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Abstract
A theoretical investigation of the dust ion-acoustic solitary, shock, and periodic waves has been made in a magnetised, 
dissipative, dusty plasma system. The system consists of cold ions, stationary dust grains, and non-inertial superthermal 
electrons and positrons. The Korteweg-de Vries-Burgers' (K-dVB) equation has been obtained by employing the reductive 
perturbation method (RPM). Using the appropriate travelling wave transformation, the model equation is transformed into a 
dynamical system. The different kinds of existing wave solutions are demonstrated in phase plots and time series diagrams 
based on appropriate parametric regions. The effect of superthermal electrons (�

e
) and positrons (�

p
) enhances the amplitude 

of both solitary and shock waves. With the variation of kinematic viscosity of ions, we observe the variation in breadth of 
the shock profile without affecting the amplitude. The alterations of the periodic wave solution with the involved system 
parameters are also shown in diagrammatic representations. The output of this present work could be useful to elucidate the 
bifurcation behaviour of solitary, shock, and periodic waves in an assortment of magnetised dissipative dusty plasma systems.
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1  Introduction

A dusty plasma system is typically characterised as an 
assortment of particles that includes ions, electrons, and 
solid micro or nanoparticles (dust grains) immersed in 
plasma [1, 2]. In recent years, dusty plasma have garnered 
a great deal of attention, mainly due to the large mass and 
higher charge characteristics of the associated micrometre-
sized plasma particles. Dust particles are frequently nega-
tively charged, but they might also be positively or nega-
tively charged depending on the rivalry between several 
processes, including secondary emission and electron and 
ion currents. A variety of wave modes can be produced  
by the inclusion of dust particles in electron–ion plas-
mas [3, 4]. The dust ion-acoustic wave (DIAW) is one of 
such significant wave modes. The subject of the current  

work is to investigate the dynamics of small-amplitude DIA 
nonlinear structures under the combined effects of different 
physical parameters. The inertia of the dust mass gener-
ates the dust acoustic waves (DAWs), while the thermal 
pressure of electrons and ions provides the restoring force  
[5]. Since dust in the plasma has numerous applications in 
industry and microelectronics [6] as well as in the laboratory  
(i.e., cancer therapy with the cold atmosphere plasma) and 
in astrophysical environments, such as interstellar molecular 
clouds, cometary tails, Phobos dust rings, planetary rings, 
and the Earth’s inner magnetosphere [4, 7], it is essential  
to study the features of nonlinear wave structures in such 
type of plasma. Numerous studies are done to investigate the 
various DIA nonlinear structures in magnetised and unmag-
netised dusty plasmas within the context of Maxwellian and 
non-Maxwellian distributions [8–10]. Chatterjee et al. [11] 
derived the Burgers’ equation and its solutions to study the 
characteristics of DIAWs by employing Darboux transfor-
mation in an unmagnetised dusty plasma containing fluid  
ions and κ-distributed electrons. They observed a com-
bination of rarefactive soliton with a shock structure.

Nonlinear wave structures in plasma are astounding mani-
festations of nature that arise from variations in properties 
such as nonlinearity, dispersion, and dissipation. Various 
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techniques, such as RPM [12] and the Sagdeev pseudopoten-
tial method [13], are commonly used to examine and analyse 
nonlinear waves in plasma. The RPM, also known as the 
multiple scales method, is useful when dealing with weakly 
nonlinear phenomena where the amplitude of the wave is 
small compared to other characteristic scales in the system. 
However, this method does not allow for the study of large-
amplitude excitations. To overcome the limitation of small-
amplitude approximations, the Sagdeev pseudopotential 
method is considered an option, which is a powerful tool that 
provides an exact approach for analysing arbitrary-amplitude 
nonlinear waves. The Korteweg-de Vries (K-dV) equation is 
a useful mathematical tool for modelling and comprehend-
ing the behaviour of certain types of nonlinear phenomena in 
a variety of scientific contexts, such as neutral fluids, plasma 
physics, and nonlinear optics, as well as in mathematics and 
other disciplines [14]. One of the most famous features of 
the K-dV equation is its ability to support a variety of wave 
solutions, such as soliton solutions, periodic wave solutions, 
and dispersive shock solutions, that have been used to study 
nonlinear wave phenomena in both experimental and space 
observations. A large number of investigations confirm the 
existence of various solitons and other nonlinear structures 
in the solutions of the K-dV and its modified form, within the 
framework of the RPM in multicomponent plasmas [2, 15,  
16]. The investigation of both small and arbitrary-amplitude  
solitary waves was carried out by El-Awady et al. [17] by  
employing both K-dV and energy integral equations. Saini  
et al. [18] derived the K-dV equation to analyse the oblique 
propagation of DIAWs in a strongly magnetised and rotating 
plasma comprising superthermal electrons and positrons. In  
the plasma system considered by the authors, both positive 
and negative potential solitary waves were observed. Sing-
hadiya et al. [19] have studied the properties of the IASWs in 
a plasma consisting of ions, positrons, and two-temperature 
superthermal electrons by deriving the K-dV and modified 
K-dV equations. The shock wave is one of the nonlinear 
wave phenomena that has already been observed experimen-
tally as well as theoretically. This type of wave is character-
ised by a modified form of the K-dV equation known as the 
K-dV-Burgers' (K-dVB) equation. In addition to the nonlin-
ear and dispersion terms, the usual form of the K-dV equa-
tion is modified by adding a dissipative term. The dissipative 
component in the K-dVB equation originates from imple-
menting the collision between charged and neutral particles, 
the Landau damping, and the kinematic viscosity of the plasma 
components [20]. In this regard, a number of investigations 
have been carried out in the context of nonlinear ion-acoustic 
shock waves (IASHWs) in different plasma media [20–22]. El-
Hanbaly et al. [23] examined the influence of dust kinematic 
viscosity on linear and nonlinear dust acoustic waves in an 
unmagnetised dusty plasma system by deriving the K-dVB 
equation. Michael et al. [24] studied the IASHWs in a cometary  

