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Abstract
In the present work, electromagnetic waves propagation in elliptical and circular waveguides filled with a magnetized plasma 
core and an outer perfect electromagnetic conductor boundary are presented. The components of electromagnetic fields 
and the power flux density in the considered waveguides are presented. The dispersion relations for the hybrid modes are 
calculated considering appropriate boundary conditions. The effect of a perfect electromagnetic conductor boundary on the 
energy and dynamics of an injected electron in the two considered structures is graphically investigated.

Keywords Perfect electromagnetic conductor · Perfect magnetic conductor · Elliptical waveguide · Electromagnetic power 
flux · Acceleration · Magnetized plasma

1 Introduction

The perfect electromagnetic conductor (PEMC) [1, 2] is the 
generalization of a perfect electric conductor (PEC) and per-
fect magnetic conductor (PMC) [3]. Electromagnetic energy 
and power cannot enter into the PEMC medium because 
the real values of the admittance M, the complex Poynting 
vector becomes imaginary [4–6]. The boundary conditions 
at the surface of the PEMC are expressed in the forms [2]:

where M is the admittance parameter, and it determines the 
PEMC. In the limits M = 0 and M → ±∞ , the PEMC con-
verts to PMC and PEC, respectively.

Waveguides with different materials have different 
applications in terahertz, microwave, millimeter, and 
light waves. Depending on the application of the wave-
guide, they have different cross-sections and are filled with 

different materials. Waveguides with PEMC boundaries are 
of particular importance in the field of wave propagation 
description [7–9]. A lot of research has been done on the 
use of PEMC materials [10–12]. Much research has been 
performed by researchers on particulate acceleration and 
electron dynamics in the different types of waveguides with 
various cross-sections and different materials, consider-
ing various effects. Some researchers have investigated the 
acceleration and dynamics of electrons with different EM 
modes of microwave propagation inside elliptical, circular, 
and rectangular waveguides containing cold plasma, warm 
plasma, magnetized plasma, collision plasma, collisionless 
plasma, homogeneous plasma, inhomogeneous plasma, etc. 
[13–27].

It is mentioned that PMC boundaries ensure two useful 
and interesting features. First, PMC cannot allow EM waves 
and currents to enter the surface. Second, PMC surfaces 
have a very high surface impedance in a certain limited fre-
quency range, and PMC surfaces reflect EM waves without 
phase change of the electric field [28].

In the present work, we study wave propagation in the 
elliptical and circular waveguides filled with a magnetized 
plasma core and a PEMC boundary as a wall.

We investigate the effect of the PEMC boundary on the EM 
field propagation and the power flux density in the mentioned 
waveguides. We investigate the effect of the PEMC boundary 
on the energy and dynamics of an injected electron in elliptical 
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and circular waveguides filled with magnetized plasma. We 
calculate the dispersion functions applied to get the modes.

The present paper is formed into four sections, of which 
Sect. 1 is the Introduction. Section 2 deals with the calcula-
tion of the fields and power flux, and also the dispersion rela-
tion, of the hibrid modes in an elliptical waveguide filled by 
magnetized plasma (MPEW): magnetized plasma elliptical 
waveguide, core, and a cover PEMC boundary, considering 
the appropriate boundary conditions. The results are plotted. 
The effect of the PEMC boundary on the energy and trajec-
tory of an injected electron in the considered configuration 
is investigated. In Sect. 3, we investigate the fields and power 
flux, and also the dispersion relation, of the hybrid modes in 
a circular waveguide filled by magnetized plasma (MPCW): 
magnetized plasma circular waveguide, core, and a cover 
PEMC boundary, considering the appropriate boundary 
conditions. The results are plotted. The effect of the PEMC 
boundary on the energy and dynamics of an injected electron 
in the considered configuration is investigated. Finally, the 
conclusion is stated in Sect. 4.

2  Investigation of the Effect of PEMC Wall 
in the MPEW Coated with a PEMC

We consider an MPEW coated with a PEMC. An elliptical 
boundary bounds the plasma, indicated by � = �0 , and the 
plasma is in the constant magnetic field B⃗ = B0ẑ.

Elliptical coordinates are indicated by (� , �, z) and are 
expressed as [29]

where l =
√

a2
xB

− a2
yB

 is the semi-focal length, axB  and 
ayB are defined as the semi-major and minor axes of the 
boundary with ellipse form, and the boundary is indicated 
by �B = arctanh(ayB∕axB).

The wave equations for Ez and Hz are calculated as

where

(1)x = l cosh � cos � , y = l sinh � sin � , z = z,
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Here, h = l
√
cosh2� − cos2� , and � is the axial component 

of the wave number vector of the propagating wave. Fur-
thermore, the dielectric tensor �̃� of the magnetized plasma 
is indicated as

where g, �T , and �P are defined as follows:

Here, �p = (n0e
2∕me�0)

1

2 and �c = eB0∕me are defined as 
the electron plasma and cyclotron frequencies, respectively.

