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Abstract
Ergodicity breaking has a profound effect on the transport of particles in typical nonlinear Hamiltonian systems. In this 
paper, we analyze the survival and extinction of ergodicity in weakly chaotic Hamiltonian coupled maps. The key feature 
for the ergodicity breaking is the existence of sporadic strong dynamical trappings (or strong quasi-invariant sets in higher 
dimensions). Such trappings eventually occur when zero Kolmogorov-Sinai-entropy (KSE) is observed along a chaotic tra-
jectory. The finite-time KSE� is obtained from the spectrum of finite-time Lyapunov exponents (FTLEs� ) calculated during 
an arbitrary time window of size � along the chaotic trajectory. Zero KSE� occurs when all FTLEs� are sufficiently close to 
zero, and positive KSE� when the sum of the FTLEs� is larger than a predefined threshold. The associated points in phase 
space belong, respectively, to strong and weak quasi-invariant structures. The key observations are that (i) for zero KSE� , 
solely power-law decays are observed in the cumulative recurrence distribution (characterizing the strong quasi-invariant 
sets), and (ii) for positive KSE� values we obtain asymptotically only exponential decays (characterizing the chaotic motion 
and the weak quasi-invariant sets). For N = 1,… , 5 coupled Hamiltonian maps with mixed dynamics, we obtain the power-
law decay exponent � ∼ 1.20 , which corroborates with former investigations. This result also persists for arbitrarily small 
coupling strength between the maps. Both outcomes (i) and (ii) are valid for asymptotic times so that our analysis precisely 
confirms the concept of ergodicity extinction and survival in weakly chaotic systems with a moderate number of dimensions.

Keywords Ergodicity breaking · Hamiltonian systems · Poincaré recurrences · Finite-time Lyapunov exponents.

1 Introduction

For many years, robust results in equilibrium statistical 
mechanics are obtained when time averages can be replaced 
by spatial averages, a consequence of the ergodic property 
found in the dynamics of innumerable physical systems. 

Nevertheless, it has become more and more evident in cur-
rent researches that in a variety of physical systems, the evo-
lution remains localized for finite times (or transients) [1, 2] 
in confined areas of the phase space [3]. In the context of 
nonintegrable Hamiltonian systems with mixed (also defined 
as divided [4] for systems with two-degrees of freedom) 
phase space, where regular domains are surrounded by the 
chaotic sea and define dynamical trappings (named as quasi-
invariant structures in higher-dimensional phase spaces [5]) 
or stickiness, and can be related to quasi-stationary physical 
states. Thus, the concept of ergodicity breaking is not neces-
sarily restricted to the usual infinite-time scales limit and can 
be quantified via distinct degrees of stickiness in a physical 
system. In fact, the goal of this paper is to show that only 
quasi-invariant sets which affect all phase-space dimensions 
can generate ergodicity breaking. Such sets are referred here 
as strong quasi-invariant sets.

In general, different mechanisms can activate non-
ergodicity in distinct contexts and is of most relevance 
to understand and to explore the origin of this activation. 
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The breakdown of the ergodic behavior has important con-
sequences in problems involving condensed matter phys-
ics [6, 7], transport properties in classical Hamiltonian sys-
tems [3, 8–12] (see also references therein) and in quantum 
systems that violate the eigenstate thermalization hypoth-
esis [13–16], to mention a few examples. From a practical 
point of view, a recent study shows that the phenomenon 
of ergodicity breaking also occurs in biophysical systems, 
and it has crucial implications in biomedical applications 
where long observations of time-series are impossible [17]. 
Another example is found in Ref. [18], where the author 
addresses the question of how ergodicity may be used to 
understand the complicated current economic formalism.

Being more specific, in this paper, we show that only 
strong quasi-invariant structures (strong dynamical trap-
pings) in the phase space are responsible for the extinction 
of ergodicity. The strong dynamical trappings are observed 
when the Kolmogorov-Sinai-entropy (KSE) approaches 
zero for a finite time, along with the evolution of the chaotic 
trajectory. In other words, ergodicity breaking only occurs 
when the quasi-regular structures in the phase space affect 
simultaneously all FTLEs� related to the unstable invari-
ant manifolds. In case the quasi-regular structures does not 
affect simultaneously all the positive FTLEs� , defined here 
as weak dynamical trappings, ergodicity survives. In this 
context, the authors in Ref. [19] also applied the concept of 
finite-time KS entropy (defined differently) and look at the 
fluctuations of this quantity in an ensemble of trajectories as 
a potential measure that can indicate the ergodicity breaking 
in high-dimensional Hamiltonian systems.