plasma model consisting of oppositely charged oxygen ions, 
lighter hydrogen ions, and hot and cold electrons. Using the 
K-dVB equation, they found that the intensity of the shock 
profile decreased with increasing the temperature of posi-
tively charged oxygen ions and the densities of negatively 
charged oxygen ions. In a dissipatively magnetised dusty 
plasma system, El-Helbawy [25] studied the nonlinear soli-
tary and shock wave behaviour using the K-dVB equation. 
They demonstrated the presence of solitary and periodic 
travelling waves in a bifurcation diagram by employing  
a planar dynamical theory.

Electron-positron-ion (e-p-i) plasma is a type of ambi-
plasma that consists of electrons, positrons, and ions in a 
quasineutral space plasma. The study of the propagation 
of localised structures in an e-p-i plasma is significant for 
researchers because such plasma exists in the inner areas 
of the accretion discs surrounding black holes [26], in the  
early universe [27], in pulsar magnetospheres [28], in active 
galactic nuclei [29], in the polar regions of neutron stars 
[30], in the core of our galaxy [31], and in plasmas under 
high laser fields [32]. This type of e-p-i plasma may also be 
discovered in laboratories; in particular, during the propa-
gation of a short, intense relativistic laser pulse in matter, 
the photoproduction of pairs owing to photon scattering by 
nuclei can result in the generation of e-p-i plasmas. Because 
of the aforementioned cases, there has been a lot of interest 
in the last several decades in the characteristics of IA struc-
tures in e-p-i plasma [18, 33–39]. The dynamical properties 
of IAWs in e-p-i plasmas vary significantly from those of 
electron-ion plasmas due to differences in species concen-
tration ratios and temperatures. The nonlinear dynamical 
structures of IASWs in an e-p-i plasma have been studied 
by Popel et al. [40]. They demonstrated that the existence of 
the positron components reduces the amplitude of the soliton 
structure. In an e-p-i plasma, Tiwari et al. [16] observed the 
effects of temperature and density of the positron on an IA-
dressed soliton. These findings can help us better compre-
hend the localised structures of Maxwellian e-p-i plasmas.

However, in different spaces and astrophysical plasmas, 
where the plasma particles are energetic, they usually follow a 
non-Maxwellian distribution, which can be successfully repre-
sented by the generalised Lorentzian or κ-type distribution func-
tion [41]. The study of such non-Maxwellian plasma is more 
important in comprehending astrophysical plasmas, such as the 
solar wind, ionospheres, and the magnetosphere of the Earth 
[42]. Vasyliunas first introduced the superthermal κ-distribution 
to explain the high-energy tails seen in non-Maxwellian plasma 
systems [43]. The parameter κ in the κ-distribution determines 
the robustness of the superthermality or nonthermality of the 
plasma medium. Smaller κ values indicate stronger nonthermal-
ity, whereas higher κ values indicate weaker nonthermality, and 
when κ approaches infinity, the velocity distribution behaves  
like the Maxwellian. A number of research works have explored 
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the consequences of electron superthermality on electrostatic 
excitations [44–49]. Shahmansouri et al. [50] investigated the 
fundamental features of nonlinear IAWs in a superthermal e-p-i 
plasma using weak transverse perturbations. The propagation of 
IASHWs in a superthermal e-p-i magnetoplasma has been stud-
ied by Heera et al. [51]. They revealed that the considered model 
accommodates both positive and negative shock patterns. 
Recently, Shahein et al. [52] has shown the nonlinear character-
istics of IAWs in an unmagnetised collisionless superthermal 
e-p-i plasma. They have shown a new form of blow-up solitary 
wave by using the 

