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Abstract
The generation of action potential involves specific mechanosensory stimuli that are manifest in the variation of membrane  
capacitance, related to the selective membrane permeability to ion exchanges, showing the central role of electrome- 
chanical processes in the buildup mechanism of the nerve impulse. It has been established by Gross et al. (Cellular and Molecu- 
lar Neurobiology 3:89, 27) that in these electromechanical processes, the net instantaneous charge stored in the membrane 
capacitor is regulated by the rate of change of the net fluid density through the membrane, corresponding to the difference in 
densities of extracellular and intracellular fluids. In the present work, an electromechanical model for the nerve is considered, 
in which mechanical forces are assumed to be generated by fluid flow through the nerve membrane. These mechanical forces 
induce pressure waves that stimulate the membrane, and hence control the net charge stored in the membrane capacitor. The 
mathematical model features two coupled nonlinear partial differential equations, namely the familiar cable equation for the 
transmembrane voltage in which the membrane capacitor now acts like a capacitive diode, and the Heimburg-Jackson’s non-
linear hydrodynamic equation for the pressure wave assumed to control the instantaneous charge in the membrane capacitor. 
In the stationary regime, the variable-capacitance cable equation reduces to a linear eigenvalue problem with a null spectral 
parameter, the exact bound states of which are Legendre polynomials. In the dynamical regime, numerical simulations of 
the modified cable equation lead to a variety of wave profiles for the transmembrane voltage.

Keywords Cable model of nerve · Soliton model of nerve · Electromechanical coupling · Legendre polynomials.

1 Introduction

The generating mechanism of nerve impulse is one of  
most actively investigated problems in Neuroscience [1–16].  
The interest in this problem is motived by the crucial need to  
understand characteristic properties of the action potential,  
assumed to be a propagating form of the transmembrane 
voltage along the axon. Pioneer in this endeavor, the  
Hodgkin–Huxley model [1, 2] rests on the picture of a  
reaction–diffusion process, in which the nerve impulse is an 
electric voltage propagating in form of an asymmetric pulse 
along the nerve fiber. Originally, this model was introduced 
to explain data obtained from measurements of conductive 

parameters of a nerve fiber, and particularly to show how 
these data could be used to directly calculate both the shape 
and velocity of an action potential on the squid giant axon 
[17].

From a general standpoint, the Hodgkin–Huxley  
model can be regarded as a cable model for the nerve [6, 
19]. In this specific cable model, the nerve impulse is an 
electric wave associated with the flow of ion currents (Na+ 
and K + ) through specific ion channels. This self-regenerative 
wave propagates with a constant shape, through a mecha-
nism that can be summarized as follows: during the genera-
tion and transmission of the nerve impulse, the leading edge 
of the depolarization region of the nerve triggers adjacent 
membranes to depolarize, causing a self-propagation of the 
excitation related to the transmembrane voltage down the 
nerve fiber [1, 18, 21]. Hodgkin and Huxley suggested that 
a most convenient way to describe the propagation of this 
transmembrane voltage is to view the nerve fiber as an elec-
tric cable. Thus, in its most conventional formulation, the 
Hodgkin–Huxley model assumes currents in intracellular 

 * Alain M. Dikandé 
 dikande.alain@ubuea.cm

1 Laboratory of Research on Advanced Materials 
and Nonlinear Sciences (LaRAMaNS), Department 
of Physics, Faculty of Science, University of Buea, PO 
Box 63, Buea, Cameroon

/ Published online: 25 January 2022

Brazilian Journal of Physics (2022) 52: 41

http://orcid.org/0000-0002-3910-5163
http://crossmark.crossref.org/dialog/?doi=10.1007/s13538-021-01045-9&domain=pdf


1 3

and extracellular fluids to be ohmic, such that the net trans-
membrane current is the sum of ionic and capacitive cur-
rents. In this picture, the conservation law for currents pass-
ing through the membrane can be expressed [1]:

where V is the transmembrane voltage, C
m
 is the capacitance 

of the membrane capacitor, D is the diffusion coefficient and 
F accounts for contributions from some ion currents.

