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Abstract
It is an important topic of the coupling between quantum and classical light fields. In this paper, a classical Gaussian light 
field 

e

−
q
2

2�2
1

−
p
2

2�2
2
 is used to modulate the translational squeezed quantum light field. By using the integral method in the ordered 

operator, we find that the translational squeezed quantum light field modulated by Gaussian light is still a translational 
squeezed light, and its quantum properties remain unchanged, but chaotic parameters and compression parameters are 
changed. We also derive the formula of the Wigner function depending on the modulation parameters. It can be concluded that 
the integral method in the ordered operator is an effective way to deal with the mixing of classical and quantum light fields.
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1 Introduction

Einstein pointed out “what is the nature of light” in his 
later years. Up to now, no satisfactory conclusion has been 
reached on this issue. In order to understand the nature of 
light, physicists invented the laser in the last century. It is 
described by coherent state, and its properties are different 
from chaotic light. The density operators [1–3] describing 
chaotic light are

The photon annihilation operator and the photon genera-
tion operator satisfy the commutation relation of 

[
a, a+

]
= 1. 

When the chaotic parameter 𝜆 = −
𝜔ℏ

kT
 , k is Boltzmann con-

stant and T is the temperature of the chaotic light field, 
the average photon number of the chaotic light gives the 
Bose–Einstein equation

Theoretically, the coherent state �� ⟩ can be obtained by 
applying the translation operator [4, 5] D(�) to the vacuum 
state [6–8] �0⟩

Due to the strong coherence of Coherent States, the 
Heisenberg uncertainty relation is minimal, so it is clos-
est to the classical case, so the subject of quantum optics 
emerges as the times require. Later, compressed light [9, 
10] was prepared, and some of its non-classical properties 
were revealed [11, 12]

It acts on the vacuum state. At present, the light existing 
in nature (including celestial bodies) is translational com-
pressed chaotic light [13, 14] in a broad sense. It is the result 
of the chaotic light field acted by the translational operator 
and the compression operator. The density operator of this 
light field is

� is the translation parameter and � =
q+ip√

2
, r is the com-

pression parameter in formula (5).
Considering that any quantum light field may be coupled 

with the classical light field of its existing environment, what 

(1)�c ≡ (
1 − e�

)
e�a

+a
.

(2)n = Tr
(
�ca

+a
)
=

1

e−� − 1
.

(3)
�� ⟩ = D(�)�0⟩, D(�) = exp

�
�a+ − �∗a

�
, � = (q + ip)∕

√
2.

(4)S(r) = exp
[
r

2

(
a2 − a+2

)]
.

(5)�s ≡ (
1 − e�

)
D(�)S(r)e�a

+aS−1(r)D−1(�). * Hai-Jun Yu 
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results will be produced if a classical Gaussian light field is 
demodulated into a translational compressed quantum light 
field? How to deal with the coupling of classical light field and 
quantum light field (expressed by density operator) in theory?

Because of the incompatibility of operators, this problem 
has not been discussed effectively for a long time. Now we 
find that the integral theory in ordered operators [15–18] can 
deal with this problem well because the generation operator 
and annihilation operator of photons in normal product or 
Weyl ordering are interchangeable. The integral in ordered 
operators have been used to deal with the integral of Dirac ket 
bra operators, such as the integral of the following operators in 
coordinate representation, we can get the contraction operator

Q�q⟩ = q�q⟩, �q⟩ is the coordinate eigenstate. With the 
help of the integral in the ordered operator, we will point out 
that the classical Gaussian optical modulation of the transla-
tional squeezed quantum field is still translational squeezed 
light, but the chaotic parameters and squeezing parameters 
are changed accordingly, and the density operator with new 
parameters is derived. The arrangement of this paper is as fol-
lows: in the second section, we derive the Weyl order [19–21] 
form of the translational squeezed chaotic light field, and in 
the third section, we bring it into the normal product form 
and find that it presents normal distribution, and then give its 
Wigner function. In the fourth section, the Gaussian convo-
lution is studied by using the integral method in the ordered 
operator, and the formulas of adjusting the chaotic parameters 
and compression parameters of the new light field with the 
classical modulation parameters are given.

2  Weyl Ordering Form of Density Operators 
for Translational Squeezed Chaotic Light 
Field

In order to fully understand the properties of a quantum 
light field, it is necessary to investigate the different repre-
sentations of its density operators under different ordering 
rules, so as to calculate its Wigner function distribution. In 
order to derive the Weyl ordering form of the translational 
squeezed chaotic light field, we first use the common law

∶

∶

∶

∶
 represents Weyl ordering, �� ⟩ = exp

�
�a+ − �∗a

�
�0⟩ is 

coherent state and operator identity of normal product

∫
∞

−∞

dq
√
�
�q∕� ⟩⟨q� = S(r),� = er,

(6)

� = 2∫
d2�

�
⟨−����� ⟩∶

∶
exp

�
2���2 − 2�a+ + 2a�∗

�∶
∶
.