The paper is organized as follows. In Sect. 2, the model of 
together with some numerical simulations, Hamiltonian cou-
pled maps are presented to exhibit the dynamics in phase space 
of a single map using distinct nonlinear parameter values. This 
furnishes a better understanding of the dynamics when the 
maps are coupled. Section 3 presents the definition of the KSE� 
together with a numerical example for the case of two coupled 
maps. In Sect. 4, results for the cumulative distributions of the 
consecutive times spent inside the quasi-invariant structures are 
presented, compared and discussed for the coupled maps case. 
Finally, in Sect. 5 we summarize our main findings.

2  Coupled Maps Model

Coupled symplectic maps are convenient systems to inves-
tigate the ergodicity breaking in high-dimensional phase 
space of Hamiltonian systems. In this study, we used a 
2N-dimensional symplectic mapping composed of N copies 
of the well-known Chirikov-Taylor standard map [20] (see 
also [21]). Such symplectic mapping was previously studied 
in Refs. [9, 22, 23], and is defined in the following form:

where Ki sin(2�xi) represents the local conservative non-
linear forcing. The function f (xi+1, xi, xi−1) represents the 
conservative nonlinear coupling which is defined as

with �x
±
= 2�(xi±1 − xi) , and � being the coupling strength. 

Note that the primes in x′
i
 and p′

i
 indicate the one-step time 

evolution of xi and pi , respectively, with the index i label-
ling the map.

In our simulations, we considered periodic boundary 
conditions xi(mod 1) and pi(mod 1) with −0.5 ≤ pi ≤ 0.5 . 
In the limit of vanishing coupling, � → 0 , the system (1), 
reduces to a set of N uncoupled maps, whose phase space 
exhibits regular, chaotic, or mixed dynamics, depending 
on the value of the nonlinear parameters Ki . The under-
lying symplectic (Hamiltonian) flow that originates the 
generic lattice of N coupled mappings (1) describes the 
dynamics of the N single kicked rotors interacting through 
a nearest-neighbor coupling force. For N = 2 the coupled 
maps lattice studied here is very similar to the Froeschlé 
map introduced in [24] and used to model the time evolu-
tion of elliptical galaxies.

We study the dynamics of N = 2, 3 , and 5 coupled 
standard maps, whose phase-space dimension is 4,    6 
and 10, respectively. For the coupling strength, we used 
� = 10−4, 10−3 , and 10−2 , and five kicking intensities: 
(K1,K2,K3,K4,K5) = (0.23, 0.41, 0.42, 0.81, 1.40) . The first  
four values of Ki correspond to a mixed-phase space com-
posed of chaotic sea and chains of regular islands [21] (see 
Fig. 1), known as sticky domains. The stickiness effect 
yields asymptotic algebraic decay of Poincaré recurrences, 
and in these cases, ergodicity can be broken. We point out 
that some dynamical properties of (1) have been studied in 
Refs. [9, 22, 23]. In particular, the simulations in [22] indi-
cate that a coarse-grained filling of the phase space (typical 
behavior of the ergodic systems) is obtained even for small 
nonlinearity parameters ( � ≤ 10−4 ), while the mixed nature 
of the phase space can make this filling extremely slow, 
compatible with power-law scaling. In [23], fluctuations of 
FTLEs were considered, suggesting a relationship between 
fluctuations and sticking to regular orbits.

Figure 1 displays the phase-space dynamics of one 
uncoupled map for increasing values of K. In Fig. 1(a) 
to (c), a mixed dynamics due to divided phase spaces is 
shown with several isolated islands surrounded by high-
order resonances and a chaotic component. While in 
Fig. 1(d) some small islands are still present, Fig. 1(e) 
suggests full chaotic dynamics.