Besides the well-established electrical activity of the 
nerve membrane, observations [22–26] have also revealed 
the existence of mechanical constraints related to pressures 
due to fluid flows through the membrane. In ref. [27], these 
mechanical constraints have been associated with electro-
mechanical forces responsible for mechanotransduction 
processes in the nerve. Concretely in the latter processes, 
pressures exerted by fluids across the cell membrane are 
assumed to trigger excitations of electrical natures that play 
important role in the control of various stimuli-responsive 
organs as well as in homeostasis of living organisms [27].

Heimburg and Jackson [7, 28] formulated the idea that 
mechanical forces, related to pressure waves, could play 
a major role in the nerve membrane excitation and sub-
sequently in the buildup process of the nerve impulse. In 
this respect, they postulated that pressure waves associated 
with the propagation of the density difference between flu-
ids flowing through the nerve membrane could actually be 
a mechanical manifestation of the action potential. Much 
recently there have been other attempts to revisit the math-
ematical description of the nerve impulse [29–33], with the 
common aim to combine electrical and mechanical pro-
cesses in order to gain a better understanding of the mecha-
nism underlying the nerve impulse generation.

In the present work, we consider a model describing an 
electromechanical process in the generation of the action 
potential. The model combines the cable model for the 
nerve impulse [6, 19], and the pressure-wave model pro-
posed by Heimburg and Jackson [7]. The model assumes 
that the membrane capacitance changes with the differ-
ence in densities of ionic fluids simultaneously crossing the  
membrane, leading to a modified cable equation where the 
membrane capacitor now behaves like a “feedback” compo-
nent reminiscent of a capacitive diode (i.e., VARACTOR) 
in a transmission line [34, 35]. Though our assumption of  
a density-dependent membrane capacitance is not sup-
ported by sound experimental evidences, it is relevant  
to recall that the membrane capacitance is well-known 
to strongly depend on diameter of the nerve assumed  
to be a cylindrical cable [6]. Therefore, since the nerve 
membrane is a non-rigid porous wall that undergoes 
structural deformations (i.e., expansion and contraction)  

(1)C
m

�V

�t
= D

�2V

�x2
− F(V),

due to mechanical (i.e., or pressure) forces created by  
the flow of ionic fluids along the nerve (see discussions 
e.g., of ref. [20]), it is reasonable to think that the nerve 
diameter is actually not constant as usually assumed, and 
consequently the membrane capacitance should change  
in response to the change in densities of the fluids flowing 
along the nerve.

In Sect. 2, we present the model, which consists of two 
nonlinear partial differential equations, namely the modified 
cable equation for the action potential and the Boussinesq- 
type equation for the density-difference wave [7]. In Sect. 3,  
we first consider the stationary regime for the modified cable 
equation. In this purpose, we use the exact one-soliton solu-
tion to the Korteweg-de Vries (KdV) equation, derived from 
the Boussinesq-type equation for the soliton model of the 
nerve [7], to recast the modified cable equation into a linear 
operator problem with zero eigenvalue. Three exact bound-
state solutions to this linear operator problem are obtained 
analytically, for specific values of characteristic parameters 
of the model. In Sect. 4, numerical simulations of the modi-
fied cable equation are carried out assuming the three sta-
tionary solutions as initial profiles for the action potential. 
Section 5 presents a conclusion of our study.

2  The Model

The axon can be regarded as a long cylinder with walls made 
of cell membrane surrounded by intracellular and extracellular 
fluids [2, 33]. The intracellular fluid stands for a conductive 
liquid with a high concentration of potassium ions but a low 
concentration of sodium and chlorine ions, while the cell mem-
brane acts like a barrier preventing ions in the intracellular liq-
uid from mixing with external solutions. Due to the difference 
in ion concentrations in intracellular and extracellular fluids, a 
resting potential is expected to set up through the membrane. 
If the nerve is depolarized, e.g., due to the presence of a stimu-
lus of any kind, the axon membrane will become selectively 
permeable to ionic currents which flow rapidly into the cell, 
reversing the polarity of the action potential [1, 2].