(7)e�a
+ a =∶ exp

[(
e� − 1

)
a+a

]
.

The operator e�a+a is transformed into Weyl ordering, 
that is, from (6) and (7)

where

Note that the boson operator [22–24] is commutative in 
Weyl ordering ∶

∶

∶

∶
 . Then, we use the properties of the translation 

operator ∶
∶

∶

∶
 and contraction operator S(r) = exp

[
−

i

2
(QP + PQ)lnr

],

and the order invariance of Weyl ordering operator 
under the similar transformation (that is, unitary transfor-
mation operator can directly act on the inner operator over 
the “fence” ∶

∶

∶

∶
)

This is the Weyl ordering form of the density operator 
of the translational squeezed chaotic light field. In Sect. 3, 
we find its normal product order, so as to find its Wigner 
function distribution.

3  Normal Product Ordering Form of Density 
Operators for Translational Squeezed 
Chaotic Light Field

According to Weyl quantization rule [25]

where Δ(�, �∗) is a Wigner operator and its Weyl ordering 
form is

It can be concluded that the classical function corre-
sponding to �s is

(8)

e�a
+a = 2 ∫ d2�

�

∶

∶
⟨−��∶ exp

��
e� − 1

�
a+a

�
∶ �� ⟩exp

�
2a+a − 2�a+ + 2�∗a

� ∶

∶

∶ =
2

e�+1

∶

∶
exp

�
e�−1

e�+1

�
P2 + Q2

�� ∶

∶

,

Q =
a+ + a√

2

, P =
a − a+√

2i
.

(9)D(�)QD−1(�) = Q − q, D(�)PD−1(�) = P − p,

(10)S(r)PS−1(r) = erP, S(r)QS−1(r) = e−rQ,

(11)

�s ≡ (
1 − e�

)
D(�)(r)S(r)e�a

+aS−1(r)D−1(�)

=
2(1−e�)
e�+1

∶

∶
exp

{
e�−1

e�+1

[
e2r(P − p)2 + e−2r(Q − q)2

]} ∶

∶

.

(12)� = 2∫ d2�Δ(�, �∗)h(�, �∗),

(13)

Δ(�, �∗) =
1

2

∶

∶
�(� − a)�

�
�∗ − a+

� ∶
∶
=

∶

∶
�
�
q

�
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∶
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It can be seen from (2)

The normal product ordering form based on the Wigner 
operator [26, 27]

Based on the integral technique in the ordered operator, 
we can get

where �1, �2 meets

This is the normal product ordering form of the density 
operator of the translational squeezed chaotic light field, 
which is a two-dimensional normal distribution.

It is easy to verify that

From formula (16), we obtain

(14)

h(�, �∗) =
2
(
1 − e�

)

e� + 1
exp

{
e� − 1

e� + 1

[
e2r

(
p − p

�)2
+ e−2r

(
q − q

�)2]
}
.

e� − 1

e� + 1
= −

1

2n + 1
.

Δ(�, �∗) =
1

�
∶ e

−
(
q
�
−Q

)2

−
(
p
�
−P

)2

,

(15)

�s = ∬ 2

2n+1
dp

�

dq
�

exp
{
−

1

2n+1

[
e2r

(
p − p

�)2
+ e−2r

(
q − q

�)2]}
Δ
(
q

�

, p
�)

= ∬ 2

2n+1
dp

�

dq
�

exp
{
−

1

2n+1

[
e2r

(
p − p

�)2
+ e−2r

(
q − q

�)2]}
∶

1

�
e
−
(
q
�
−Q

)2

−
(
p
�
−P

)2

,

=∶
1

�1�2
exp

{
−

(q−Q)2

2�2

1

−
(p−P)2

2�2

2

}
∶

(16)2�2

1
− 1 ≡ (

2n + 1
)
e2r, 2�2

2
− 1 ≡ (

2n + 1
)
e−2r.

(17)

tr�s =
1

�1�2 ∫
d2z

�
⟨z� ∶ exp

�
−
(q − Q)2

2�2

1

−
(p − P)2

2�2

2

�
∶ �z⟩ = 1.

(18)n =
1

2

[√(
2�2

1
− 1

)(
2�2

2
− 1

)
− 1

]

and

The edge distribution of two-dimensional normal distri-
bution can be derived

4  Wigner Function of Translational 
Squeezed Quantum Light Field

In order to calculate the expected photon number of the 
translational squeezed light field, we first obtain the Wigner 
function of the light field

(19)e4r =
2�2

1
− 1

2�2

2
− 1

, r =
1

4
ln
2�2

1
− 1

2�2

2
− 1

.

