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Abstract
In this paper, we present a Monte Carlo study of the critical behavior of the easy axis anisotropic Heisenberg spin model 
in two dimensions. Based on the partial knowledge of the zeros of the energy probability distribution, we determine with 
good precision the phase diagram of the model obtaining the critical temperature and exponents for several values of the 
anisotropy. Our results indicate that the model is in the Ising universality class for any anisotropy.
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1 Introduction

It is well known from rigorous results due to Mermin and 
Wagner and Hohenberg [1] that magnetization cannot exist 
in a Heisenberg magnet in two dimensions. However, the 
introduction of an exchange anisotropy multiplying one of 
the components of the spin, e.g., Sz , can induce a phase tran-
sition. Therefore, we studied the model that is defined by the 
following Hamiltonian:

where, S⃗
i
 is a unit classical spin vector at a square lattice 

site i, the sum is extended over nearest-neighbor pairs, J is 
the exchange constant, and � is the anisotropy. This model 
has a continuum symmetry (considering the xy plane) com-
bined with a Z(2) symmetry in the z-direction. Therefore, 
considering the limit as T → 0 , if 𝛿 < 1 the system has an 
infinite number of ground states, the symmetry is not bro-
ken. Otherwise, if 𝛿 > 1 , the ground state is twofold and the 
symmetry will be broken as the temperature increases. Since 
there is no frustration in the problem, the model described 

in (1) should and will be ruled by the Ising Field theory and 
the critical exponents must match the ones from the 2D Ising 
model for 𝛿 > 1 . However, Binder and Landau [2] studied 
this model for the case 𝛿 > 1 and their results supported the 
idea of a crossover, for an intermediate anisotropy, due to the 
reorientation of the magnetization from perpendicular to in-
plane directions. Later, P.A. Serena et al. [3] studied the same 
model, using Monte Carlo. Due to the difficulties to properly 
equilibrate the system at low temperature, they used a new 
algorithm exploring a restrict region of the phase space. Their 
results did not show the crossover found earlier by Binder 
and Landau. They concluded the crossover was due to a lack 
of equilibration at low temperature. From our point of view, 
the Serena et al. work can not be conclusive since the low-
temperature calculations could be biased due to the algorithm 
they used. Since then, as far as we know, there were no other 
related studies on this model. The main goal in the present 
work is to study the Anisotropic Heisenberg model (AHM) 
using the zeros of the energy probability distribution (EPD) 
and a more sophisticated Monte Carlo approach as discussed 
in the Sect. 2. The advantage of using the EPD method is 
that it does not demand the previous knowledge of any order 
parameter to get the critical temperature and the exponent 
� . We have obtained the critical temperatures and all criti-
cal exponents using finite size scaling for several values of 
the easy axis anisotropy. Our results for the critical tempera-
ture are consistent with previous works. Although they are 
expected to belong to the Ising universality class, as far as 
we know, there are no estimates for the critical exponents. It 
is noteworthy that our estimate for the critical temperature 
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extends the results of reference [3]. For each temperature, 
we have obtained all critical exponents which do not indicate 
a possible crossover from the Ising class of universality, at 
large � , to another for small � . This paper is organized in the 
following way. In Sect. 2, we discuss the simulation meth-
odology used here, in particular, the Fisher zeros to settle a 
background to describe the EPD zeros approach. Next we 
describe the Monte Carlo method that combines three differ-
ent algorithms together with the “reweighting” technique. In 
Sect. 3, the numerical results are presented, including a finite 
size scaling analysis leading to the estimate of the critical 
temperatures and exponents. Finally, Sect. 4 is devoted to 
our conclusions.