The EM fields can be written in the form of transverse 
and longitudinal components as

We consider the longitudinal and transverse filed compo-
nents for the hybrid mode in the magnetized plasma region 
as

where  C1m  and  C2m  are constants, and so  Cem(�, qi) 
and Cem(� , qi) are defined as the even solutions of the angu-
lar and radial Mathieu equations [29]. Furthermore,
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where

and also

where q1 =
l2�2

1

4
 and q2 =

l2�2
2

4
 . In this study we choose 𝜄2

1,2
> 0 . 

It is noted that the frequency-wavenumber plane can be 
divided into regions in which 𝜄2

1,2
> 0, 𝜄2

1,2
< 0 , and �2

1,2
 are 

complex [30].

2.1  Dispersion Equation

Using the correct and appropriate boundary conditions, the 
dispersion equation is derived. The PEMC boundary condi-
tions are expressed as [2, 9]
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The dispersion equation is derived from the above boundary 
by setting the condition that the determinant of the coeffi-
cients of these equations becomes equal to zero:

where

and
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2.2  Injected Electron Dynamics in the MPEW 
with PEMC Wall

Now, we study the effect of the PEMC wall on the dynamics 
of injected electrons in the MPEW. For this aim, we use the 
Lorentz and energy equations for electrons:

and

−e is the electron charge and me is the rest mass of the 
electron. We solve the above equations by the fourth-order 
Runge–Kutta method.

(34)s4 = ∫
2�

0

cen(�, q1)ce
�
m
(�, q2)d�.

(35)
d(�mevx)

dt
= −e[Ex + vyBz + vyB0 − vzBy],

(36)
d(�mevy)

dt
= −e[Ey + vzBx − vxBz − vxB0)],

(37)
d(�mevz)

dt
= −e[Ez + vxBu − vyBx],

(38)
d(�mec

2)

dt
= −e(vxEx + vyEy + vzEz),

For numerical investigation, we consider that an elec-
tron with an initial energy of  20 keV  is injected into the 
waveguide with plasma density ∼ 1017m−3 , and assume 
m = 1, n = 1.

In Fig. 1, we plotted dispersion curves for different val-
ues of the PEMC admittance parameter, M , in the MPEW 
coated with a PEMC. Figure 2 shows the variation of the 
power flux density versus � and � in the MPEW coated 
with a PEMC. The power flux density can be calculated as 
follows: Sz =

1

2
Re(E�H

∗
�
− E�H

∗
�
).

In Fig. 3, we plotted the three-dimensional trajectory of 
the electron in the MPEW coated with a PEMC, for differ-
ent values of the M parameter. We considered M1 = 0.002,  
M2 = 0.006 , and M3 = 0.01.

Figure 4 illustrates the energy of the electron in the 
MPEW coated with a PEMC for different values of the 
M parameter. We considered M1 = 0.002,  M2 = 0.01 , 
and M3 = 0.1.

3  Investigation of the Effect of PEMC Wall 
in the MPCW Coated with a PEMC

The wave equations for Ez and Hz are obtained as the fol-
lowing forms:

Fig. 1  Plot of DR versus 
normalized wave number, �l , 
for different values of M in the 
MPEW coated with a PEMC
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(39)

Ez(�,�, z, t) =
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m=0

[J1mJm(p1�) + J2mJm(p2�)]e
i(�t−�z+m�+�),

(40)

Hz(�,�, z, t) =
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−i[h1J1mJm(p1�) + h2J2mJm(p2�)]e
i(�t−�z+m�+�),

Furthermore, transverse electric and magnetic field 
components are obtained in the following forms:

Fig. 2  Plot of the power flux 
density versus � and � in the 
MPEW coated with a PEMC

Fig. 3  Electron trajectory for 
different values of M in the 
MPEW coated with a PEMC
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Using the boundary conditions,

we obtain the dispersion relation

where we calculate
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For numerical investigation, similar to the previous sec-
tion, we calculate and plot the obtained results in the MPCW 
coated with a PEMC.
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Fig. 4  Electron energy for 
different values of M in the 
MPEW coated with a PEMC
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Fig. 5  Electron trajectory for 
different values of M in the 
MPCW coated with a PEMC

Fig. 6  Electron energy for 
different values of M in the 
MPCW coated with a PEMC
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In Fig. 5, we plotted the three-dimensional trajectory of 
the electron in the MPCW coated with a PEMC, for differ-
ent values of the PEMC admittance parameter. We consid-
ered M1 = 0.001 and M2 = 0.004 . Figure 6 illustrates the 
energy of the electron in the MPCW coated with a PEMC, 
for different values of the M parameter. We considered 
M1 = 0.001, M2 = 0.004 , and M3 = 0.01.

4  Conclusions

In this work, we considered MPEW and MPCW coated 
with a PEMC boundary as cover. The EM wave propaga-
tion in two considered waveguides was studied. Considering 
appropriate boundary conditions, dispersion relations for the 
hybrid modes were derived. The EM fields and the power 
flux density in the mentioned waveguides were presented. 
The effect of a PEMC boundary on the energy and dynamics 
of an injected electron in the two considered configurations 
was graphically studied. In the end, it seems necessary to 
mention that the obtained results are approximate and in the 
considered frequency and parameter range. Various effects 
may appear in practical applications. We omitted some 
effects. However, the results are good and acceptable.
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