(1)

{

p�
i
= pi + Ki sin(2�xi) + f (xi+1, xi, xi−1),

x�
i
= xi + p�

i
,

(2)f (xi+1, xi, xi−1) = �[sin(�x
+
) + sin(�x

−
)],
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3  The KSE! and the Quasi‑invariant Sets

A typical chaotic trajectory visits all points in the phase 
space of high-dimensional mixed Hamiltonian systems. 
Let {�} ∈ Γ the set of points of such chaotic trajectory and 
Γ = Γ

chaos
 the phase space. For asymptotic times ( t → ∞ ) 

in a closed Hamiltonian system with N degrees of free-
dom, the chaotic trajectory can be characterized by a spec-
trum of N positive Lyapunov exponents {�(∞)

i=1…2N
} , where 

𝜆
(∞)

1
> 𝜆

(∞)

2
,… , 𝜆

(∞)

N
> 0 > −𝜆

(∞)

N
>,… ,−𝜆

(∞)

2
> −𝜆

(∞)

1
 . 

Even though the spectrum of FTLEs is a powerful method 
to describe the underline dynamics, unfortunately, the 
effect of quasi-invariant sets on the chaotic trajectory in 
mixed-phase spaces is washed out for asymptotic times. To 
solve this problem, a time-dependent spectrum {�(�)

i=1…2N
(t)} 

can be used, and is obtained when the spectrum of FTLEs 
is computed along the chaotic trajectory during a window 
of size � . More interestingly, it has been shown [25] that 
sharp transitions towards �(�)

i
≈ 0 occur when the chaotic 

trajectory approaches regular islands (or the quasi-regular 
structures). Such sharp transitions towards zero of one or 
more �(�)

i
 are related to points in phase space that belong to 

quasi-invariant structures. Therefore, the chaotic compo-
nent of the phase space can be divided in sub-components

Γ
(�)

chaos

 represents the chaotic phase space sub-component for 
which all 𝜆(𝜔)

i
> 0 . On the other hand, Γ(2n)

quasi

 represents the 
distinct quasi-invariant sub-components which have a num-
ber 2n of �(�)

i
 which are simultaneously close to zero. Each 

sub-component Γ(2n)

quasi

 is related to points in phase space 
which belong to quasi-invariant structures. Figure 2 displays 
these sub-components in a time series of system (1) with 
N = 2.

To study ergodicity breaking process through quasi-
invariant structures, it is appropriate to define the KSE, 
which according to Pesin [26] (see also [27]) is equal to 

(3)Γ
chaos

= Γ
(�)

chaos

+

N
∑

n=1

Γ
(2n)

quasi

,

the sum of the positive Lyapunov exponents for times large 
enough. Using the time-dependent spectrum of positive 
{�

(�)

i=1…N
} , it is possible to define the finite-time KSE� 

inside a time window � as

Consequently, the KSE
� changes along the chaotic trajec-

tory, depending on which quasi-invariant structure is vis-
ited. When all {�(�)

i=1…N
} approach zero simultaneously, the 

KSE
� also approaches zero and we have the already men-

tioned strong quasi-invariant structures. The term strong 
refers to the ability of the structure to affect simultaneously 
all {�(�)

i=1…N
} . As demonstrated later, only the strong quasi-

invariant structures, for which n = N , are capable to break 
the ergodicity.

For the practical determination of the sub-components 
Γ
(2n)

quasi

 , it is necessary to settle a threshold for the FTLEs �(�)
i

 

(4)KSE
�
=

N
∑

i=1

�
(�)

i
.

Fig. 1  Phase-space dynamics of the uncoupled � = 0 standard map 
for (a) K = 0.23 , (b) K = 0.41 , (c) K = 0.42 , (d) K = 0.81 , and (e) 
K = 1.40 . These values of K are also used in the nonzero coupling 

numerical simulations. Here we used 120 equally distributed initial 
conditions. Each initial condition was iterated 5000 times

Fig. 2  Time series of the FTLEs �(�)
i

 ( i = 1, 2 ) for the system  (1) 
with K1 = 0.41 , K2 = 0.42 , and � = 10−3 , showing the time inter-
vals for which the chaotic sub-component Γ(�)

chaos

 and quasi-invar-
iant sub-components Γ(2)

quasi

 and Γ(4)

quasi

 are visited. The threshold 
� = �1 + �2 = 0.10 is represented by the black dash-dotted line, while 
the black continuous line indicates the zero value
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so that KSE𝜔
< 𝜀 , with � =

