
Vol.:(0123456789)1 3

https://doi.org/10.1007/s13538-021-01001-7

GENERAL AND APPLIED PHYSICS 

Amplitude Death, Bifurcations, and Basins of Attraction of a Planar 
Self‑Sustained Oscillator with Delayed Feedback

Fabiola G. Prants1 · Cristian Bonatto1

Received: 30 July 2021 / Accepted: 27 October 2021 
© The Author(s) under exclusive licence to Sociedade Brasileira de Física 2021

Abstract
We investigate the nonlinear dynamics of a two-dimensional self-sustained oscillator subject to a delayed feedback by per-
forming a phase reduction analysis and considering two cases of amplitude variations, which represent weakly and strongly 
nonlinear cases. We investigate the amplitude death phenomenon and show that the feedback phase takes a relevant role to 
the suppression of the oscillations when amplitude variations are taking into account. In particular, we show that amplitude 
death can only occur in certain ranges of the feedback phase, in which destructive interferences are more pronounced. We 
analytically compute codimension-one and codimension-two bifurcations of the steady states and show parameter space 
maps with the number of steady-state solutions. We pay an special attention to the feedback phase in antiphase configuration, 
in which a richer bifurcation scenario is observed. We also numerically compute basins of attraction for the investigated 
delayed-feedback models, which is a challenge task for time-delay systems, shedding some light to the domains of initial 
conditions leading to each stable phase-locked state. Finally, we briefly discuss the effects of the shear parameter, which 
describes the amplitude-phase coupling, in the models in which amplitude variations are taking into account.

Keywords  Amplitude death · Delayed feedback · Bifurcations · Basins of attraction in delay systems · Cubic oscillator · 
Class-A laser

1  Introduction

The effect of delayed feedback in oscillatory systems is a 
relevant area of study in several scientific contexts, includ-
ing physics, chemistry, biology, engineering, among others 
[1, 2]. The delay or time lag arises due to the finite speed 
of signal propagation through the space, or the temporary 
storage of information [3, 4]. In many situations of practical 
interest, the delay cannot be neglected, playing an important 
role to describe the dynamical evolution of a variety of sys-
tems. Illustrative examples include single oscillators subject 
to some feedback mechanism [5–12] or mutually coupled 
oscillators, ranging from a few coupled units [13–19] to net-
works with a large number of coupled oscillators [20–26].

The presence of delay transforms a system in infinite 
dimensional. Therefore, the delay can easily induce dynami-
cal instabilities, such as complex periodic oscillations, or 

chaotic and hyperchaotic dynamics [3]. On the other hand, 
the delay can also stabilize nonlinear systems, such as sta-
bilizing an unstable fixed state or an unstable periodic orbit, 
making the delay an important element in the control of 
dynamical systems [27, 28]. In physics, the optics is a rel-
evant area in which the delay can have major impacts, due 
to the fast time scales involved in these systems. A promi-
nent example is the case of semiconductor lasers, where a 
small amount of light fed back to the laser cavity can induce 
dynamical instabilities, such as the so-called coherence col-
lapse, or induce an improved laser stabilization, such as a 
linewidth reduction [29].

Over the past decades, a large number of theoretical and 
experimental investigations have been devoted to under-
stand the dynamic effects of the delay in nonlinear systems. 
One of the main delay-induced effects is the appearance 
of multistability, since a large number of stationary states 
are usually created in time-delay systems [6, 13, 30]. Other 
dynamic phenomena include oscillation quenching [31], 
low-frequency fluctuations [32], anticipated synchronization 
[33], regular pulse packages [34], chimera states [35, 36], 
regenerative excitable pulses [37], explosive synchronization 
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[38], temporal dissipative solitons [39, 40], equalization of 
pulse timings [41], just to name a few.

The phenomenon of oscillation quenching [42, 43] has 
received a considerable deal of attention in the study of time-
delay systems [44–52], since it can serve as a control mecha-
nism, leading to a stabilization of the systems. There are 
two types of oscillation quenching processes [43], amplitude 
death (AD) and oscillation death (OD). In AD the individual 
oscillators stop oscillating and converge to a common stable 
steady state, forming a homogeneous stable stationary state. 
In the case of OD, there may be different steady states, giv-
ing rise to stable non-homogeneous stationary states.

The aim of this article is to investigate the dynamics of a 
two-dimensional self-sustained oscillator with delayed feed-
back, paying an special attention to the amplitude death phe-
nomenon in this simple configuration of a time-delay system. 
The phenomenon of amplitude death has been usually inves-
tigated as a collective phenomenon occurring in networks of 
two or more coupled oscillators in which the coupling can be 
with or without delay. In the case of coupled systems without 
an explicit delay time, the emergence of amplitude death has 
been shown to occur, e.g., in networks of coupled oscillators 
subject to mean field interaction [53] or time-varying interac-
tion [54]. However, a single oscillator can also cease its oscil-
lations due to some type of disturbance, such as a self-feedback 
mechanism. Although much less investigated, the cessation of 
oscillations has been shown to occur in single oscillators with 
delayed feedback, such as a Van der Pol oscillator [55] and a 
semiconductor laser [56], and also in single oscillators with 
delay-free feedback, such as a Stuart-Landau oscillator [57]. 
Since in a feedback oscillator there is just one oscillatory unit, 
OD cannot occur and the cessation of oscillations corresponds 
to AD. In laser dynamics, the AD regime is the off-state of the 
laser device, meaning that no light exists inside the optical 
cavity. The occurrence of the AD phenomenon in single oscil-
lators is a relevant subject from theoretical and applied points 
of view, since an active oscillator can stop oscillating due to the 
presence of some disturbance. This fact can be positive, when 
oscillations are unwanted and a system stabilization is required. 
But also it can be negative, when oscillations are required and 
a signal fed back to the oscillator ceases its operation, such 
as, e.g., in a laser subject to an optical feedback. We mention 
that, instead of inducing the amplitude death phenomenon, a 
feedback mechanism can also be used to restore the oscillation 
in systems in which the oscillation has been suppressed, as 
discussed in recent works [54, 58].