2  Simulation Details

2.1  Fisher Zeros

A phase transition can be properly defined, with no ambigu-
ity, by using the Fisher zeros [4]. Fisher has shown how the 
partition function can be written as a polynomial in terms of 
the variable x = e−�� , where � = 1∕kBT  is the inverse of the 
temperature, kB is the Boltzmann constant (taken by simplic-
ity as kB = 1 from now on), and � is the energy difference 
between two consecutive energy states of the system. The 
coefficients of the polynomial are real implying that their 
roots appear in conjugate pairs. If the system undergoes a 
phase transition at a certain temperature Tc , the correspond-
ing zero, xc , must be real and positive in the thermodynamic 
limit. For any finite system, all roots of the polynomial lie 
in the complex plane. In short it is as follows. The partition 
function of the system is given by

where it is assumed that the energy, E, can be written as 
a discrete set E = �0 + n� with �0 some constant energy 
threshold. For a continuous energy distribution, like our 
model (Eq. 1), a discretization of the density of states can 
be performed. If the phase transition occurs at Tc the cor-
responding zero, xc(L) , moves toward the positive real axis 
monotonically with the increasing size of the system as a 
power L−1∕� . From now on, we call it the dominant zero. 
By plotting Im(x

c
(L)) and Re(x

c
(L)) as a function of L, the 

exponent � and the critical temperature can be obtained. 
Although simple, this technique has some difficulties to 
be implemented due to the rapid growth in the number of 
energy states of the system. A suitable way to overcome this 
kind of problem is to use the EPD. It is closely related to the 
Fisher zeros as follows.

(2)ZN =
∑

E

g(E)e−�E = e��0
N∑

n=1

gn
(
e��

)n
,

2.2  Energy Probability Distribution (EPD) Zeros

The EPD method to determine the dominant zero was devel-
oped in reference [5–7]. It consists in judiciously selecting the 
most relevant zeros for a chosen temperature in the following 
way. Let us multiply Eq. 2 by 1 = exp(�0E) exp(−�0E) , so 
that, it can be rewritten as

Following the steps leading to Eq. 2, we define the vari-
able x = e−Δ��

which is nothing but the energy probability distribution of 
the canonical ensemble (without accounting for normali-
zation), or simply the energy histogram at temperature �0 . 
Treating Eq. 4 as a polynomial, there is a one to one cor-
respondence between the Fisher zeros and the EPD zeros.

For a histogram at the transition temperature, i.e., �0 = �c , 
the dominant zero will be located over the real positive axis 
in the thermodynamic limit. For a finite but large enough 
system, we expect a small imaginary part in xc(L) . The dom-
inant zero is the one with the smallest imaginary part regard-
less of �0 . An important simplification can still be done. 
Only states with non-vanishing probability to occur are 
important to the phase transition. Therefore, we can discard 
small values of h�0 by using some cutoff hcut (see Fig. 1). 
Moreover, the dominant zero acts as an accumulation point, 
such that, even for initial histograms constructed far from 
the transition can give reasonable estimates for �c(L) . Fol-
lowing this reasoning, a criterion to filter the important 
region in the energy space can be established. It goes as 
follows: First , build a normalized histogram h�0

0
 (Max(h�0

0
 )= 

1) at an initial, but false, guess. Discard small values of h�0 
according to hcut to reduce the polynomial degree. Then, 
construct the polynomial, Eq. 4, finding the corresponding 
zeros. By selecting the dominant zero, x0

c
(L) , we get an esti-

mate for the pseudo-critical temperature �0
c
(L) . At the begin-

ning of the process, �0
c
(L) is in general a crude estimate of 

�c(L) . Nevertheless, we can proceed iteratively making 
�1
0
(L) = �0

c
(L) , building a new histogram at this temperature 

and starting over. After a reasonable number of iterations, 
we may expect that � jc(L) converges to the true �c(L) and thus 
x
j
c(L) approaches the point (1,0). This process corresponds 

to applying a sequence of transformations, � , such that we 
reach the fixed point �n+1(L) = ��n(L).

This iterative process is illustrated in Fig. 2 for � = 1.5 
and L = 60 . The open circles were obtained by selecting 
temperatures to show the geometrical structure near the dom-
inant zero. The solid red circles are for the iterative process. 

(3)Z�0
=
∑

E

h�0(E)e
−Δ�E,

{
h�0(E) = g(E)e�0 ,

Δ� = � − �0 .

(4)Z�0
= e−Δ��0

∑

n

h�0(n)x
n ,
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The existence of an attraction basin can be clearly seen. Next 
we discuss the process in obtaining the histograms.