(
G′

G

)
 expansion method, and the diffusion 

structure is visually depicted.
Bifurcation is a phenomenon that shows qualitative altera-

tions in the behaviour of a nonlinear system as physical param-
eters are changed. In dynamical systems, bifurcation plays an 
essential role because it allows for transitions and instabilities 
when the system’s parameters are varied. The bifurcations of 
various nonlinear travelling wave properties in different plasma 
models have been studied using the principles of dynamical  
systems [53–55]. Moreover, in the past few decades, the study 
of periodic waves has grown in importance due to its relevance 
in a wide range of fields of physics. This type of wave signal is 
commonly seen in auroral, magnetospheric, and tokamak plas-
mas as IA soliton and double-layer structures [56]. Kaladze and 
Mahmood [57] explored electrostatic IA solitary and periodic 
waves in unmagnetised e-p-i plasmas, where electrons and posi-
trons follow κ-distribution. They demonstrate that the amplitude 
of periodic waves and solitons reduces for κ-distributed elec-
tron and positron plasmas compared to Maxwellian-distributed 
electron and positron plasmas. Chapagai et al. [58] studied the 
bifurcation analysis of nonlinear and supernonlinear periodic 
IAWs in a three-constituent superthermal plasma, considering 
the variations of different physical parameters. Moreover, Zhang 
et al. [59] studied peakons and a series of new exact travelling 
wave solutions, including bell-shaped, kink-type solitary waves, 
shock waves, periodic waves, and Jacobi elliptic solutions, using 
the auxiliary equation method. Saha et al. [60] carried out the 
bifurcation analysis of IA shocks and periodic waves in a dense 
quantum plasma model. For the first time, they observed the peri-
odic waves of the Burgers’ equation in plasmas using the Jacobi 
elliptic method. An investigation on the properties of the IA soli-
tary, kink, and periodic waves has been carried out by Abdikian 
et al. [61] in a confined plasma system that experiences rotating 
motions. They have observed that only the positive potential IA 
periodic waves are emerging. El-Taibany et al. [62] performed 
solitary and periodic DAWs investigations in a self-gravitating 
dusty plasma in the presence of moving ions and electrons. But 
as far as we know, no attempt has been made to study the DIA 
periodic wave solution in magnetised κ-distributed electron  
and positron dusty plasma systems. Moreover, the phase plan 
analysis of DIAWs in superthermal electron-positron dissipa-
tive media has not been studied previously. Although Roy et al. 

[63] recently demonstrated the occurrence of solitary and shock 
waves in a dissipative medium using phase portrait analysis, they 
established their work only in the context of a non-extensive  
dusty plasma system. Therefore, in the present work, we have 
plotted the phase portrait profile to predict the existence of the 
IA solitary, shock, and periodic wave solutions in a superther-
mal dissipative plasma. Based on our numerical results,  
their corresponding wave structures are analysed graphically.

2 � Basic Equations

In our present investigation, we have considered a dissipative 
plasma model containing negatively charged dust grains, iner-
tial ions, non-Maxwellian electrons, and positrons following 
the � - distribution. In the presence of an external magnetic 
field B0 along the z-axis, the dynamics of dust IAWs can be 
characterised by the following set of normalised equations:

Continuity equation

Momentum equation

Poisson’s equation [64]

The superthermal electron and positron distributions [51, 
65] are

and
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where

In Eqs. (1)-(5), the ion number density ni is normalised by 
ni0; the velocity of the ions is normalised by the ion-acoustic 

speed Cp =

(
kBTE

/
mp

)1∕2

 . The electrostatic potential ϕ and 

time t are normalised by 
(
kBTe

/
e

)
 and the inverse of the 

plasma frequency �−1
p

 , respectively. The space variables (x, y, 

z) are normalised by Debye length �D =
(
kBTe

/
4�e2ni0

)1∕2

 . 
η is the kinematic viscosity of ions normalised by mini0�p�

2

D
 ; 

the ion cyclotron frequency �ci is normalised by the period of 
ion plasma. The parameters �e =

1

1−p+d
 , �p =

p

1−p+d
 , 

�d =
d

1−p+d
 , and �p =

Te

Tp
 are obtained due to the non-dimen-

sional process, where p =
np0

ne0
 , d =

zd0nd0

ne0
 , and Te and Tp are the 

temperature of electrons and positrons.

3 � Derivation of the Nonlinear  
K‑dV‑Burgers’ Equation

To procure the K-dV-Burgers’ equation, we have utilised the 
RPM. According to RPM, we stretch the independent vari-
ables as [66–68]

here, V0 is the phase velocity of DIAWs, and ɛ measures the 
strength of nonlinearity. The use of stretching enables us to 
see in detail what happens on different scales of distance and 
time in the system. The dependent physical quantities ni, ux, 
uy, uz, and ϕ are expressed as a power series expansion of ɛ 
in the following ways:

Now, using stretched variables from Eq. (8) into Eqs. (1)-
(5) and after substituting the above expansions, the lowest 
order of ɛ gives.
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Now, the phase velocity expression is obtained as

Considering the higher-order coefficients of ɛ, we have

Eliminating all the second-order quantities u2
x
, u2

y
, u2

z
, n2 
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A, B, and C are the nonlinear, dispersion, and dissi-
pative coefficients, respectively. The coefficient C, also 
known as Burger’s term, suggests the potential of getting 
a shock-type solution.