Here we perform a systematic investigation starting from 
a phase model with delayed feedback and then including 
nonlinear amplitude oscillations, for both weak and strong 
nonlinearities. For the weakly nonlinear case, we investigate 
an oscillator operating close to a Hopf bifurcation, char-
acterized by a cubic nonlinearity. For the strongly nonlin-
ear case, we investigate a class-A laser model. The class-A 

laser model is a particular case of a planar nonlinear oscil-
lator beyond the cubic case. Phase models, largely used to 
investigate the dynamics of delay systems, cannot exhibit 
amplitude death, since amplitude variations are neglected. 
Therefore, it is important to contrast the new ingredients 
added when amplitude variations are taking into account in 
the delayed feedback oscillator, such as the emergence of 
the AD phenomenon. For example, when a self-sustained 
oscillator is subject to an external periodic force, the forced 
oscillator can instantly touch the zero-amplitude state if the 
external force is enough strong. This situation represents a 
physical transition induced by a phase singularity [59]. In 
contrast, when a self-sustained oscillator is affected by a 
delayed feedback, the zero-amplitude state can be stabilized 
for enough strong feedback strength, as we show here.

Other contributions that we present in this work are as fol-
lows. We calculate the analytical bifurcations of the steady-state 
solutions as a function of the feedback parameters for the phase 
model and for the cases with amplitude variations. We compute 
basins of attraction for operation regimes containing several 
coexisting stable steady states. The computation of basins of 
attraction in time-delay systems is a challenging task because of 
the infinite dimensionality of these systems. Here we compute 
basins of attraction for the coexisting phase-locked states by 
using some particular choices of the initial history function of 
the time-delay models. Also, we briefly discuss the effects of 
the shear parameter, i.e., a parameter responsible for coupling 
the amplitude and phase variables. More complex dynamics is 
investigated through numerical analysis.

2 � Model

A two-dimensional self-sustained oscillator, close to a Hopf 
bifurcation, under the influence of a delayed feedback is 
described by

Here, A ≡ A(t) and A� ≡ A(t − �) describe the normal-
ized complex amplitude of the oscillator at the actual time 
and the delayed time, while � and � are the delay time and 
the feedback strength, respectively. � is the shear param-
eter, which introduces a coupling between the phase and 
amplitude of oscillations. � is the feedback phase, sometimes 
called coupling phase, which is the phase shift during one 
roundtrip of the feedback signal returning to the oscillator. 
For a fixed speed and frequency of the feedback signal, � 
and � are not independent parameters. But, usually, tiny 
changes of � (or the oscillator’s frequency) lead to substan-
tial changes of � , as occurs, e.g., in optical systems. In these 
situations, � and � can be considered as independent param-
eters [60, 61]. Throughout this work, we consider � and � as 

(1)Ȧ = PA(1 − |A|2)(1 + i𝛼) + 𝜂e−i𝜃A�.
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independent parameters, since we are mostly interested in 
the qualitative changes induced by changing � . P is a gain 
parameter and describes a force moving the equilibrium state 
of the system without feedback to self-sustained oscillations. 
This parameter does not change the qualitative dynamics of 
the model given by Eq. (1), since it acts just as a scale fac-
tor. Therefore, P can be eliminated from Eq. (1) by rescaling 
𝜂̂ = 𝜂∕P , 𝜏 = 𝜏P , and t̂ = tP.

Without the feedback term, Eq.  (1) arises in systems 
close to a Hopf bifurcation, when an equilibrium state is 
perturbated by some weak external force, giving rise to 
limit-cycle oscillations. Realistic situations modeled by this 
equation appear in a large variety of systems, including, e.g., 
electronic and optical oscillators. In the context of optics, 
Eq. (1) is usually referred as cubic laser model [59], where A 
describes the complex amplitude of the electric field, P is the 
pump, and � is the atomic detuning parameter. Throughout 
this work, we keep P in our analysis, since we compare the 
cubic model with the class-A laser model. In the class-A 
laser model, P can take a relevant role, due to the presence 
of higher-order nonlinearities, in contrast to the cubic model. 
The cubic model investigated here is a particular case of the 
Stuart-Landau oscillator which is a more general form of an 
oscillator close to a Hopf bifurcation, given by

where � = �r + i�i and � = �r + i�i are complex parameters 
[62] and we have added a delayed-feedback interaction. In 
the case of � = � the Stuart-Landau equation gets equal 
to the cubic model given by Eq. (1), in which �r = P and 
�
i
= P� are the equivalence between the parameters. For 

strictly real � and � parameters in the Stuart-Landau equa-
tion, the phase and amplitude are decoupled. This case cor-
responds to the cubic model with � = 0 investigated here, 
where Eq. (2) is reduced to Eq. (1) in the case of �r = �r = P

.
To numerically integrate the time-delay systems investi-

gated here, we use the method described by Farmer [63], in 
which a delay differential equation is discretized in a finite 
map and integrated with a second order Euler method. Here, 
we use a map of dimension 600 and 1200 to discretize the 
phase model and the amplitude models, respectively.

3 � Phase Model with Delayed Feedback

A physically relevant situation occurs when the feedback 
strength is weak, meaning that the amplitude of the oscillator 
remains almost unchanged in the presence of the delayed feed-
back, i.e., |A| ≈ 1 . Therefore, the phase is the relevant variable 

(2)Ȧ = 𝜇A − 𝜈A|A|2 + 𝜂e−i𝜃A�,

to describe the dynamics of the oscillator under the influence 
of the delayed feedback. By neglecting amplitude variations, 
the phase evolution is described by the following delay equation

where � ≡ �(t) and �� ≡ �(t − �) describe the phase 
of the oscillator at the actual time and the delayed time, 
respectively.