2.3  Numerical Details

In our simulation, each Monte Carlo step (MCS) consists 
of 4 single-spin Metropolis update [8] combined with one 
overrelaxation move [9] and 1 cluster Wolff updates [10] 
over the entire lattice. First we sweep all the L2 spins in the 
lattice proposing a Metropolis move for each spin. After 
performing a Metropolis sweep four times, we make one 
overrelaxation move for each spin followed by one Wolff 
cluster update. It is worth noticing that, considering the sym-
metry of the Hamiltonian 1, the Wolff and the overrelaxa-
tion must be done only in the planar components. The first 
100 × L2 MCS are discarded in order to reach equilibration. 

After thermalization, we used 2 × 106 MCS storing energy 
E, E2 , out-of-plane magnetization Mz , and M2

z
 at each MCS 

to build the histograms.

2.4  Histograms

The histograms were taken as a post-simulation procedure, 
i.e., we run the simulations to initially obtain the raw data. 
Working in this way is important as it avoids defining the 
discretization as a simulation parameter and allows us to find 
the most appropriate discretization without having to rerun 
the simulations. In this work, we used dE = 0.5J . To build 
the single histograms, we followed a “reweighting” recipe by 
Ferrenberg and Swendsen [11] to extrapolate the results for 
temperatures in the vicinity of the simulated ones. The cutoff 
we used was hcut = 10−3 . To get the zeros, we used the soft-
ware MPSolve [12, 13]. Once the dominant zero is located, 
the thermodynamic quantities as energy ⟨E⟩ , specific heat 
Cv = �2[Var(E)] , out-of-plane magnetization ⟨Mz⟩ , and out-
of-plane susceptibility �z = �[Var(Mz)] are calculated in the 
vicinity of the dominant zero using the reweighting tech-
nique. Typical results are shown in Fig. 3) for � = 1.5 . Each 
point in our calculations is the result of an average over five 
independent histograms.

2.5  Finite‑Size Scaling

The finite-size scaling [14, 15] theory provides us a way 
to extrapolate the results obtained from finite systems to 
the thermodynamic limit. The basic assumption of FSS is 
that on the vicinity of a phase transition the thermodynamic 
quantities are homogeneous functions of their arguments and 

Fig. 1  (Color online) The figures show the typical histogram (top) 
and zeros distribution (bottom). Here for � = 1.50 and T = 1.3J∕k

B
 . 

The red line in the histogram indicates the cutoff used. In the zeros 
distribution, the zoomed figure shows the dominant zero, indicated 
with a red arrow

Fig. 2  (Color online) Example of the evolution of the iterative pro-
cess to determine the dominant zero for � = 1.5 and L = 60 leading to 
T
c
(L) ≈ 1.29 . The figure in the lrs shows the temperature for several 

iterations converging to the dominant zero (dotted-dashed line). The 
rhs figure shows the geometrical structure with an attraction basin in 
the vicinity of the dominant zero. The red dots show the evolution of 
the dominant zero when using the Regula Falsi method, as described 
in the text
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should depend only on the ratio between the relevant dimen-
sion L of the system and the correlation length, � , in such a 
way they behave as [14, 15]

where C,X,M are the proper derivatives of the free energy 
and t ≡ T−Tc

Tc
 . At t = 0 that quantities do not depend on L so 

that, Cv,�z and Mz , follows a pure power law. A similar 
expression can be written for the pseudo-critical temperature 
Tc(L) [16]

Although we do not have a rigorous demonstration of 
Eq. 9, numerical works strongly suggest it holds [5–7]. 
Using the FSS equations above, the critical temperature 
and exponents can be easily obtained from the simulation 

(5)Cv ≈ L�∕�C(tL1∕�)

(6)�z ≈ L�∕�X(tL1∕�)

(7)Mz ≈ L−�∕�M(tL1∕�)

(8)Tc(L) ≈ Tc + �L−1∕� ,

(9)ℑm[xc](L) ≈ y0L
−1∕� .

data. With � in hand, Eq. 8 readily furnishes the critical 
temperature. The hyper-scaling laws [14, 15], d� = 2 − � 
and � + 2� + � = 2 can be used as checking conditions.