4 � Bifurcation Analysis of K‑dV‑  
Burgers’ Equation

To perform phase plan analysis of the K-dV-Burgers’ 
equation, we have used another variable transformation, 
� = � − u0� , where u0 is a constant speed. After replacing 
the independent variables ξ and τ with the new variable χ  
and then integrating, Eq. (17) is written as follows

Equation (18) can be transformed into the following 
system of planar dynamical equations

For C = 0, let g1
(
�
1, z

)
= z and g2

(
�
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B
�
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Hamiltonian system if �g1
��

1
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�z
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a Hamiltonian function defined as

with the potential function

The system of Eq.  (19) has two equilibrium points 
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)
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Now to calculate the eigenvalues at E1 and E2, the Jaco-
bian matrix for the system (19) is given as

The Jacobian matrices at E1(0, 0) and E2
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When the dissipative coefficient is dominant over the dis-
persive term (i.e. B = 0), then, Eq. (17) becomes
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We transform the above equation using the same trans-
formation � = � − u0� as

After integrating, we get

Then combining Eqs. (25) and (26), we can deduce the 
following system of equations as

Now let us discuss three different cases.

Case I  When C = 0 and B ≠ 0 , the potential function defined 
in Eq. (21) and the phase plot of the system of Eqs. (19) are 
shown graphically in Fig. 1a–f. The potential function is plot-
ted as a function of �1 for distinct values of the nonthermal 
parameter �e in Fig. 1a. The potential curve has one hump and 
a pit, and it gets shallower as �e rises. This makes it clear that 
by increasing �e , the width of the solitons is increased. The 
figure also shows that when �e is raised, the pseudopotential 
curve broadens in the positive direction of the �1 axis. This is 
caused by the existence of compressive solitary waves. From 
the Jacobian matrix (22), the eigenvalues at the equilibrium 
point E1 are � = ±

√
u0

B
 , which are real and distinct, so we 

classify E1 as an unstable saddle point, see Fig. 1b. Also from 
the Jacobian matrix (23), the eigenvalues corresponding to the 
equilibrium point E2 are � = ±i

√
u0

B
 , which are purely imagi-

nary, so we classify E2 as a stable centre point (see Fig. 1c). In 
the phase portrait, the hump of the potential curve corresponds 
to the saddle point at E1 and the pit corresponds to the centre 
point at E2. There is a homoclinic orbit in the phase plot profile 
encompassing the saddle points E1 and centre point E2 and 
periodic orbits around the centre point E2, as shown in the 
Fig. 1d–f. Each trajectory in the phase plot refers to a travelling 
wave solution for that plasma configuration. The existence of 
homoclinic and periodic orbits indicates the presence of soli-
tary and periodic travelling wave solutions of the K-dV-Burg-
ers’ equation, which will be discussed broadly in the next sec-
tion. Significantly, the impact of rising �e is crucial in 
lengthening the distance between two equilibrium positions 
(see Fig. 1d–f). This means that increasing the value of �e 
raises the amplitude of the waves.
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Case II  When C ≠ 0 and B ≠ 0 , shock wave phenomena are 
predicted. Here, the equilibrium point E1(0, 0) is an unstable 
saddle, and at the equilibrium point E2

(
2u0

A
, 0

)
 , we have tra-

jectories that spiral and go out, so the equilibrium point 
E2

(
2u0

A
, 0

)
 is unstable. These trajectories are seen in 

Fig. 2a–c.

Case III  When C ≠ 0 and B = 0 , the phase plot diagram of 
system (27) is depicted in Fig. 3. There are three fixed points 
F1, F2, and F3 in the system. Among these fixed points, F2 is 
surrounded by a family of periodic orbits, while fixed points 
F1 and F3 are connected by a pair of heteroclinic orbits. In 
general, a heteroclinic orbit in the phase plot diagram signi-
fies the emergence of both kink and anti-kink shock wave 
solutions in the considered system.

5 � Results and Discussion of Soliton 
and Shock Wave Solutions

To investigate the features of DIA soliton structures, we 
have considered a situation in which the impact of dispersion 
dominates that of dissipation. In this case, Eq. (17) becomes 
the original K-dV equation as

and the analogous solitary wave solution is [19]

where �m =
3u0

A
 is the amplitude and Δ =

√
4B

u0
 is the  

width of the solitary waves in the absence of the dissipative 
coefficient.

Since nonlinear and dispersion coefficients depend on a 
number of physical parameters, the impact of these param-
eters on the properties of DIASWs may be traced through 
changes in these coefficients with regard to the pertinent 
parameters. So, in this part, we inspect the contribution of the  
plasma components, namely, the dust-to-electron density ratio  

(28)
��

1

��

+ A�1 ��
1

��

+ B
�
3
�
1

��
3

= 0,

(29)�
1 = �msech

2
(
�

Δ

)
,

(d), the positron-to-electron density ratio (p), the electron-
to-positron temperature ratio 

(
�p

)
 , and the parameters of the 

superthermal electron 
(
�e

)
 and positron 

(
�p

)
 , on the configu-

ration of the IASWs with the help of graphical representa-
tions. In order to attain this, we have selected some specific 
plasma parameters prevalent in the astrophysical dusty plasma 
atmospheres [51, 63, 64]. Figure 4a illustrates the soliton 
profile �1 against χ for increasing values of dust-to-electron 
density ratio 