We now determine the steady-state solutions and the main 
bifurcations associated with Eq. (3).

3.1 � Steady‑State Solutions

Steady-state solutions of Eq. (1), often called continuous wave 
solutions, are periodic solutions in which the amplitude and 
frequency of oscillations are constant. The phase model given 
by Eq. (3) does not contain amplitude (since it is fixed at one 
when deriving the model) and we only look for the constant 
frequencies �s . In these steady-state solutions, the phase 
changes linearly with time. Thus, the actual phase is � = �st 
and the delayed phase is �� = �

s
t − �

s
� . By inserting these 

steady-state solutions in Eq. (3), we have

By numerically solving the transcendental equation above 
for �s , we get the complete set of steady-state solutions of 
Eq. (3). In Fig. 1 we show the values of �s as a function of 
� and the number of steady-state solutions in the parameter 
space (�, �) , for three distinct values of � . As can be seen, the 
number of steady-state solutions increases as the feedback 
strength or the time delay increases, as it is well known from 
literature [29]. In the next section we compute analytically 
the bifurcations associated with the appearance of these 
solutions in the parameter space (�, �).

3.2 � Analytical Determination of Bifurcations 
of the Steady States

The eigenvalues of the delay differential equation can be 
obtained using the characteristic equation

where � are the eigenvalues, and A and B are the Jacobians 
with respect to the variables at time t and � , respectively, 
calculated for the steady state. The matrices A and B are

(3)𝜙̇ = −𝜂 sin(𝜃 + 𝜙 − 𝜙�),

(4)�s = −� sin(� + �s�).

(5)det[�I − A − Be−��] = 0,

(6)

A =
d𝜙̇

d𝜙

||||𝜔s

= −𝜂 cos(𝜃 + 𝜔s𝜏),

B =
d𝜙̇

d𝜙�

|||||𝜔s

e−𝜆𝜏 = 𝜂 cos(𝜃 + 𝜔s𝜏)e
−𝜆𝜏 ,

Page 3 of 18    39Brazilian Journal of Physics (2022) 52: 39



1 3

and the characteristic equation is

By writing � as a function of � , we obtain

Here, we analyze two particular solutions of Eq. (8): null and 
purely imaginary eigenvalues.

(7)� − � cos(� + �s�)(e
−�� − 1) = 0.

(8)� =
�

cos(� + �s�)(e
−�� − 1)

.

3.3 � CASE I: Zero Eigenvalue

Assuming the condition � = 0 in Eq. (8), we get an inde-
terminacy of type zero divided by zero. We then use the 
L’Hôpital’s rule, such that

giving us the following bifurcation curve

3.4 � CASE II: Purely Imaginary Eigenvalues

By considering � = �i in Eq. (8), we have

By using e−��i = cos(��) − i sin(��) , follows that

Separating in real and imaginary parts, we have

Squaring and adding the two earlier equations, we have

which implies � = 0 . Therefore, there is no Hopf bifurcation 
in the phase model with delayed feedback.

3.5 � Bifurcation Diagrams

In Fig. 1(a)-(c) we show the �s solutions as a function of 
� . For the case � = 0 (in-phase configuration), �s = 0 is 
always a stable solution. �s = 0 means that the oscillator 
disturbed by the delayed feedback oscillates with the same 
frequency of the free-running oscillator, i.e., the oscillator 
without delayed feedback. As � increases, other values of 
constant frequencies are symmetrically created through 
saddle-node bifurcations, for both positive and negative �s . 
For � = 180◦ (antiphase configuration), the solution �s = 0 
loses its stability through a pitchfork bifurcation, and two 

(9)
� =

1

cos(� + �s�)
lim
�→0

d�

d�

d(e−��−1)

d�

,

=
1

cos(� + �s�)
lim
�→0

1

−�e−��
,

(10)� = −
1

� cos(� + �s�)
.

(11)� =
�i

cos(� + �s�)(e
−�i� − 1)

.

(12)�i − � cos(� + �s�)[cos(��) − i sin(��) − 1] = 0.

(13)
� cos(� + �s�) = � cos(� + �s�) cos(��),

� = −� cos(� + �s�) sin(��).

(14)�2 + �2 cos(� + �s�)
2 = �2 cos(� + �s�)

2,

Fig. 1   Left column: Steady-state frequency solutions as a function 
of the feedback strength. Dark-gray lines denote the �

s
= 0 solu-

tion. Dark red lines denote the stable phase-locked states created 
by a pitchfork bifurcation. Other phase-locked solutions, created by 
saddle-node bifurcations are denoted by black lines. Solid and dashed 
lines correspond to stable and unstable phase-locked states, respec-
tively. Right column: Parameter space containing the bifurcation 
curves of the steady-state solutions. The colors indicate the number 
of steady-state solutions, including stable and unstable solutions. The 
dark red and black lines denote pitchfork and saddle-node bifurcation 
curves, respectively. The parameter values used in the numerical sim-
ulations are � = 50 and � = 0 for (a) and (d), � = 180◦ for (b) and (e), 
and � = 150◦ for (c) and (f)
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new stable frequencies ±�s are symmetrically created, as 
shown in Fig. 1(b) by the dark red curve. Other �s solutions 
are symmetrically created through saddle-node bifurcations. 
For other values of � , the symmetry for positive and negative 
values of �s is broken, as illustrated in Fig. 1(c), for � = 150◦ 
(out-of-phase configuration). In this case, the locations of 
the saddle-node bifurcations do not coincide anymore when 
looking at the positive and negative planes.