3  Results

Initially, we use the imaginary part of the dominant zero 
to obtain the critical exponent � . As Im(x) ∼ L−1∕� a linear 
adjust of ln[Im(x)] × ln(L) furnishes � . Typical results are 
shown in Fig. 4 for � = 1.50 and 1.05. The insets in the 
figure are for Im(x) × L . Once the exponent � is obtained 
the critical temperatures can be estimated by adjusting 
Tc(L) × L−1∕� . To obtain the remaining exponents, �, � , 
and � , we use the values of the corresponding quantities 
at the pseudo-critical temperature. In particular, we draw 
attention to the determination of the � exponent, shown 
for two typical cases ( � = 1.50 and 1.05) in Fig. 5 for 

Fig. 3  (Color Online) Energy, magnetization, specific heat, and the 
susceptibility in a, b, c, and d, respectively, as a function of tempera-
ture for � = 1.5 for several lattice sizes, L. The highlighted points in 
each figure are the pseudo-critical temperatures obtained using the 
EPD technique as discussed in the text. Error bars are smaller then 
the symbols when not shown

Fig. 4  (Color online) Typical finite size scaling analysis for the imag-
inary part of z(L). Here we used � = 1.5 and � = 1.05 respectively. 
Error bars are smaller then the symbols when not shown

Fig. 5  (Color Online) The figures a and b are typical results for the 
maxima of the specific heat, here, for � = 1.5 and � = 1.05 respec-
tively. The points are from simulation data. The dashed line corre-
sponds to a logarithm adjust and the dotted-dashed line is a power-
law adjust. Clearly the logarithm behavior fits better the simulation 
data which is confirmed by a �2 analysis. Error bars are smaller then 
the symbols when not shown
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Cv(L) × L . Clearly, a Cv(L) × ln(L) fits the data better than 
Cc(L) × L�∕� . We assume that � = 0 for all � . Our results 
are summarized in Table 1. As a matter of comparison, the 
data from Serena et al. [3] for the critical temperatures are 
included in Table 1 and Fig. 6 for the phase diagram. In 
Table 2 are shown the deviations from the hyper-scaling 
relations.

The critical exponents clearly indicate an Ising-like behav-
ior [17] although there are some variations of the numerical 
values when compared with the ones from the Ising model. 
Perhaps the crossover claimed by Serena et al. is due to finite 
size effects around � = 1 and not necessarily due to lack of 
equilibration at low temperature.

4  Final Remarks

The main results in this work can be summarized as follows: 
(1) The study of the critical properties of a system, using the 
energy probability distribution (EPD) technique is robust, 
giving reliable results even when applied to moderate-sized 
systems. (2) For the anisotropic Heisenberg model in two 
dimensions, the results indicate the model is in the Ising 
universality class for any easy-axis anisotropy, 𝛿 > 1 . The 
variations of the values presented in Table 1 from the values 
of the Ising model are probably due to imprecision of the 
lattice sizes. (3) We have determined the critical temperature 
up to 5 figures, extending earlier results.

The determination of the critical exponents is always a 
difficult task. In general, the determination of � and Tc has 
to be done simultaneously; however, using the EPD tech-
nique, � is obtained independently. As it is obtained from the 
imaginary part of the dominant zero, we have the advantage 
of knowing in advance that ℑm[xc](L) → 0 and L−1∕� → 0 
in the thermodynamic limit that can serve as a check for the 
confidence of the simulation.

Funding This work was partially supported by CNPq and Fapemig, 
Brazilian Agencies. GB and BVC thank CNPq and FAPEMIG for the 
support under grants CNPq 402091/2012-4, CNPq 130064/2021-1, and 
FAPEMIG RED-00458-16.

Declarations 

Conflict of Interest The authors declare no competing interests.