∑N

i=1
�i

 . Additionally, the choice 
of a few parameters and conventions are needed. First of all, 
the window size � and the threshold �i directly affects the 
recognition of the quasi-invariant sets. They can be inter-
preted as the phase-space resolution of the analysis and 
should be selected to provide maximal information about the 
regions of interest. The window size � must be satisfactory 
small to assure an acceptable resolution of the temporal 
changes of the �(�)

i
’s, but also sufficiently large to have a 

reliable estimation (see Refs. [22, 28]). Another important 
choice is the method for the computation of the FTLEs. We 
used Benettin’s algorithm [29, 30], which includes the 
Gram-Schmidt re-orthonormalization procedure. The 
decreasing order of �(�)

i
 is valid on average, but inversions 

of the order ( 𝜆(𝜔)
i+1

> 𝜆
(𝜔)

i
 ) may occur for some times t and we 

have chosen to establish the order of �(�)
i

 for all t. At last, it 
is possible to determine how to sample the time series �(�)

i
 . 

While the FTLEs are determined for all t, there is a correla-
tion between the values of FTLEs inside a window of size 
� , since they are computed using the same points of the 
trajectory. In order to avoid this trivial correlation the series 
of �(�)

i
 can be computed using non-overlapping windows, i.e. 

plotting �(�)
i

 only every � time steps (a choice we adopt in 
our simulations). The probability density function of �(�)

i
 has 

been extensively studied [23, 28, 31].
Finally, considering high-dimensional Hamiltonian sys-

tems, it seems more appropriated to study a finite-time KSE 
and to analyze the variations of this quantity in an ensemble 
of trajectories as a potential measure that indicates the break 
of ergodicity which occurs due to the intermittent sticki-
ness synchronization observed for such class of dynamical 
systems [32, 33].

4  Results and Discussion

In order to provide a clear presentation of the results, we 
start discussing the time dependence of KSE

� along the 
chaotic trajectory and the cumulative distribution of the 
consecutive times �

KSE
 spent inside each quasi-invariant 

structures for N = 2 . Later on we discuss the cumulative 
distribution of �

KSE
 in cases N = 3 and 5 for the full quasi-

invariant structures.
Figure 3(a)–(d) show the log-log plot of the cumulative 

recurrence distribution P
cum

(�) as a function of the consecu-
tive time � spent inside each quasi-invariant structures for 
distinct combination of K1 and K2 from the two coupled map 
system (1). In this case the phase space dimension is N = 4 . 
Table 1 summarizes the combination of K1 and K2 parame-
ters and the thresholds used in each case. We consider dif-
ferent nonlinearity parameters in order to characterize the 
influence of (i) breaking the regular islands symmetry 

between maps and (ii) suppressing the regular islands in 
phase space of the uncoupled maps and for the dynamics of 
the whole multidimensional system. In this way, the maps 
of the lattice have different ergodic properties and transport 
rates, which the combined effect is explored in the present 
study. Different colors represent the cumulative recurrence 
distribution of the distinct quasi-invariant structures: Γ(�)

chaos

 
in orange, Γ(2)

quasi

 in dark blue and Γ(4)

quasi

 in cyan. While the 
distributions related to Γ(�)

chaos

 and Γ(2)

quasi

 decay exponentially, 
for the strong quasi-invariant structure Γ(4)

quasi

 a power-law 
decay is observed. The power-law decay exponent � tends to 
increase when one of the coupled maps has a larger value of 
the nonlinear parameter, as exemplified in Fig. 3(c) for 
which K2 = 0.81 . Similar power-law decays are also 
observed for the statistics of the Poincaré recurrence times 
in high-dimensional coupled maps [34–37] and in non-Ham-
iltonian conservative systems [38]. Albeit these works, the 
generic mechanism that could explain these power-law 
decays remains an open question [39, 40]. In contrast to the 
high-dimensional case, the power-law decay for the recur-
rence times (with � ∼ 1.57 ) in two-dimensional maps [31, 
41–48] is well-known, and it occurs due to the hierarchy 
islands-around-islands in the phase space [49]. In the case 
for which K2 = 1.40 [see Fig. 1(e)], the chaotic component 
Γ
(�)