(
d = zd0nd0∕ne0

)
 . This figure clarifies that the 

solitary waves get wider and have a larger amplitude as d 
increases. In general, increasing the density ratio (d) indi-
cates the enhancement of dust density to that of electrons. 
Enhancing dust density plays a substantial role in increas-
ing the potential energy of the plasma system. Thus, there 
is an upward tendency in the amplitude of solitary waves. 
On the contrary, the opposite behaviour of the solitary waves 
can be seen in Fig. 4b, where �1 is changed with different 
values of positron-to-electron density ratio 

(
p = np0∕ne0

)
 , 

i.e., the amplitude of the soliton structures diminishes with 
increasing p. The decrease in amplitude implies an increase 
in the nonlinearity of the system when it alters with p.  
Enhancement of the density ratio (p) indicates the enhancement  
of positron density compared to that of electrons. Increasing 
the positron density in this system has a detrimental influ-
ence on the overall potential energy of the system. As a result, 
the soliton constantly degrades and loses potential energy. 
The influence of the electron-to-positron temperature ratio �p 
on the feature of the soliton profile is displayed in Fig. 4c. It 
is evident that as �p increases, the amplitude and breadth of 
the solitary wave diminish. The effect of �e and �p on �1 is 
shown in Fig. 4d and e. Figures suggest that raising �e and 
�p increases the amplitude and width of the soliton, and it 
is very sensitive to low ranges of �e and �p . This means that 
when there is an abundance of superthermal elements, the 
nonlinear factor of the K-dV equation becomes smaller, and 
hence, the amplitude of the soliton wave increases. Contra-
rily, we can assert that the amplitude and width of solitons are 
observed to decrease as the plasma nonthermality increases. 
It follows that taller and broader solitary waves are expected 
to occur in a Maxwellian plasma with higher values of �e and 
�p than those produced in a nonthermal plasma with lower 
values of �e and �p . This indicates that an increase in the  
nonthermality of electrons and positrons in the plasma medium 
has a favourable effect on the gain of total potential energy in the 
system. As a result, the soliton is constantly growing and acquir-
ing positive energy. Similar kinds of variation of IAS structures 
with superthermality of electrons and positrons are observed 
in the research work by Shahein et al. [52]. The magnetic field 
strength (cyclotron frequency, �ci ) has an influence on the 
soliton profile, which is illustrated in Fig. 4f. It has been shown 
that changing the magnetic field effect has no impact on the 
amplitude of solitary waves. The single-pulse soliton solution 
�
1 is illustrated against ξ at different time scales τ in Fig. 4g.

Fig. 1   a Variation of V
(
�
1
)
 vs �1 for distinct �e with p = 0.2 , d = 0.1 , 

�p = 1.4 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , �0 = 0 , and �p = 2.8 . b Saddle 
point E1(0, 0) , with �e = 2.1 , p = 0.2 , d = 0.1 , �p = 1.4 , lz = 0.4 , 
�ci = 0.5 , u0 = 0.2 , �0 = 0 , and �p = 2.8 . c Centre point E2

(
2u0

A
, 0

)
 , 

with �e = 2.1 , p = 0.2 , d = 0.1 , �p = 1.4 , lz = 0.4 , �ci = 0.5 , 
u0 = 0.2 , �0 = 0 , and �p = 2.8 . d Phase plot of the system (19), with 
�e = 2.1 , p = 0.2 , d = 0.1 , �p = 1.4 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , 
�0 = 0 , and �p = 2.8 . e Phase plot of the system (19), with �e = 2.3 , 
p = 0.2 , d = 0.1 , �p = 1.4 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , �0 = 0 , and 
�
p
= 2.8 . f Phase plot of the system (19), with �e = 2.5 , p = 0.2 , 

d = 0.1 , �p = 1.4 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , �0 = 0 , and �p = 2.8.

◂



	 Brazilian Journal of Physics (2024) 54:13

1 3

13  Page 8 of 16

In order to examine the attributes of DIASH formation, we 
investigate a scenario in which the dissipative component pre-
vails over the dispersive term. In that particular case, Eq. (17) is 
reduced to the Burgers’ equation of the form

which bears kink and anti-kink shaped monotonic shock 
profile solutions.