The analytical bifurcation curves obtained from Eq. (10) 
are plotted in the parameter space � versus � , for fixed � , in 
Fig. 1(d)-(f). The regions with different number of steady 
states, including both stable and unstable �s , are indicate 
by different colors in Fig. 1(d)-(f). In the dark gray region 
there is a single frequency solution, which is the stable solu-
tion �s = 0 . In Fig. 1(d), the solution �s = 0 is stable in the 
whole parameter space. By changing the parameters � or � , 
other �s solutions are born through saddle-node bifurcations 
(black lines). In Fig 1(e), the solution �s = 0 becomes unsta-
ble through a pitchfork bifurcation (dark red line). Other �s 
solutions are born through saddle-node bifurcations (black 
lines). For � = 150◦ , due to the symmetry breaking, the loca-
tion of the saddle-node bifurcations for negative and positive 
frequencies do not coincide anymore and are slightly shifted, 
giving rise to the small stripes observed in Fig. 1(f).

The scenario involving the symmetry breaking of the pitch-
fork bifurcation is highlighted in Fig. 2. The pitchfork bifur-
cation, responsible for the instability of the solution �s = 0 
[Fig. 2(a)], is a special case that occurs only for � = 180◦ . If 
� is slightly changed, the pitchfork bifurcation does not exist 
anymore. For example, if � = 179◦ , the continuation of the 
�s = 0 solution is shifted to negative values, while a new pair 
of positive stable and unstable frequencies is born through a 
saddle-bifurcation [Fig. 2(b)]. And if � = 181◦ , the continua-
tion of the �s = 0 solution is shifted to positive values, while 
a new pair of negative stable and unstable frequencies is born 
through a saddle-bifurcation [Fig. 2(c)].

4 � Cubic Model with Delayed Feedback

In this section, we consider the model given by Eq. (1), in 
which amplitude and phase variations are relevant to deter-
mine the dynamics of the oscillator under the presence of 
the delayed feedback. Written in terms of amplitude and 
phase coordinates of the complex variable A = aei� , Eq. (1) 
reads

where we consider � = 0 . The influence of nonzero � is 
discussed in Sec. 7. In the above equations, the variables 
a ≡ a(t) and a� ≡ a(t − �) describe the amplitude of the 
oscillator at the actual time and the delayed time, respec-
tively. The other variables and parameters are as described 
in Secs. 2 and 3.

4.1 � Steady‑State Solutions

Steady-state solutions of the cubic model are those solutions 
with constant amplitudes and constant frequencies, satisfy-
ing Eq. (1). As we have done in the analysis of the phase 
model, we use the continuous-wave solutions in Eq.  (1). 
In the cubic model, the steady states are given by doing 
a(t) = a(t − �) = as , �(t) = �st , and �(t − �) = �

s
t − �

s
� . 

By inserting these solutions in Eq. (1), we have

where as0 and as+ are the physically relevant amplitude 
solutions.

4.2 � Analytical Determination of Bifurcations 
for the Steady States

We follow the same prescription of Sec. 3.2 to compute the 
eigenvalues associated with the steady-state solutions of the 
cubic model. The matrices A e B for Eq. (1) are given by

(15)
ȧ = Pa(1 − a2) + 𝜂a� cos(𝜃 + 𝜙 − 𝜙�),

𝜙̇ = −𝜂
a�

a
sin(𝜃 + 𝜙 − 𝜙�),

(16)

as0 = 0,

as± = ±

√
P + � cos(� + �s�)

P
,

�s = −� sin(� + �s�),

(17)A =

⎛⎜⎜⎜⎜⎝

dȧ

da

dȧ

d𝜙

d𝜙̇

da

d𝜙̇

d𝜙

⎞⎟⎟⎟⎟⎠

����������as,𝜔s

(a) (b) (c)

Fig. 2   Steady-state frequencies ( �
s
 ) as a function of the feed-

back strength ( � ). Other parameters are � = 3 and (a) � = 180◦ , (b) 
� = 179◦ , and (c) � = 181◦ . Stable and unstable steady states are 
denoted by solid and dashed lines, respectively. The gray line denotes 
the �

s
= 0 steady state, while the dark red line denotes the stable 

steady states created by the pitchfork bifurcation. Solid and dashed 
lines denote stable and unstable steady states, respectively
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and

The matrix Δ(�) = �I − A − Be−�� is

which give us the following characteristic equation

Below we solve the characteristic equation for � = 0 and 
� = i� , in order to look for bifurcations of steady states asso-
ciated with these eigenvalues.

4.3 � CASE I: Zero Eigenvalues

Dividing Eq. (22) by (e−�� − 1) we have

Assuming � = 0 in Eq. (23), we have an indeterminacy of 
type zero divided by zero in the term �

(e−��−1)
 . By using the 

L’Hôpital’s rule to avoid this, we have

Therefore,

(18)=

⎛
⎜⎜⎝

P(1 − 3a2
s
) − �as sin(� + �s�)

�

as
sin(� + �s�) − � cos(� + �s�)

⎞
⎟⎟⎠
,

(19)B =

⎛
⎜⎜⎜⎜⎝

dȧ

da�
dȧ

d𝜙�

d𝜙̇

da�
d𝜙̇

d𝜙�

⎞
⎟⎟⎟⎟⎠
e−𝜆𝜏

����������as,𝜔s

(20)=

(
� cos(� + �s�) �as sin(� + �s�)

−
�

as
sin(� + �s�) � cos(� + �s�)

)
e−�� .

(21)Δ(�) =

⎛
⎜⎜⎜⎜⎝

� − P(1 − 3a2
s
) − �as sin(� + �s�)

−� cos(� + �s�)e
−�� × (e−�� − 1)

�

as
sin(� + �s�) � − � cos(� + �s�)

×(e−�� − 1) × (e−�� − 1)

⎞
⎟⎟⎟⎟⎠
,

(22)

[� − P(1 − 3a2
s
) − � cos(� + �s�)e

−��]×

[� − � cos(� + �s�)(e
−�� − 1)]+

�2 sin(� + �s�)
2(e−�� − 1)2 = 0.