chaos

 dominates the phase space and eliminates any contri-
bution of the strong quasi-invariant structure, as can be 
checked by the absence of the Γ(4)

quasi

 case in Fig. 3(d).
Figure 3(e)–(h) display the x2 × p2 phase-space projec-

tions with colors indicating the points in phase space which 
belong to the corresponding quasi-invariant structures from 
Fig. 3(a)–(d). The relation to the corresponding cyan, dark 
blue, and orange points from Fig. 3(e)–(h) is evident. The 
full quasi-invariant structures are clearly related to points in 
phase space which correspond to sticky motion (see cyan 
points). For a better visualization, Fig. 3(i)–(l) display the 
points in phase space (brown color) solely related to the full 
quasi-invariant structures for which KSE𝜔

< 𝜀 . Thus, the 
power-law decay from Fig. 3(a)–(c) are a consequence of the 
brown points in Fig. 3(i)–(k), respectively. Furthermore, the 
absence of such points in Fig. 3(l) leads to the extinction of 
any power-law decay in Fig. 3(d).

This result is remarkable since it shows that only states 
along with the chaotic trajectory with zero ( < 𝜀 ) KSE� can 
generate stickiness and non-ergodic motion. We point out 
that a similar power-law exponent � was obtained for the 
same system by using both, statistics of Poincaré recur-
rences and large deviations for the distribution of FTLEs [9]. 
The fundamental ingredient for the power-law decay is the 
coupling force between maps. Even for arbitrarily small 
couplings (as used here), chaotic trajectories penetrate and 
remain trapped in the reminiscence of high-order reso-
nance islands for long, but finite intervals, which drastically 
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degrades the chaotic dynamics. In particular, the coupling 
force acts mainly in the tangential directions as a kind of 
random signal (see Refs. [50, 51] for enlightening discus-
sions). Such phenomenon generates the trapping of the cha-
otic trajectories and it is responsible for long transients in the 
power-law decay of P

cum
(�) , and consequently also respon-

sible for the non-ergodic motion, even when the coupling 

strength is varied and the system contains many coupled 
particles. This scenario is clarified by the numerical results 
which are presented next.

Figure 4(a) displays the cumulative distribution of the 
consecutive times �

KSE
 for P

cum
(𝜏

KSE<𝜀
) (gray dotted curve) 

and P
cum

(𝜏
KSE>𝜀

) (brown curve). While the gray dotted curve 
decays exponentially, the brown curve decays as a power-
law function

with exponent � = 1.25 . The black dotted line shows the 
decay � = 1.25 for reference. This result demonstrates that 
only the distribution P

cum
(𝜏

KSE<𝜀
) , which is uniquely related 

to the strong invariant sets, is responsible for the extinction of 
ergodicity. The robustness of these findings under variations 
of the thresholds � and windows � are shown in Fig. 4. While 
in Fig. 4(b) we see the cumulative distribution P

cum
(𝜏

KSE<𝜀
) 

(5)P
cum

(�
KSE

) ∝ a�
�

KSE

,

Fig. 3  (a)–(d) The cumulative distribution P
cum

(�) of the consecu-
tive times � inside the quasi-invariant structures Γ(2)

quasi

 and Γ(4)

quasi

 , and 
the chaotic sub-component Γ(�)

chaos

 , obtained during a time window 
� = 100 for system (1) with N = 2 , � = 10−3 , and different values of 
Ki . The thresholds �i are approximately equal to 10% of the value of 
�
(∞)

i
 (see Table 1). The distributions were performed collecting 1010 

values of � , and the Γ(4)

quasi

 sub-component follows a power-law decay 
with exponent � . In (e)–(h) the phase-space projections x2 × p2 are 
displayed with the colors indicating the points in the phase space cor-
responding to (a)–(d), while in (i)–(l) the colors indicate the corre-
sponding phase space points related to KSE� , which are brown points 
for KSE𝜔