In general, for a fixed number of charged lipids around the 
cell membrane, the charge density will be different because 
the respective lipid areas are different [27]. Therefore we 
can expect changes in the electrostatic potential of the 
membrane during a propagating pressure wave, indicating 
a possibility of an electromechanical coupling between the 
net fluid density and the electrostatic potential on the cell 
membrane. This electromechanical coupling, first reported 
by Petrov [36] and widely observed in recent experiments in 
neurophysiology [27, 29, 30, 37–39], can also be linked with 
changes in membrane capacitance as a result of variation of 
the fluid density through the membrane.
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The model proposed in this study retains key ingredi-
ents of the cable model for the nerve [6, 19], except the  
membrane capacitance that will be assumed to vary 
instantly with the net fluid density crossing the mem-
brane at a given time t. With these considerations the  
system dynamics can be described by the following set 
of two nonlinear space-time partial differential equations:

Equation (3), in which c0 is a characteristic velocity and h 
is a dispersion coefficient [40], is actually the most general 
form of density pulse equation [40], where the dimension-
less variable U = Δ�A∕�A

0
 represents the density difference 

Δ�A = �A − �A
0
 per unit of the homogeneous density �A

0
 . In 

this equation, the function B(U), which accounts for the 
phase transition in the so-called soliton model [7], was postu-
lated to stand for an empirical function that can be expanded 
in powers of U as [40] B(U) ≈ 1 + B1U + B2U

2 + ... , where 
B1 should be a negative real parameter and B2 a positive real 
parameter [40]. In the present study and as assumed in most 
studies on the soliton model, we shall retain only the linear 
term and set B1 = −1 , for simplicity. With this assumption, 
Eq. (3) reduces to:

To represent the instantaneous change of the capacitance 
C
m
 of the membrane capacitor, due to variation of the ion-

carrying fluid density [24, 25] across the membrane, we sup-
pose that when the nerve is active, the rate of change of the 
membrane capacitance is proportional to the net density of 
ion-carrying fluid Δ�A across the membrane, i.e.,

where � is assumed positive. With assumption (5) Eq. (2) 
becomes:

where the membrane capacitance C
m
(x, t) is now given by:

Instructively, the value � = 0 reproduces the familiar cable 
model for the nerve [6, 19]. However, for nonzero values 

(2)D
�2V

�x2
=
�

�t

(

C
m
(x, t)V

)

,

(3)
�2U

�t2
= c

2

0

�

�x

(

B(U)
�U

�x

)

− h
�4U

�x4
.

(4)
�2U

�t2
= c

2

0

�

�x

(

(1 − U)
�U

�x

)

− h
�4U

�x4
.

(5)
�C

m
(x, t)

�t
= �Δ�A,

(6)C
m
(x, t)

�V

�t
= D

�2V

�x2
− �Δ�A(x, t)V ,

(7)C
m
(x, t) = C

a
+ � ∫ Δ�A(x, t)dt.

of � , Eq. (6) gives rise to a modified cable equation whose 
solution depends on the spatiotemporal profile of the den-
sity-difference wave Δ�A(x, t) . In the next section, using the 
exact one-soliton solution to Eq. (4), we seek for possible 
analytical solutions to the modified cable Eq. (2). In this 
respect, we shall see that the modified cable equation is ana-
lytically tractable only in the steady-state regime. Indeed in 
this regime, the modified cable equation reduces to a linear-
operator problem with zero eigenvalue, the bound states of 
which are Legendre polynomials [41].

3  Stationary Solutions 
to the Action‑potential Equation

Introducing new coordinates, namely

and integrating once with respect to the new variable � , Eq. 
(4) reduces to the KdV equation [42]:

where � and � are constants depending on c0 , h and c. In 
principle, the parameters � and � can be set to any values 
through judicious coordinate transformations; however, we 
shall retain the most widely used values of these parameters, 
i.e., � = 6 and � = −1 [42]. For these specific values, Eq. 
(9) admits exact one and n-soliton solutions [42]. Focusing 
on the one-soliton solution, the inverse-scattering transform 
suggests the following analytical expression:

which is a localized wave of compression. Using this local-
ized pressure wave, associated with the difference in densi-
ties of fluids across the membrane, we can re-express the 
modified cable Eq. (6) as:

where we defined � = ��0 . Equation (11) needs to be fully 
solved in order to gain a consistent picture of the spatiotem-
poral evolution of the action potential V(x, t). But this equa-
tion is complex as it stands, and no exact analytical solution 
can be obtained. Nonetheless it is remarkable that at steady 
state, this equation reduces to the linear eigenvalue problem:

(8)U(x, t) = �(�, T), � = c(
x

c0

− t), T =
h

c
t,

(9)
��

�T
= ��

��

��
− �

�3�

��3
,

(10)U(x, t) = −2sech2(x − 4t),

(11)C
m
(x, t)

�V

�t
= D

�2V

�x2
− �U(x, t)V ,

(12)
(

�(x) −
�2

�x2

)

V(x) = 0, �(x) = −� sech
2
x,
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in which � =
2�

D
 , and where we introduced the new voltage 

variable V(x) = V(x, 0) . By setting � = tanh x , Eq. (12) can 
be transformed into a Legendre equation of order n [41]:

where n(n + 1) = � , n being a positive integer. Solutions to 
Eq. (13), for an arbitrary value of the positive integer n, are 
the Legendre polynomials:

(13)
d

d�

{

(1 − �2)
dV

d�

}

+ n(n + 1)V = 0,

The three first solutions, corresponding to n = 1, 2 and 3, 
respectively, are:

(14)V
n
(�) =

1

2nn!

dn

d�n
(�2 − 1)n, n = 1, 2, 3,⋯ .

(15)V1(x) = tanh x, D = 2�,

(16)V2(x) =
1

2
(3 tanh2 x − 1), D = 6�,

Fig. 1  Sketches of the first three 
solutions to the action-potential 
Eq. (12) in stationary regime. 
From left to right: n = 1 , 2, 3
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These solutions are sketched in Fig. (1). Note that higher-
order solutions (i.e., solutions corresponding to higher val-
ues of n) can be found analytically from the general formula 
Eq. (14), but here we consider only the above three solu-
tions. In the next section, they will be used as initial profiles 
in numerical simulations of the modified cable Eq. (11) in 
the dynamic regime.

4  Travelling‑wave Solutions to the Modified 
Cable Equation

The modified cable equation (11) is an initial-value problem, 
as such it can be solved numerically using a finite-difference 
algorithm. In our case, we adopt a finite-difference scheme 
that combines a central-difference approximation for time 
derivative and a forward-difference approximation for the 

(17)V3(x) =
1

2
(5 tanh2 x − 3) tanh x, D = 12�,

second-order derivative in space [43]. The diffusion coef-
ficient D, the bare membrane capacitance C

a
 , the electro-

mechanical coupling coefficient � and the quantity � were 
chosen arbitrary in the simulations, for the present study is 
more descriptive than a quantitative analysis of the problem.

Figures 2, 3 and 4 show profiles of the transmembrane 
voltage V(x, t) at six different times t, generated numerically 
from the modified cable Eq. (11) for three distinct initial 
conditions corresponding to the stationary solutions (15) 
(Fig. 2), (16) (Fig. 3) and (17) (Fig. 4), respectively. Values 
of parameters are D = 6 , C

a
= 2 , � = 0.3 and � = 3.3.

In Fig. 2, where the initial profile of the transmembrane 
voltage V(x, t = 0) is a kink given exactly by Eq. (15), it is 
seen that kink transforms gradually into a pulse upon propa-
gation. At long term, the transmembrane voltage stabilizes 
in a typical asymmetric pulse characterized by a long trail-
ing tail but a steep front [44–48]. A similar behaviour is  
also observed for the two other cases where the initial profiles  
of the transmembrane voltage are a pulse given by Eq. (16), and  
the kink-pulse structure given by Eq. (17). In clear, for the 

Fig. 3  (Color online) Profiles of 
the transmembrane voltage at 
different times t, obtained from 
numerical simulations of Eq. 
(11) with the bound state Eq. 
(16) used as initial condition: 
D = 6.0 , C

a
= 2.0 , � = 0.3 , 

� = 3.3
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present model, the long-term shape of the propagating trans-
membrane voltage will always be an asymmetric pulse with 
a steep front and a trailing tail as observed in most experi-
ments, irrespective of the initial profile determined by the 
stationary solution to the modified cable Eq. (12).

