b2

8

]}
a ,

(34)

Δ+C1u
Δ+−1

0
=

{
−
�2

2
+

[
�2

2
+

�4

8
−

b2

8

]
(u0 − 1)

}
a ,

(35)a2 = −
�

b(1 − u0)u0

[
1 +

(
2 − u0

)
u0b

�

]
.

(36)C1 = Γ+

(
bc

b

) 1

2

(
1 −

b

bc

) 1

2

,

(37)bc =
|�|(

2 − u0
)
u0

,

(38)Γ+ =
1

2 u
Δ+−1

0

[
4 + �2(1 − u0)

2u0 + Δ+(1 − u0)

][
2 − u0

1 − u0

] 1

2

.

As expected, ⟨O1⟩ is zero at the critical value of the elec-
tric field b = bc , the charged scalar field condensates and, of 
course, the phase transition occurs for b < bc . The exponent 
1/2 shows us the general behavior of mean-field theory for 
a second-order phase transition. For the AGGH black hole 
( z = 3 ) the same qualitative behavior is observed and the 
structure of a mean-field theory is preserved at the boundary.

Now, considering C1 = 0 and following the same steps 
for C2 , we find that the expectation value ⟨O2⟩ for the BTZ 
black hole is given by

Thereafter, the same procedure was performed for the 
AGGH black hole (z = 3) . We just list the results for the 
two operators,

where

if we exchange Δ+ for Δ− . The critical value of the electric 
field is

5  Numerical Results for the Phase Transition

In this section, we numerically solve Eqs. (15) and (16). 
They form a system of coupled second-order ordinary dif-
ferential equations, which can be solved using fourth-order 
Runge-Kutta method. We input the boundary conditions at 
the event horizon u = 1 ( r = r+ ) and find the values of Ψ(u) 

(39)⟨O1⟩
1

Δ+ = Γ

1

Δ+

+

�
bc

b

� 1

2Δ+

�
1 −

b

bc

� 1

2Δ+

.

(40)⟨O2⟩
1

Δ− = Γ
1

Δ−
−

�
bc

b

� 1

2Δ−

�
1 −

b

bc

� 1

2Δ−

.

(41)⟨O1⟩
1

Δ+

z>1
= Γ

1

Δ+

+,z>1

�
bc

b

� 1

2Δ+

�
1 −

b

bc

� 1

2Δ+

,

(42)⟨O2⟩
1

Δ−

z>1
= Γ

1

Δ−

−,z>1

�
bc

b

� 1

2Δ−

�
1 −

b

bc

� 1

2Δ−

,

(43)

Γ+,z>1 =
1

2 u
Δ+−1

0

[
4 + 𝛼2(1 − u0)

2u0 + Δ+(1 − u0)

][
1 + z(1 − u0)

1 − u0

]1∕2
,

(44)Γ−,z>1 = Γ+,z>1 ,

(45)bc =
|𝜇|

uz
0

[
1 + z(1 − u0)

] , 𝜇 < 0 .



 Brazilian Journal of Physics (2024) 54:5050 Page 6 of 12

and �(u) on a grid u = 1 − i ∗ Δu with i ∈ (0, 1,… ,N − 1) , 
Δu = 1.0∕N and N = 1000.

Equations (25) and (26) fix two conditions, but at this 
point, we still do not have a condition for Ψ(1) = Ψ+ and 
��(1) = E+ . So, for each pair (Ψ+,E+) , we integrate Eqs. 
(15) and (16) to look for a convenient behavior. As u → 0 
( r → ∞ ), Ψ(u) behaves as Eq. (22) and �(u) behaves as Eq. 
(21) which are linear on the parameters, so we can use the 
least square method to calculate the asymptotic behavior. 
With this procedure, we have a map

We are interested in the cases where C2 = 0 , in which 
we define ⟨O1⟩ = C1 . Similarly, for C1 = 0 , we define 
⟨O2⟩ = C2 . Using the shooting method, we search for pairs 
of boundary values for (Ψ+,E+) mapped to such conditions. 
We vary E+ from 0 to 15 in 1500 steps for z = 1 and from 0 
to 35 in 3500 steps for z = 3.2 For each E+ , we vary Ψ+ from 
0 to 10 in 10000 steps.3

For z = 1 , keeping E+ fixed, we assume that C1 and C2 are 
smooth functions of Ψ+ when using the map (46).

Thus, whenever C2 changes sign, we add a point to the 
graph of ⟨O1⟩ as a function of E+ and, whenever C1 changes 
sign, we add a point to the graph of ⟨O2⟩ as a function of E+.

We notice that for z = 1 , if we plot all the data our algo-
rithm generates, we see several scattered points and in the 
middle of these points, we can see smooth curves that go to 
zero as we raise E+ . If the first occurrences of sign change 
are isolated as one vary Ψ+ , the isolated points correspond 
to the smooth curves observed. These curves can also be 

(46)(Ψ+,E+) → (C1,C2, �,�) .

labeled by the number of times Ψ(u) changes sign, allow-
ing us to identify the curve labeled as 0 as the fundamental 
mode and the others as excited modes. In [20], the role of 
the excited modes in the phase transition is explained. We 
choose to plot the five first occurrences of sign change in 
Fig. 2. For z = 3 , no scattered points appear in our data. 
Even so, we choose to plot the five first occurrences of sign 
change in Fig. 3. One interesting property is that for ⟨O1⟩ , 
none of the smooth curves crosses another, while for ⟨O2⟩ , 
each curve crosses every other.