< 𝜀 , and gray points for KSE𝜔
> 𝜀 , with � = �1 + �2

Table 1  Values of K
i
 used to couple two standard maps ( N = 2 ) and 

the thresholds �
i
 and � = �1 + �2 . For N = 2 we set �

i
∼ 10% of the 

value of �(∞)

i
 . Associated Fig. 3 are indicated

Figure 3 K1, K2 �1 �2 �

(a), (e), (i) 0.42,  0.23 0.05 0.02 0.07
(b), (f), (j) 0.41,  0.42 0.06 0.04 0.10
(c), (g), (k) 0.42,  0.81 0.10 0.05 0.15
(d), (h), (l) 0.42,  1.40 0.15 0.05 0.20
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for a fixed value of the time window � = 100 and three dis-
tinct thresholds � = 0.05, 0.10, 0.20 , in Fig. 4(c) we display 
the distribution for a fixed threshold � = 0.10 and three differ-
ent time windows � = 50, 100, 200 . For reference, the brown 
curve repeats the result from Fig. 4(a). This means that the 
values of the window � and thresholds � used here allow us 
to make trustful statements. Additionally, Fig. 4(d) presents 
results for P

cum
(𝜏

KSE<𝜀
) for distinct values of the coupling 

parameter, namely � = 10−2, 10−3 and 10−4 . The persistence 
of the power-law decay with � = 1.25 is visible.

Finally we discuss results for higher dimensions. Figure 5 
shows the same cumulative distribution P

cum
(𝜏

KSE<𝜀
) for 

N = 2, 3 and N = 5 , keeping fixed � = 10−3 . Table 2 sum-
marizes the values of Ki and thresholds used in Fig. 5. In all 
cases, the power-law decay is evident and it follows an expo-
nent � ∼ 1.25 obtained for the N = 2 case (see Fig. 4), which 
is consistent with former results [9] where the exponent which 
characterizes the stickiness effect was estimated by different 
statistical analysis for N = 2, 3 coupled maps (1). Besides, it 
allows us to reaffirm that strong quasi-invariant structures are 
uniquely related to non-ergodic portions of the phase space. It 
is also important to mention that the estimated value of � par-
tially agree with Shepelyansky’s conjecture, which, roughly 
speaking, proposes the existence of an asymptotic decay of 
Poincaré recurrences for coupled Hamiltonian maps with arbi-
trary number of degrees of freedom. However, the average 
decay exponent obtained here ( � ∼ 1.20 ) is smaller than the 
universal average decay Poincaré exponent between ∼ 1.3 and 
1.4 originally proposed in [37].

Above results demonstrate that P
cum

(𝜏
KSE>𝜀

) excludes 
the effect of quasi-invariant sets on the ergodicity breaking. 
Thus, weak quasi-invariant structures are not able to gener-
ate the survival of ergodicity. In other words, any quasi-
invariant structure with at least one positive �(�)

i
 is capable 

of generating ergodicity. On the other hand, P
cum

(𝜏
KSE<𝜀

) , 

related to strong quasi-invariant sets leads to the extinction 
of ergodicity.

Furthermore, considering that each point along the chaotic 
trajectory belongs to a point in phase space, all points which 
belong to the KSE𝜔

< 𝜀 generate a pure power-law decay of 
P
cum

(𝜏
KSE<𝜀

) which for large times (observed in the simula-
tions) never reach an exponential decay. Thus, if we consider 
only the portion of points in phase space and times which 
belong to zero KSE𝜔

< 𝜀 [brown points in Figs. 3(i)–(k)], we 
can identify the regions in phase space which generate the 
ergodicity breaking, valid for asymptotic times.