To acquire DIA kink and anti-kink wave solutions, we 
employ the conventional tanh method. We follow the same 

(30)
��

1

��

+ A�1 ��
1

��

= C
�
2
�
1

��
2
,

procedure as in Ref. [60] to find the kink and anti-kink 
wave solutions of the obtained Burgers’ Eq. (30). As a con-
sequence, the anti-kink wave solution caused by the hetero-
clinic orbit connecting fixed point F1 to fixed point F3 can 
be expressed as

and the kink wave solution of Burgers’ Eq. (30) caused by 
the heteroclinic orbit connecting fixed point F3 to fixed point 
F1 can be expressed as

(31)�
1 = �m

[
1 − tanh

(
�

Δ

)]
,

Fig. 2   a Phase plot of the system (19), with �e = 2.1 , p = 0.2 , 
d = 0.1 , �p = 1.4 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , �0 = 0.5 , and 
�p = 2.8 . b Phase plot of the system (19), with �e = 2.3 , p = 0.2 , 

d = 0.1 , �p = 1.4 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , �0 = 0.5 , and 
�p = 2.8 . c Phase plot of the system (19), with �e = 2.5 , p = 0.2 , 
d = 0.1 , �p = 1.4 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , �0 = 0.5 , and �p = 2.8
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Here, �m is the amplitude and Δ represents the width of 
the shock waves, respectively, and are expressed as,

Since the nonlinear and dissipation coefficients depend 
on the ratios of dust-to-electron density (d), positron-to-
electron density (p), electron-to-positron temperature 

(
�p

)
 , 

effect of the viscosity 
(
�0

)
 , and superthermal parameters of 

electrons 
(
�e

)
 and positrons 

(
�p

)
 , the solution of shock for-

mation is an explicit function of these parameters. Therefore, 
numerical findings that show how these physical parameters 
affect the dust acoustic shock profile controlled by Burgers’ 
Eq. (30) are shown in Figs. 5a–n.

The influence of the dust-to-electron density ratio (d) 
on the anti-kink and kink shock structures is displayed in 
Fig. 5a and b. The results confirm that an increase in the 
dust-to-electron density ratio (d) leads to a greater ampli-
tude of shock waves; however, the anti-kink and kink wave 
profiles’ smoothness remains constant. In Fig. 5c and d, the 
DIA anti-kink and kink waves are shown at distinct values of 
the positron-to-electron number density ratio (p) at equilib-
rium conditions. It can be shown that increasing the positron 
density reduces the amplitudes of both wave profiles. Fig-
ure 5e and f present the structures of the shock wave profile 
for different values of the electron-to-positron temperature 
ratio via σp. We can infer from the graphs that smaller ampli-
tude shock structures are supported by higher values of σp. 
Figure 5g and h show the DIA anti-kink and kink shock 
solutions for distinct values of the nonthermal parameters of 

(32)�
1 = −�m

[
1 − tanh

(
�

Δ

)]
.

�
m
=

u0

A
and Δ =

2C

u0

.

electron 
(
�e

)
 with specific values of other parameters. We 

can see that the amplitudes of the anti-kink and kink wave 
profiles considerably increase as �e is increased. The effects 
of superthermal positron parameter κp on the anti-kink and 
kink waves can be observed from Fig. 5i and j, and it is clear 
that the amplitude of the anti-kink and kink profiles grows 
with an increase in the value of κp. It has also been appar-
ent to Heera et al. [51] in their study of IASHWs that the 
amplitude of the positive shock profile grows as the value 
of κe increases. But an opposite result has been shown for 
the variation of κp. This happened due to the different values 
of the electron-to-positron temperature ratio 

(
�4 = Te∕Tp

)
 . 

Figure 5k and l represent the DIA anti-kink and kink wave 
formation for different values of the coefficient of viscosity 
η0 with suitable physical parameters. We have noticed that 
the amplitude of shock formation is independent of the rate 
of dissipation; i.e., it remains invariant regardless of whether 
η0 is increased or decreased, while the breadth of the shock 
waves rises with an increase in the coefficient of viscosity 
η0 in both anti-kink and kink DA shock waves. Furthermore, 
it can also be stated that as dissipation increases, the shock 
structures become more smooth and feeble. These results 
are in agreement with those reported in Ref. [69]. We have 
observed that the external magnetic field has the ability to 
drastically alter the configuration of the IASHWs in the 
plasma. Figure 5m and n show the anti-kink and kink waves 
as they are affected by the oblique angle � , which is the angle 
between the direction of the external magnetic field and the 
direction of the wave propagation. It has been observed from 
Fig. 5m and n that the magnitude of the amplitude of the 
anti-kink and kink shock profiles rises as the value of the 
oblique angle � increases.