We can also see the dependence of ⟨O1⟩ and ⟨O2⟩ on the 
variable T = 1∕(2��) defined in Eq. (20) with the arbitrary 
choice r+ = l = 1 . This dependence is plotted in Fig. 4 for 
z = 1 and Fig. 5 for z = 3 . If the incoherent points not shown 
in Figs. 2 and 3 are plotted, one sees that they do not appear 
to be incoherent anymore, as they are now concentrated in a 
region of low temperatures. The curves shown behave as an 
order parameter of a phase transition.

The fundamental curve (labeled as 0) has the lowest criti-
cal electric field and highest critical temperature. We fit the 
behavior of the fundamental curves as y = a(b − x)c , where 
a is not important, b is the critical electrical field Ec in case 
of dependence on E+ or the critical temperature Tc in case of 
dependence on T, and c is the critical exponent. The order 
parameters are shown in Figs. 6, 7, 8, and 9 while the fitted 
parameters b and c are shown in Figs. 10, 11, 12, and 13.

We notice that for ⟨O2⟩ and z = 3 the critical electrical 
field goes to zero as �2 reaches −3 . For −4 < 𝛼2 < −3 , there 
are no fundamental curves, since the first occurrence of a 
sign change in C1 corresponds to boundary conditions for 
which Ψ(u) changes sign once. As seen in Fig. 1, this range 
of �2 should have been excluded, because it is assumed that 
Ψ(u) decays faster than u in order to obtain Eq. (21). How-
ever, we observe that this asymptotic expression fits the data 
derived by Runge–Kutta method, and all results for ⟨O2⟩ are 
consistent with the results for ⟨O1⟩ , for which Δ+ is always 

Fig. 2  First five curves for z = 1 and �2 = −0.75

2 We started varying E+ from 0 to 10 and later, we changed in order 
to see at least five curves.
3 We noticed that we needed smaller steps in Ψ+ for the < O

1
> and 

< O
2
> curves to be smooth.
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Fig. 3  First five curves for z = 3 and �2 = −2.75

Fig. 4  First five curves for z = 1 and �2 = −0.75

Fig. 5  First five curves for z = 3 and �2 = −2.75
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Fig. 6  Order parameters dependent on E+ for z = 1

Fig. 7  Order parameters dependent on E+ for z = 3

Fig. 8  Order parameters dependent on T for z = 1
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Fig. 9  Order parameters dependent on T for z = 3

Fig. 10  Critical electrical field for z = 1 (left) and z = 3 (right)

Fig. 11  Critical temperature for z = 1 (left) and z = 3 (right)
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bigger than one. The same reasoning is valid for z = 1 . All 
values of �2 should have been excluded for ⟨O2⟩ , but Eq. (21) 
fits the numerical data even in this case and all results are 
consistent with ⟨O1⟩.

6  Discussions

The holographic description of a (1 + 1) dimensional field 
theory with Lifshitz symmetry displaying a second-order 
phase transition is presented. This result might imply a 
contradiction with the Coleman-Mermin-Wagner theo-
rem [21–23]. However, for a BTZ spacetime (namely 
our z = 1 case) it has been shown [24] that the theorem 
is evaded by means of a Berezinskii-Kosterlitz-Thouless 
phase transition [25, 26] as it has been usual in relativistic 

two-dimensional field theory with mass generation [27]. 
For z = 3 there is a further break of space-time symmetry 
and a possible prohibition of a phase transition is further 
removed. In this case, there is no ground for any version of 
the Coleman-Mermin-Wagner theorem. In fact, there is no 
global symmetry breaking. Thus, not even a Berezinskii-
Kosterlitz-Thouless mechanism is envisaged, leaving the 
system free to have a phase transition of the kind found in 
the present paper.

Some similarities between both cases, z = 1 and 3 are 
pointed out. The fact that there is a phase transition in terms 
either of a critical electric field or a temperature is very 
much the same, even the dependence of the order parameters 
on the temperature is hardly seen to display any difference, 
thus indicating that the mechanism of obtaining the phase 
transition is very similar in both cases. This may sound a 
bit surprising, since in the real world superconductivity and 

Fig. 12  Critical exponent dependent on E+ for z = 1 (left) and z = 3 (right)

Fig. 13  Critical exponent dependent on T for z = 1 (left) and z = 3 (right)
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other thermodynamical properties depend a lot on the details 
of the system, while here, we have a too robust result, always 
similar to the mean-field result, independent even on the 
dimensionality of the system.

The order parameters grow unbounded as T goes to 
zero. In [4], it is argued that this behavior indicates that 
we cannot assume no backreaction for small values of T. 
According to [28], our results also suggest strong pairing 
interactions. Indeed, the larger value of ⟨O⟩ when T → 0 is 
expected for a strongly interacting field theory. Thus, being 
a strongly coupled system, backreaction must be consid-
ered, which does not mean that the order parameters do 
not diverge at small temperatures. This correction will be 
studied in future works.

For the conductivity, we tried to solve a differential equa-
tion for the field A� , which is coupled to Eqs. (15) and (16) 
and fitted an asymptotic behavior similar to Eq. (21) to find 
⟨J�⟩ and A(0)

�
 , which we used to find the conductivity �(�) . 

In the results, we found peaks consistent with resonances, 
but we could not explain what caused these resonances. If 
we smoothed the data with techniques such as plotting a 
Bezier curve from the data, we could get a behavior consist-
ent with [4], but this approach seemed too artificial. There-
fore, we decided to remove our conductivity analysis to 
focus on the phase transition.

A possible modification in these results could be obtained 
considering a Chern-Simons term in the action since that it 
introduces a new coupling between At and A� . In fact, in 
other works [17, 29] the presence of Chern-Simons term 
solves some problems in (2 + 1) spacetimes. We will deal 
with this term in future work.
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