(23)

[� − P(1 − 3a2
s
) − � cos(� + �s�)e

−��]×[
�

(e−��−1)
− � cos(� + �s�)

]
+

�2 sin(� + �s�)
2(e−�� − 1) = 0.

(24)

lim�→0

[� − P(1 − 3a2
s
) − � cos(� + �s�)e

−��]×[
d�∕d�

d(e−��−1)∕d�
− � cos(� + �s�)

]
+

�2 sin(� + �s�)
2(e−�� − 1) = 0.

that is,

From the first brackets, both for as0 and as+ , we obtain

From the second brackets, we obtain

4.4 � CASE II: Purely Imaginary Eigenvalues

Assuming the condition � = �i and working only with the 
solution �s = 0 and � = 180◦ in Eq. (22), we have

with � = −2P + 3� . Since e−��i = cos(��) − i sin(��) fol-
lows that

Separating in real and imaginary parts the second brack-
ets of the two solutions of Eq. (30), give us

Squaring and adding the two earlier equations, we have

which give us, � = 0.
Separating in real and imaginary parts the first brackets 

of the solution as0 of Eq. (30), we have

Squaring and adding the two earlier equations, we have

Replacing Eq. (34) in the first expression of Eq. (33), we 
obtain

(25)
[−P(1 − 3a2

s
) − � cos(� + �s�)]

×

[
1

−�
− � cos(� + �s�)

]
= 0.

(26)
[P(1 − 3a2

s
) + � cos(� + �s�)]

× [1 + �� cos(� + �s�)] = 0.

(27)� = −
P

cos(�+�s�)
.

(28)� = −
1

� cos(�+�s�)
.

(29)
[�i − P + �e−�i�][�i + �(e−�i� − 1)] = 0 (for as0),

[�i − � + �e−�i�][�i + �(e−�i� − 1)] = 0 (for as+),

(30)

[�i − P + �(cos(��) − i sin(��))]×

[�i + �(cos(��) − i sin(��) − 1)] = 0 (for as0),

[�i − � + �(cos(��) − i sin(��))]×

[�i + �(cos(��) − i sin(��) − 1)] = 0 (for as+).

(31)
� = � cos(��),

� = � sin(��).

(32)�2 + �2 = �2,

(33)
P = � cos(��),

� = � sin(��).

(34)� = ±
√
�2 − P2.
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Analogously, for the solution as+ of Eq. (30), we find

Equations (35) and (36) are the Hopf bifurcation curves 
for the cubic model.

4.5 � Pitchfork‑Hopf Bifurcation

When varying the feedback parameters for � = 180◦ in the 
cubic model, there is not only a pitchfork bifurcation curve, 
as in the phase model, but also a Hopf bifurcation curve, as 
shown in the previous section. The point where the pitch-
fork and Hopf bifurcation curves intersect is a codimension-
two bifurcation pitchfork-Hopf. To calculate this bifurca-
tion point, we just combine the analytical expressions of 
the pitchfork and Hopf bifurcations. Therefore, replacing 
Eq. (28) for �s = 0 in Eqs. (35) and (36), we have

that is,

Therefore,

where � =
1

P
 satisfy both equations. Thus, the point where 

occur the intersection of the pitchfork and Hopf bifurcation 
curves is

4.6 � Amplitude Death and Bifurcation Diagrams

In Fig. 3(a)-(c), we show the amplitude of the phase-locked 
states ( as ) as a function of the feedback strength ( � ), for 

(35)� =
arccos(

P

�
)

√
�2−P2

.

(36)� =
arccos(

�

�
)

√
�2−�2

.

(37)
� =

arccos[
P

(1∕�)
]

√
(1∕�)2 − P2

(for as0),

� =
arccos[−2P∕(1∕�) + 3]√
(1∕�)2 − (−2P + 3(1∕�))2

(for as+),

(38)

� =
arccos(�P)

(
1

�
)
√
1 − �2P2

(for as0),

� =
arccos(−2P� + 3)

(
1

�
)
√
1 − (−2P� + 3)2

(for as+).

(39)

√
1 − �2P2 = arccos(�P) (for as0),√

1 − (−2P� + 3)2 = arccos(−2P� + 3) (for as+),

(40)
� =

1

P
,

� = P.

three values of the feedback phase ( � ). As already seen in the 
analysis of the phase model, new branches of steady-state 
solutions are created as the feedback strength increases. The 
frequencies of these steady states are the same as those cal-
culated using the phase model, as can be seen by the analyti-
cal solutions described by Eqs. (4) and (16). The steady-state 
frequencies are illustrated in Fig. 1(a)-(c). But, in contrast 
to the phase model, when amplitude variations are taken 
into account, the most of the higher frequency solutions are 
born unstable. As shown in Fig. 3(a)-(c), the saddle-node 
bifurcations responsible for creating the new branches of 
solutions (corresponding to steady states with higher fre-
quencies) give rise to a pair of unstable steady states, except 
the first saddle-node bifurcation in Fig. 3(a), which create a 
stable steady state. The other higher frequency steady states 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3   Left column: Stationary amplitudes ( a
s
 ) as a function of the 

feedback strength ( � ). Solid and dashed lines denote stable and unsta-
ble solutions, respectively. The parameter values are P = 0.3 , � = 50 , 
and (a) � = 0 , (b) � = 180◦ , (c) � = 150◦ . Right column: Analytical 
bifurcation curves plotted as a function of the feedback parameters. 
The colors correspond to the number of coexisting steady-state ampli-
tudes ( a

s
> 0 ) as indicated by the colorbar. Dark red, black, and 

orange lines denote pitchfork, saddle-node, and Hopf bifurcations, 
respectively. Solid and dashed lines denote bifurcations associated 
with stable and unstable solutions, respectively. PH is the pitchfork-
Hopf bifurcation. The parameter values are P = 0.3 and (d) � = 0 , (e) 
� = 180◦ , (f) � = 150◦
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become stable through Hopf bifurcations, as the feedback 
strength increases along each branch. Another feature that 
can be observed in Fig. 3(a)-(c) is that the higher frequency 
solutions contain a smaller amplitude, for the same level of 
feedback strength. Therefore, it is harder to stabilize higher 
frequency deviations from the free-running frequency, and 
when these frequencies are stabilized they exhibit smaller 
amplitudes.