(a) (b) (c) (d)

Fig. 4  The cumulative distribution P
cum

(�
KSE

) of the consecutive 
times �

KSE
 in (a) for P

cum
(𝜏

KSE<𝜀
) (brown curve) and P

cum
(𝜏

KSE>𝜀
) 

(gray dotted curve) for the time window � = 100 for system (1) with 
N = 2 , � = 10−3 , K1 = 0.41 , and K2 = 0.42 . The threshold � = 0.10 
is approximately equal to 10% of the value of �(∞)

1
+ �

(∞)

2
 . The dis-

tribution performed collecting 109 values of �
KSE

 , and P
cum

(𝜏
KSE<𝜀

) 
follows a power-law decay with exponent � = 1.25 (see dotted black 

line for reference). The cumulative distribution P
cum

(𝜏
KSE<𝜀

) is shown 
in (b), where we kept fixed the time window � = 100 and varied the 
threshold � chosen values about 5% , 10% and 20% , while in (c), the 
threshold � = 0.10 was kept fixed and the time window � was varied. 
In (d) the cumulative distribution is shown for distinct values of the 
coupling parameter � , for � = 100 and � = 0.10

Fig. 5  The cumulative distribution P
cum

(𝜏
KSE<𝜀

) of the consecutive 
times 𝜏

KSE<𝜀
 in the regime KSE𝜔

< 𝜀 (for � = 100 ) obtained for sys-
tem (1). We used different values of N and Ki according to Table 2, 
for � = 10−3 . The brown continuous curve is the same curve from 
Fig. 4, which follows a power-law decay with exponent � = 1.25
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5  Conclusions

The breakdown of the ergodic behavior in realistic physical 
systems has received abundant attention in recent years [6, 
7, 9, 11, 13–17]. The anomalous diffusion process found in 
weakly chaotic Hamiltonian systems results from the sticky 
motion, generating the ergodicity breaking. The power-
law decay can characterize sticky motion of the cumula-
tive recurrence distribution of specific physical quantities. 
It has been shown recently [34] that the concept of order, 
semi-ordered and chaotic regimes of motion [25, 52] can 
be used to improve the characterization of the sticky motion 
significantly.

Based on the concept of quasi-invariant sets in mixed 
chaotic Hamiltonian systems and the determination of the 
finite-time Lyapunov exponents (FTLE� ), in this paper, 
we use the zero and positive finite-time Kolmogorov-Sinai 
entropy (KSE� ) to explain the survival and extinction of 
ergodicity in such systems. The KSE� are obtained from 
the spectrum of FTLEs calculated during a time window 
of size � along the chaotic trajectory. We studied the cases 
of N = 2, 3 and 5 coupled Chirikov-Taylor standard maps 
and the results were shown to be robust under the changes 
of the time window � , thresholds � , and coupling strengths 
� between the standard maps with different nonlinearity 
parameters Ki . The main observation was that only points 
in phase space with zero KSE� induce power-law decays 
in the cumulative recurrence distribution. Such points are 
related to strong quasi-invariant sets, since they are capable 
of driving FTLEs� simultaneously close to zero, leading to 
a region in phase-space which is free of ergodicity. There-
fore, we demonstrate that inside such region the extinction of 
ergodicity occurs. On the other hand, all quasi-invariant sets 
related to positive KSE� , only induce exponential decays in 
the cumulative recurrence distributions. These are named 
as weak quasi-invariant sets. This means that ergodicity 
breaking in weakly chaotic Hamiltonian coupled maps is 
only possible when strong quasi-invariant sets exist along a 
chaotic trajectory. This is valid for asymptotic times so that 
our proposal precisely confirms the concept of ergodicity 

breaking in weakly chaotic systems. Ergodicity survives in 
the presence of weak quasi-invariant sets, for which at least 
one FTLE� is larger than zero.

As high-dimensional Hamiltonian systems (with mixed 
phase space) share the fundamental property that resonance 
islands are no more forbidden regions in phase space, the ergo-
dicity breaking is only possible when zero KSE� exist along 
a chaotic trajectory, and it might be extended to even higher-
dimensional systems ( N > 5 ). Remains also the question if 
dynamical systems, in general, always allow such strong quasi-
invariant sets. Two interesting byproducts of the analysis of 
the cumulative distribution P

cum
(𝜏

KSE<𝜀
) regimes of motion 

are the following: (i) the possibility of visualizing projections 
of the phase space that highlight the topological structures 
responsible for the large return times (it would be interesting 
a direct comparison of quasi-invariant sets obtained via KSE� 
and those obtained through the more complicated algorithms 
used in [53]); and (ii) the decay of P

cum
(𝜏

KSE<𝜀
) can be used 

to estimate the correlations decay in systems with mixed phase 
space composed by a moderate number of degrees of freedom.
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