Fig. 3   Phase plot of the system 
(27) with �e = 2.1 , p = 0.2 , 
d = 0.1 , �p = 1.4 , lz = 0.4 , 
�ci = 0.5 , u0 = 0.2 , �0 = 0.5 , 
and �p = 2.8
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Fig. 4   Variation of �1 vs χ a 
for distinct d with p = 0.2 , 
�p = 1.4 , lz = 0.4 , �ci = 0.5 , 
u0 = 0.2 , �0 = 0 , �e = 2.1 , and 
�p = 2.8 , b for distinct p with 
d = 0.1 , �p = 1.4 , lz = 0.4 , 
�ci = 0.5 , u0 = 0.2 , �0 = 0 , 
�e = 2.1 , and �p = 2.8 , c for dis-
tinct �p with p = 0.2 , d = 0.1 , 
lz = 0.4 , �ci = 0.5 , u0 = 0.2 , 
�0 = 0 , �e = 2.1 , and �p = 2.8 , 
d for distinct �e with p = 0.2 , 
d = 0.1 , �p = 1.4 , lz = 0.4 , 
�ci = 0.5 , u0 = 0.2 , �0 = 0 , 
and �p = 2.8 ,  e for distinct �p 
with p = 0.2 , d = 0.1 , �p = 1.4 , 
lz = 0.4 , �ci = 0.5 , u0 = 0.2 , 
�0 = 0 and �e = 2.1 , f for dis-
tinct �ci with p = 0.2 , d = 0.1 , 
�p = 1.4 , lz = 0.4 , u0 = 0.2 , 
�0 = 0 , �e = 2.1 , and �p = 2.8 , 
g for distinct τ with p = 0.2 , 
d = 0.1 , �p = 1.4 , lz = 0.4 , 
�ci = 0.5 , u0 = 0.2 , �0 = 0 , 
�e = 2.1 , and �p = 2.8
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Fig. 5   Variation of a anti-kink 
and b kink wave for distinct d 
with p = 0.2 , σp = 1.4, lz = 0.4 , 
�ci = 0.5 , u0 = 0.2 , �0 = 0.5 , 
�e = 2.1 , and �p = 2.8 ; c 
anti-kink and d kink wave for 
distinct p with d = 0.1 , σp = 1.4, 
lz = 0.4 , �ci = 0.5 , u0 = 0.2 , 
�0 = 0.5 , �e = 2.1 , and �p = 2.8 ; 
e anti-kink and f kink wave 
for distinct σp with p = 0.2 , 
d = 0.1 , lz = 0.4 , �ci = 0.5 , 
u0 = 0.2 , �0 = 0.5 , �e = 2.1 , 
and �p = 2.8 ; g anti-kink and h 
kink wave for distinct κe with 
p = 0.2 , d = 0.1 , �p = 1.4 , 
lz = 0.4 , �ci = 0.5 , u0 = 0.2 , 
�0 = 0.5 , and �p = 2.8 ; i anti-
kink and j kink wave for distinct 
κp with p = 0.2 , d = 0.1 , σp 
= 1.4, lz = 0.4 , �ci = 0.5 , 
u0 = 0.2 , �0 = 0.5 , and �e = 2.1 ; 
k anti-kink and l kink wave for 
distinct �0 with p = 0.2 , d = 0.1 , 
σp = 1.4, lz = 0.4 , �ci = 0.5 , 
u0 = 0.2 , �e = 2.1 , and �p = 2.8 ; 
m anti-kink and n kink wave for 
distinct � with p = 0.2 , d = 0.1 , 
σp = 1.4, u0 = 0.2 , �0 = 0.5 , 
�e = 2.1 , and �p = 2.8
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Fig. 5   (continued)
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6 � Nonlinear Periodic Wave Solution

In order to derive the periodic wave solution of the K-dV 
Eq. (28), we assumed the solution to be �1(�) . Introducing 
the same variable transformation � = � − u0� , Eq. (28) can 
be expressed as

where Φ = �
1(�) . After integrating Eq. (33), we obtain a 

conservative nonlinear equation, which has the form

where W = W(Φ) is the Sagdeev’s potential, defined as

There are two points of extremum of the potential func-
tion W(Φ) , which are defined at �W

�Φ
= 0 , namely

Furthermore, for the existence of real values, u
2

0

A2
>

2𝜌0B

A
 

must hold. The zeros (Φ = z1, z2, z3) of the potential function 
(35) are given as.

Now, u
2

0

4
−

2A𝜌0B

3
> 0 must persist in order to properly 

mould the potential. Equation (34) is associated with the 
first integral of the energy that can be inspired by

with the integration constant E2

0
 . Substituting Eq. (35) 

in (38), we get

Let us consider the initial conditions Φ(0) = �0 and 
d�0

d�
= 0 . We can find

Using Eq. (40) in Eq. (39) and after factorization, 
we get

(33)B
d3Φ

d�3
+

d

d�

(
A

2
Φ2 − u0Φ

)
= 0,

(34)
d2Φ

d�2
= −

dW

dΦ
,

(35)W(Φ) =
A

6B
Φ3 −

u0

2B
Φ2 + �0Φ.

(36)Φ1,2 =
u0

A
±

√
u2
0

A2
−

2

A
�0B.

(37)z1 = 0, z2,3 =
3

A

⎛⎜⎜⎝
u0

2
±

�
u2
0

4
−

2A

3
�0B

⎞⎟⎟⎠
.

(38)1

2

(
dΦ

d�

)2

+W(Φ) =
E2

0

2
,

(39)
(
dΦ

d�

)2

= E2

0
−

A

3B
Φ3 +

u0

B
Φ2 − 2�0Φ.

(40)E2

0
=

A1

3B1

�
3

0
−

u0

B1

�
2

0
+ 2�0�0.

where

and

The inequality �2 ≤ �0 ≤ �1 or �1 ≤ �0 ≤ �2 in the last 
relationships should be held. Furthermore, we may derive 
the following relationship from Eqs. (38) and (41).