(20)∫
dq

√
2�

�s = ∫
dq

√
2�

1

�1�2
∶ exp

�
−
(q − Q)2

2�2

1

−
(p − P)2

2�2

2

�
∶=

1

�2
∶ exp

�
−
(p − P)2

2�2

2

�
∶,

(21)∫
dp

√
2�

�s = ∫
dp

√
2�

1

�1�2
∶ exp

�
−
(q − Q)2

2�2

1

−
(p − P)2

2�2

2

�
∶=

1

�1
∶ exp

�
−
(q − Q)2

2�2

1

�
∶ .

where ��

=
q
�
+ip

�

√
2
,Δ(�

� ∗
, �

�

) is the Wigner operator, and its 

representation in the coherent state representation �z⟩ is

From the inner product of two coherent states

we calculate the Wigner function of the translational 
squeezed light field

(22)W(�
� ∗
, �

�

) = 2 � tr
[
Δ(�

� ∗
, �

�

)�s

]
,

(23)Δ(�
�∗
, �

�

) = ∫
d2z

�

����
�

+ z⟩⟨��

− z
���e

�
�
z∗−�

� ∗
z
.

(24)⟨z� �z⟩ = exp

�
−
1

2
(�z�2 + ���z

� ���
2

) + z
� ∗
z

�
,
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Note that 
(
q

′

, p
′) here is the translation parameter of the 

original light field and 
(
q

′

, p
′) is the variable in phase space.

5  Translational Squeezed Light Field 
Modulated by Classical Gaussian Light 
Field

According to the convolution definition of two arbitrary 
functions u(x) and v(x) [28]

The Fourier transform of convolution function (u ∗ v) is 
denoted as F which has the property

such the integral formula is

A classical Gaussian field e
−

q2

2�2
1

−
p2

2�2
2  is used to modulate 

the translation compression quantum field. By using the inte-
gral method in the ordered operator, we do the convolution

By comparing �s =
1

�1�2
exp

[
−

(q−Q)2

2�2

1

−
(p−P)2

2�2

2

]
 in (15), we 

can see that

This is the convolution invariant property of the trans-
lational squeezed light field, but the squeezing parameter 
becomes:

(25)

2�tr
�
Δ(�

� ∗
, �

�

)�s

�

= ∫ 2d2z

�1�2�
⟨��

− z
��� ∶ exp

�
−

(q−Q)2

2�2

1

−
(p−P)2

2�2

2

�
∶
����

�

+ z⟩e�
�
z∗−�

� ∗
z

=
2 ∫ dz1 ∫ dz2

�1�2�
exp

�
−2

�
z2
1
+ z2

2

�
−

�
q−q

�
−
√
2iz2

�2

2�2

1

−

�
p−p

�
−
√
2iz1

�2

2�2

2

�

=
2√

(2�2

1
−1)(2�2

2
−1)

exp

�
−

�
q−q

�
�2

2�2

1
−1

−

�
p−p

�
�2

2�2

2
−1

�
.

(26)(u ∗ v) = ∫ u(x − y)v(y)dy = ∫ v(x − y)u(y)dy.

(27)F(u ∗ v) = F(u)F(v),

(28)
1

2��� ∫ e
−

(X−x)2

2�2 e
−

x2

2�2 dx =
1√

2�
(
�2 + �2

)e
−

X2

2(�2+�2) .

∬ �se
−

q2

2�2
1

−
p2

2�2
2 dqdp = ∬ 1

�1�2�1�2
∶ exp

�
−

(q−Q)2

2�2

1

−
(p−P)2

2�2

2

�
∶ e

−
q2

2�2
1

−
p2

2�2
2 dqdp

=
1

2�

√
(�2

1
+�2

1 )(�
2

2
+�2

2 )
∶ exp

�
−

(q−Q)2

2(�2

1
+�2

1 )
−

(p−P)2

2(�2

2
+�2

2 )

�
∶

≡ �
�

s.

(30)�
�

s =
(
1 − e�

�
)
D(�)S

(
r
�)
e�

�
a+aS−1

(
r
�)
D−1(�).

The chaotic parameter changes to.

This shows that a classical Gaussian field e
−

q2

2�2
1

−
p2

2�2
2  is used 

to modulate the translation compression quantum field. The 
results show that a new translation compression quantum 
field is obtained, and its nature is not changed, but the chaos 
parameters and the compression parameters are changed 
accordingly.

6  Conclusion

In this paper, a classical Gaussian field is used to modu-
late the translation compressed quantum field by integrat-
ing technology in the ordered operator. It is found that the 
modulation result is still translation compressed light, its 
quantum properties have not changed, but the chaos param-
eters and compression parameters are changed accordingly. 
The Wigner function formula of translation compression 
quantum field is calculated. This provides a theoretical basis 
for the subsequent study of other quantum light fields of 
classical light modulation.
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