The analytical bifurcations, described by Eqs. (27) and 
(28), are plotted in Fig. 3(d)-(f) and correspond to the param-
eters used in Fig. 3(a)-(c), respectively. As the feedback 
strength increases, new branches of steady-state solutions are 
created through saddle-node bifurcations, except for the case 
� = 180◦ , in which the first branch of solutions is created 
through a pitchfork bifurcation. This bifurcation corresponds 
to the instability of the �s = 0 solution. This is the same sce-
nario observed in the analysis of the phase model. The dif-
ference when the amplitude is taking into account is that the 
most of new branches of solutions created by saddle-node 
bifurcations are unstable, as illustrated by the dashed black 
lines in Fig. 3(d)-(f). Also, additional pitchfork bifurcations 
appear connecting the unstable branches of the saddle-node 
bifurcations to the as = 0 solution [as shown in Fig. 3(a)-
3(c)]. These additional pitchfork bifurcations are shown by 
the dashed dark red lines in Fig. 3(d)-(f). Therefore, as the 
feedback strength increases, there is an alternation between 
saddle-node and pitchfork bifurcations when the amplitude 
variation is taking into account. Other main features induced 
by amplitude effects are as follows. A subcritical pitchfork 
bifurcation curve, given by � = P , appears associated with 
the solution �s = 0 . This bifurcation curve is shown by the 
horizontal dark red line in Fig. 3(b). Also, a Hopf bifurcation 
associated with the solution �s = 0 appears, denoted by the 
orange line in Fig. 3(b). This Hopf bifurcation curve inter-
sect the pitchfork bifurcation curve � = P , giving rise to the 
codimension-two point pitchfork-Hopf marked in Fig. 3(b). 
In addition to this Hopf bifurcation, other Hopf bifurcation 
curves for �s ≠ 0 exist, but are not shown in the parameter 
spaces of Fig. 3(d)-(f). These extra Hopf bifurcation curves 
are responsible for stabilizing the higher frequency steady 
states, as discussed in Fig. 3(a)-3(c).

A relevant consequence of the amplitude variations is 
the possibility to observe the amplitude death phenomenon. 
Amplitude death can only occur for the feedback phase 
in the range 90◦ < 𝜃 < 270◦ (for 𝜂 > 0 ). For example, for 
a short delay and � = 0 , the amplitude of the steady state 
increases as the feedback strength increases, as shown in 
Fig. 4(a). This is a consequence of a constructive interfer-
ence between the oscillator and the feedback signal. In this 
case, no amplitude death is observed in the feedback param-
eter space. But for � = 180◦ , the amplitude of the steady 
state decreases as the feedback strength increases (before 
the occurrence of the pitchfork bifurcation), as shown in 

Fig. 4(b). This is a consequence of a destructive interference 
between the oscillator and the feedback signal. In this situ-
ation, the zero-amplitude solution can be stable over a por-
tion of the parameter space, as shown by the black regions 
in Fig. 5(a) and (b) [which are magnified from Fig. 3(e) and 
(f)]. The bifurcations associated with the emergence of the 
amplitude death phenomenon, shown in Fig. 5(a) and (b), 
can be well understood by looking the one-parameter bifur-
cation diagrams shown in Fig. 5(c)-(f). Figure 5(c) and (d) 
show the amplitude and frequency of the steady state as a 
function of � , corresponding to a variation along a verti-
cal line in Fig. 5(a), for � = 2.5 and � = 180◦ . For small 
values � , the delayed-feedback oscillator oscillates with 
constant amplitude and �s = 0 . As � increases, the ampli-
tude decreases until it becomes zero, as shown in Fig. 5(c). 
This transition to the amplitude death regime corresponds 
to the first pitchfork bifurcation along the line � = 0.3 in 
Fig. 5(a). By keeping increasing � , there is another pitchfork 
bifurcation where the �s = 0 solution becomes unstable and 
two new �s ≠ 0 solutions are born, as shown in Fig. 5(d). 
However, when this bifurcation occurs, the amplitude is still 
zero, corresponding to the amplitude death regime, as shown 
in Fig. 5(c). This phenomenon, in which new frequency 
solutions are born having zero amplitude, is found in other 
delayed-feedback systems, such as semiconductor lasers 
with optical feedback [56]. As � increases even more, the 
zero-amplitude solution becomes unstable through a Hopf 
bifurcation and the two new frequencies �s ≠ 0 start to be 
associated with a nonzero amplitude, as shown in Fig. 5(c) 
and (d). Figure 5(e) and (f) illustrate the amplitude and fre-
quency of the steady state for � = 0.5 , corresponding to the 
case � = 150◦ [shown in Fig. 5(b)]. As � increases, the oscil-
lator achieves the amplitude death regime through a pitch-
fork bifurcation [Fig. 5(e)]. The zero and nonzero amplitudes 
are associated with a branch �s ≠ 0 [Fig. 5(f)].

(a) (b)

Fig. 4   (a) and (b) show a magnification of Fig. 3(a) and (b), respec-
tively. Solid and dashed lines denote stable and unstable steady  
states. The black dot denotes a pitchfork bifurcation
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The minimum value of � for which amplitude death 
emerges occurs for � = 0 . As we have previously com-
mented, amplitude death can only occur for 90◦ < 𝜃 < 270◦ . 
In Fig. 6, we show the emergence of amplitude death as 
a function of � , for three representative values of � and 
� = 0.001 , i.e., very close to zero. For � slightly above 90◦ , 
the amplitude death occurs only for very large values of � , 
as illustrated in Fig. 6(a). By increasing � , the minimum 
value of � decreases, and the amplitude death can be more 
easily achieved, as illustrated in Fig. 6(b). For � = 180◦ 
occurs the global minimum value of � for which amplitude 
death emerges, as shown in Fig. 6(c). For this value of � , 
the minimum value of � occurs along the line � = P , as 
shown in Fig. 5(a), spanning larger values of � . In this case, 

the amplitude death region is maximized in the feedback 
parameter space.