The periodic wave solution of Eq. (41) in terms of the 
three roots �0 , �1 and �2 can be written as follows

where cn denotes the Jacobian elliptic function. The modu-
lus m and D are defined as

and

The parameter m serves as a nonlinearity indicator in 
this case. The prerequisites �1 ≤ Φ ≤ �0 and 𝜙0 > 𝜙1 ≥ 𝜙2 
are necessary for the periodic solution. Furthermore, the 
periodic wave frequency � and wavelength � are defined as

where K(m) represents the first kind of complete elliptic integral.
The influence of the electron-to-positron temperature 

ratio 
(
�p

)
 and the superthermality parameters of electrons 

(41)
(
dΦ

d�

)2

=
A

3B

(
�0 − Φ

)(
Φ − �1

)(
Φ − �2

)
,

�1 =
3

2

[
u0

A
−

�0

3
+

√
1

3

(
�1 − �0

)(
�0 − �2

)]
.

�2 =
3

2

[
u0

A
−

�0

3
−

√
1

3

(
�1 − �0

)(
�0 − �2

)]
.

�1,2 =
u0

A
± 2

√
u2
0

A2
− 2�0

B

A
.

(42)u0 =
A

3

(
�0 + �1 + �2

)

(43)Φ(�) = �1 +
(
�0 − �1

)
cn2(D� ,m),

m =

√
�0 − �1

�0 − �2

,

D =

√
A

12B

(
�0 − �2

)
.

� =
V

�

,

� = 4

√
3B

A
(
�0 − �2

)K(m),
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and positrons on the fundamental properties of IA periodic 
waves is demonstrated in Fig. 6. In Fig. 6a, the effect of 
the electron-to-positron temperature ratio 

(
�p

)
 has been 

displayed on the profile of the periodic waves against χ. 
It is apparent that the amplitude of the periodic wave is 
decreasing, whereas the width is increasing as a result 
of the increase in 

(
�p

)
 . The shape of the periodic wave 

profiles against the super-thermal electron and positron 
components is depicted in Fig. 6b and c. As seen in these 
figures, the superthermality of electrons and positrons 
alters the periodic wave profiles’ breadth in addition to 
their amplitude. The magnitude of the amplitude and width 
grow in proportion to the values of �e and �p.

7 � Conclusions

We have addressed the bifurcations of the IA solitons, shock, 
and periodic wave features represented by the K-dV-Burg-
ers’ equation in a magnetised superthermal plasma con-
sisting of electrons and positrons obeying � - distribution. 
The RPM has been applied to demonstrate small-amplitude 
DIAWs. Consideration of the kinematic viscosity of ions 
in the plasma constituents leads to the survival of the dis-
sipative coefficient in the nonlinear K-dVB equation. The 
phase plane analysis of planar dynamical systems is applied, 
whose advantage is the ability to predict different types of 

Fig. 6   Variation of periodic wave Φ(�) vs χ a for distinct �p with 
p = 0.2 , d = 0.1 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , �e = 2.5 , �p = 2.8 , and 
�0 = 0.002 ; b for distinct �e with p = 0.2 , d = 0.1 , �p = 1.4 , lz = 0.4 , 

�ci = 0.5 , u0 = 0.2 , �p = 2.8 , and �0 = 0.002 , c for distinct �p with 
p = 0.2 , d = 0.1 , �p = 1.4 , lz = 0.4 , �ci = 0.5 , u0 = 0.2 , �e = 2.1 , and 
�0 = 0.002
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existing travelling wave solutions in the system correspond-
ing to different phase orbits.

When there is no influence from the dissipation (C = 0) , 
the bifurcation associated with the K-dVB equation is analysed 
graphically. The topology of the potential and phase portrait 
diagrams refers to the numerical behaviour of different kinds 
of nonlinear travelling wave solutions. One of these solutions, 
known as the soliton solution, is attained when the dissipative 
coefficient is insignificant in contrast to the nonlinearity and 
dispersion coefficients. The behaviour of such a solution is 
illustrated graphically against different physical parameters. 
It is evident that the basic features of solitary waves are sig-
nificantly influenced by plasma nonthermality (via �e and �p ). 
Solitary waves in a Maxwellian plasma (� → ∞) are projected 
to be taller and wider than those in a nonthermal plasma.

In that case, when there is the existence of dissipation 
( C ≠ 0 ) and the absence of dispersion (B = 0) , the K-dVB 
equation recovers the Burgers’ equation, which admits a kink 
and anti-kink monotonic shock profile due to the hetero-
clinic orbit found in the corresponding phase portrait dia-
gram. The shape of the amplitude of both kink and anti-kink 
shock structures is unaffected by variations in the kinematic 
viscosity of the ions 

(
�0

)
 , while the width of the shock pro-

file rises with the variation of the same parameter.
The variations of the periodic wave profile are displayed 

graphically with the change of the superthermal parameters 
of electrons (κe) and positrons (κp) and the electron-to-posi-
tron temperature ratio (σp). It can be concluded that changes 
in the amplitude and width of IA periodic waves are the 
same as those of IA solitary and shock wave formation.

Data Availability  No data associated in the manuscript.
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