References

 1. N. Mermin, H. Wagner, Absence of Ferromagnetism or Antifer-
romagnetism in One- or Two-Dimensional Isotropic Heisenberg 
Models. Phys. Rev. Lett. 17, 1133–1136 (1966)

 2. K. Binder, D. Landau, Critical properties of the two-dimensional 
anisotropic Heisenberg model. Phys. Rev. B. 13, 1140–1155 
(1976)

 3. P. Serena, N. Garcia, A. Levanyuk, Monte Carlo calculations on 
the two-dimensional anisotropic Heisenberg model. Phys. Rev. B. 
47, 5027–5036 (1993)

Table 1  The table shows the results obtained from the simulation. 
The entries with ()∗ are from reference [3]

� � � � T
c

1.500 0.136(7) 1.76(3) 0.990(5) 1.2811(3)
1.200 0.129(4) 1.71(2) 0.996(6) 0.9543(4)
1.100 0.123(5) 1.69(3) 0.982(9) 0.8320(2)
1.111∗ 0.76(1)
1.050 0.120(9) 1.65(6) 0.979(3) 0.7432(4)
1.010∗ 0.66(12)
1.001∗ 0.59(15)
Ising 0.125 1.75 1

Fig. 6  (Color Online) This figure compares the critical temperatures 
we obtained (circle dots) with those present in P.A. Serena et  al. 
(square). The solid line shows the isotropic Heisenberg limit, � = 1 , 
where T

c
= 0

Table 2  This table shows how much the simulation data deviates 
from the hyper-scaling relations: � + 2� + � − 2 = 0 and d� − 2 = 0 . 
The exponent � is always assumed as � = 0 as discussed in the text. 
The last line shows the exact Ising critical exponents

� 2 − 2� − � = 0 d� − 2 = 0

1.500 0.030(5) 0.020(2)
1.200 0.032(8) 0.032(2)
1.100 0.064(5) 0.036(3)
1.050 0.071(5) 0.042(20)

Page 5 of 6    162Brazilian Journal of Physics (2022) 52: 162



1 3

 4. Fisher, M. The Nature of Critical Points. (University of Colorado 
Press, 1965)

 5. B. Costa, L. Mól, J. Rocha, Energy probability distribution zeros: 
A route to study phase transitions. Comput. Phys. Commun. 216, 
77–83 (2017)

 6. B. Costa, L. Mó, J. Rocha, A new algorithm to study the criti-
cal behavior of topological phase transitions. Braz. J. Phys. 49, 
271–276 (2019)

 7. R. Rodrigues, B. Costa, L. Mól, Moment-generating function 
zeros in the study of phase transitions. Phys. Rev. E. 104, 064103 
(2021)

 8. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, 
Equation of State Calculations by Fast Computing Machines. J. 
Chem. Phys. 21, 1087–1092 (1953)

 9. M. Creutz, Overrelaxation and Monte Carlo simulation. Phys. Rev. 
D. 36, 515–519 (1987)

 10. U. Wolff, Collective Monte Carlo Updating for Spin Systems. 
Phys. Rev. Lett. 62, 361–364 (1989)

 11. A. Ferrenberg, R. Swendsen, Optimized Monte Carlo data analy-
sis. Phys. Rev. Lett. 63, 1195–1198 (1989)

 12. Dario A. Bini, Fiorentino, Giuseppe, Design, analysis, and imple-
mentation of a multiprecision polynomial rootfinder. Numer. 
Algorithms 23(2–3), 127–173 (2000)

 13. Dario A. Bini, Leonardo Robol, Solving secular and polynomial 
equations: A multiprecision algorithm. J. Comput. Appl. Math. 
272, 276–292 (2014)

 14. V. Privman, Finite Size Scaling and Numerical Simulation of Sta-
tistical Systems (World Scientific, 1990)

 15. M. Newman, G. Barkema, Monte Carlo Methods in Statistical 
Physics (Clarendon Press, 1999)

 16. C. Itzykson, R. Pearson, J. Zuber, Distribution of zeros in Ising 
and gauge models. Nucl. Phys. B. 220, 415–433 (1983)

 17. H. Stanley, Introduction to Phase Transitions and Critical Phe-
nomena (Oxford University Press, 1987)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

162   Page 6 of 6 Brazilian Journal of Physics (2022) 52: 162


	Using the Energy Probability Distribution Zeros to Obtain the Critical Properties of the Two-Dimensional Anisotropic Heisenberg Model
	Abstract
	1 Introduction
	2 Simulation Details
	2.1 Fisher Zeros
	2.2 Energy Probability Distribution (EPD) Zeros
	2.3 Numerical Details
	2.4 Histograms
	2.5 Finite-Size Scaling

	3 Results
	4 Final Remarks
	References