The spacetime evolutions of the three different numerical 
solutions shown in Figs. 2, 3 and 4 are represented in Figs. 5, 
6 and 7 respectively. These three-dimensional representa-
tions provide more evidence of a similar shape profile for 
the three initial solutions, at long term.

Fig. 4  (Color online) Profiles of 
the transmembrane voltage at 
different times t, obtained from 
numerical simulations of Eq. 
(11) with the bound state Eq. 
(17) used as initial condition: 
D = 6.0 , C

a
= 2.0 , � = 0.3 , 

� = 3.3
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Fig. 5  (Color online) Spa-
tiotemporal shape of the 
transmembrane voltage V(x, t), 
obtained numerically with the 
initial profile Eq. (15): � = 2 , 
� = 0.3 , C

a
= 2.9

Fig. 6  (Color online) Spa-
tiotemporal shape of the 
transmembrane voltage V(x, t), 
obtained numerically with the 
initial profile Eq. (16): � = 2 , 
� = 0.3 , C

a
= 2.9
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5  Conclusion

Exploiting experimental evidences of the influence of elec-
tromechanical processes in the generation and propagation 
of the action potential [16, 27, 33, 46–48], we have proposed 
a model for this physiological phenomenon which combines 
two existing pictures, namely the electrical picture [1, 6, 
19], which describes the nerve impulse as a pure electri-
cal wave related to the voltage difference created by ions 
around the nerve membrane, and the hydrodynamic picture 
of Heimburg and Jackson [7] according to which the nerve 
membrane is instead a pressure wave, associated with the 
density difference of fluids flowing across the membrane.  
In the proposed model we kept the cable picture of the  
action potential, but assumed that the net charge stored in 
the membrane capacitor at a given time, was controlled by 
mechanosensory processes associated with pressure waves 
that are generated by the difference in densities of ion- 
carrying fluids flow across the membrane. In this respect, 
the mathematical formulation corresponding to the proposed 
model involves a combination of the KdV equation [7], and 
the cable equation but with a capacitor whose capacitance is 
a function of the net density of fluid crossing the nerve mem-
brane. By assuming a simple linear relationship between 
the membrane capacitance and the density difference, we 
obtained that in steady-state regime, the modified cable 

equation governing the spacial profile of the action potential, 
can be reduced to the Legendre equation whose exact solu-
tions are the familiar Legendre polynomials. Solving the full 
partial differential equation describing the spatiotemporal 
evolution of the transmembrane voltage, assuming the first 
three modes of the Legendre polynomials as initial profiles 
for the transmembrane voltage, we found that at long term, 
the transmembrane voltage always stabilizes in a typical 
pulse shape characterized by a long tail and a steep front.

We would like to point out that although there is no 
direct experimental evidence of some dependence of the 
membrane capacitance on the fluid density, it should be 
recalled that the membrane capacitance is well known 
to depend on the nerve diameter (assuming that the 
nerve is an electrical cable). It turns out that since the 
nerve membrane undergoes structural deformations, 
namely is expanded and contracted alternately as ionic 
fluids flow along the nerve cable, the nerve diameter 
cannot be constant as usually assumed. Hence, the 
membrane capacitance cannot be constant, instead the 
membrane capacitance should depend on the effective 
density of fluid flowing across the membrane. In the 
present study, a linear dependence of the membrane 
capacitance on the density difference was considered, 
of course we do not expect this linear dependence 
to reflect the exact physical reality. This simple case 

Fig. 7  (Color online) Spa-
tiotemporal shape of the 
transmembrane voltage V(x, t), 
obtained numerically with the 
initial profile Eq. (17): � = 2 , 
� = 0.3 , C

a
= 2.9
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was considered to highlight the novel qualitative fea-
tures expected from an account of electromechanical 
processes.
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