4.7 � Numerical Results

For a better understanding of the bifurcation diagrams 
shown in the previous section, in this section we perform 
some numerical simulations of the cubic model with delayed 
feedback, for the case � = 180◦.

In Fig. 7(a), we show the investigated bifurcation curves 
in the parameter space (�, �) , while in Fig. 7(b), (c), and 
(d) we illustrate the real part of the complex amplitude 
A = ax + iay , the modulus of the amplitude a = (a2

x
+ a2

y
)1∕2 , 

and the intensity I = a2 , respectively. In Fig. 7(a), the pitch-
fork bifurcation curve � =

1

�
 creates two stable steady-state 

solutions (as+,±�s) upwards, increasing the parameter � ,  
while the bifurcation curve � = P creates an unstable steady-
state solution (as+,�s = 0) downwards, decreasing the 
parameter � (the a− steady-state solutions, symmetrically 
created at the negative plane, have been omitted, since they 
are not of physical relevance) . The solution (as+,�s = 0) , 
which is born unstable, stabilizes when passing through 
the pitchfork bifurcation curve � = 1∕� , being the only 
existing solution in the gray region. Thus, in the orange 
region, we have the coexistence between the steady-state 
solutions (as+,±�s) and (as+,�s = 0) . Furthermore, at the 
Hopf bifurcation curve, an unstable periodic solution rises 
upwards, increasing the parameter � . Consequently, in the 
white region, we have the coexistence of steady-state solu-
tions (as+,±�s) with an unstable periodic orbit created at the 
Hopf bifurcation curve.

Throughout this work, we use Eq. (1) written in terms 
of amplitude and phase to compute the bifurcations of the 
steady states. Thus, the bifurcations characterized here as 
pitchfork and Hopf would be classified differently if we use 
Eq. (1) written in terms of the components of the complex 
amplitude ( A = ax + iay ) or the intensity ( I = |A|2 ), instead 
of the amplitude ( a = |A| ), as shown in Fig. 7(b)-(d). In these 
figures, we present bifurcation diagrams for a line at � = 30 
in Fig. 7(a) by integrating Eq. (1) with real and imaginary 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5   (a) and (b) show a magnification of Fig. 3(e) and (f), respec-
tively. The colors correspond to the number of steady-state ampli-
tudes ( as > 0 ). The black regions correspond to the amplitude death 
regime. (c) and (d) show the stationary frequencies and amplitudes, 
respectively, as a function of � , for � = 2.5 and � = 180◦ . (e) and (f) 
show the same as (c) and (d), but for � = 0.5 and � = 180◦ . Solid and 
dashed lines denote stable and unstable solutions, respectively

(a) (b) (c)

Fig. 6   The emergence of amplitude death as a function of � for 
� = 0.001 and (a) � = 93◦ , (b) � = 120◦ , and (c) � = 180◦ . The gain 
parameter is fixed at P = 0.3

Page 9 of 18    39Brazilian Journal of Physics (2022) 52: 39



1 3

components of the complex amplitude, amplitude and 
phase, and intensity and phase. For Eq. (1) written in terms 
of components of the complex amplitude, the bifurcations 
are super and subcritical Hopf bifurcations, and subcriti-
cal pitchfork bifurcation [Fig. 7(b)]. For Eq. (1) written in 
terms of amplitude and phase, we have super and subcriti-
cal pitchfork bifurcations, and a subcritical Hopf bifurcation 
[Fig. 7(c)]. And for Eq. 1 written in terms of intensity and 
phase, the bifurcations are super and subcritical transcritical 
bifurcations, and a subcritical Hopf bifurcation [Fig. 7(d)]. 
The time series of representative solutions for the gray, 
orange, and white regions of the parameter space described 
in Fig. 7(a) is shown in Fig. 8. In the gray region, there are 
infinite stationary solutions with the component equations 
[illustrated by the dark red area in Fig. 7(b)], correspond-
ing to a single solution with the amplitude [Fig. 7(c)] or 
intensity [Fig. 7(d)] equations. Only one stationary solution 
of the component equations is shown in Fig. 8(a) and the 
correspondent amplitude solution is shown in Fig. 8(d). In 

the orange region, there is a coexistence of stationary and 
periodic solutions with the component equations, illustrated 
in Fig. 8(b), and two stationary solutions with the amplitude 
(or intensity) equations, illustrated in Fig. 8(e). And in the 
white region, there is a coexistence of two periodic solu-
tions with the component equations, shown in Fig. 8(c), and 
a stationary and a periodic solution with the amplitude (or 
intensity) equations, illustrated in Fig. 8(f).

5 � Class‑A Laser Model with Delayed 
Feedback

In this section, in order to investigate the influence of higher-
order nonlinear terms, we consider the particular case of a 
class-A laser model under the influence of a delayed feed-
back. By doing this, we can go beyond the cubic model, but 
still analyzing a planar oscillator model, as is our intention 
throughout this work. Moreover, we investigate an example 
of a physically relevant model, which has been little investi-
gated in literature when considering the effects of a delayed 
feedback [64, 65]. The reason is because class-A lasers, 

(a) (b)

(c) (d)

Fig. 7   (a) Parameter space denoting regions of amplitude death 
(black color), phase-locked solution (gray color), coexistence between 
steady-state solutions (orange color), and coexistence between unsta-
ble continuous-wave and periodic solutions (white color). Solid and 
dashed dark red curves denotes supercritical and subcritical pitchfork 
bifurcation curves, respectively. Orange dashed curve denotes a sub-
critical Hopf bifurcation. Other panels show bifurcation diagrams of 
(b) the maxima and minima of the real part of the complex amplitude 
A, (c) the amplitude a, and (d) the intensity I, for � = 30 . The vertical 
lines denote: supercritical Hopf bifurcation (solid orange line), sub-
critical Hopf bifurcation (dashed orange line), subcritical pitchfork 
bifurcation (dashed dark red line), supercritical pitchfork bifurcation 
(solid dark red line), supercritical transcritical bifurcation (solid blue 
line), and subcritical transcritical bifurcation (dashed blue line). The 
gain parameter is fixed at P = 0.3

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8   Time series for P = 0.3 , � = 30 , and � = 0.015 (upper row), 
� = 0.1 (middle row), � = 0.2 (bottom row). The dashed gray lines 
and the solid dark gray lines denote unstable solutions, while the 
other lines denote stable solutions
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which are described only by an electric field equation, are 
mostly gas lasers. These devices usually have a dynamics 
not so fast in order of having large impacts due to optical 
feedbacks. This is in sharp contrast, e.g., to the case of semi-
conductor lasers, which exhibit faster dynamics and are clas-
sified as class-B lasers. But certain types of semiconductor 
lasers, such as the quantum-dot semiconductor lasers, have 
fast relaxation times and are less sensitivities to optical feed-
back [66]. In a certain sense, the quantum-dot semiconductor 
lasers share some features resembling class-A devices. In 
this way, despite the fact that more complex models, includ-
ing the carrier dynamics, is important to correctly describe 
quantum dot lasers [67], the class-A laser model can provide 
some first clues, sharing some similarities with quantum dot 
laser devices. In fact, we might say that quantum-dot semi-
conductor lasers have an intermediate dynamics in between 
class-A lasers and conventional semiconductor lasers. In this 
way, it is instructive to understand in some detail the dynam-
ics of class-A lasers under the influence of a delayed feed-
back. Also, despite these specific physical considerations, it 
is also instructive to understand the effects of higher-order 
nonlinear terms beyond the cubic model from a more general 
perspective, since extra nonlinearities can usually impact the 
oscillator’s dynamics when the feedback strength increases.

The class-A laser under the effect of a delayed feedback 
is described by the equations

where c = P

(P+1)
 comes from the normalization done on the 

cubic model (see appendix for details). The variables and 
parameters are as described in the previous section.

The equilibrium solutions of Eqs. (41) are

By applying the same methodology used in the previous sec-
tion to compute the bifurcations of the steady states, we find 
that the number of stationary solutions and the saddle-node 
and pitchfork bifurcation curves of Eq. (41) are the same 
as found in the cubic model. Therefore, we omit here these 
calculations. However, the amplitude of the steady states and 
the stability change when comparing both models. These 
results are illustrated in Fig. 9. In this figure, we can see that 
the number of solutions are the same in both models. Also, 
the parameter values in which the saddle-node and pitch-
fork bifurcations occur are exactly the same. In the vicinity 

(41)
ȧ = a

(P − ca2)

1 + ca2
+ 𝜂a� cos(𝜃 + 𝜙 − 𝜙�),

𝜙̇ = −𝜂
a�

a
sin(𝜃 + 𝜙 − 𝜙�),

(42)

as = 0,

as = ±

√
P + � cos(� + �s�)

c[1 − � cos(� + �s�)]
,

�s = −� sin(� + �s�).

of the saddle-node bifurcations, i.e., when new branch of 
solutions (or modes) are born, the amplitude of the steady 
states in both models is very close. As the feedback strength 
increases away from the saddle-node bifurcations, the ampli-
tudes become more and more discrepant. Interestingly, the 
amplitudes of the steady-state solutions of the class-A laser 
model increase without any bound as the feedback strength 
increases away from the saddle-node bifurcations, as can be 
seen in Fig. 9(b). Therefore, one effect of the higher-order 
nonlinearities is to increase significantly the amplitude of 
the modes. On the other hand, the number of stable modes 
is decreased in the class-A laser model, as can be seen by 
comparing Fig. 9(a) and (b), meaning that instabilities are 
much more pronounced when the higher-order nonlineari-
ties are present.

6 � Basins of Attraction

In this section, we compute domains of distinct initial condi-
tions as a function of the feedback strength that leads to dif-
ferent steady-state solutions for the three investigated time-
delay models, i.e., the phase model, the cubic model, and the 
class-A laser model. We vary the initial conditions using a 
specific initial function history and compute the asymptotic 
dynamics as we increase the feedback strength.

The results of the phase model are shown in Fig. 10. 
Since there is just one variable in the phase model, which is 
the phase of the oscillator, we need just one initial history 
function. Here we choose a straight line for the initial history 
function, given by �(ti) = �0 × i , where i = 1, 2,… , 600 . By 
starting with these 600 values of � in the times t1, t2, ...t600 , 
we can compute the phase evolution of the delay differen-
tial equation. In Fig. 10(a) and (b) we show the basins of 
attraction for the symmetric case � = 180◦ and the asym-
metric case � = 150◦ , respectively. The phase evolutions 

(a) (b)

Fig. 9   Bifurcation diagrams showing the steady states a
s
 for (a) the 

cubic model and (b) the class-A laser model. The parameters are 
P = 0.3 , � = 50 and � = 180◦ . Solid and dashed lines denote stable 
and unstable solutions, respectively
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corresponding to the dots marked in these figures are shown 
in Fig. 10(c) and (d).

In Fig. 10(a), for very small � denoted by the white area, 
there is not multistability, and the only possible solution is 
�s = 0 , as shown by the horizontal black line in Fig. 10(c). 
As � increases, the pitchfork bifurcation takes place, giving 
rise to new frequency solutions. Initial conditions in the light 
orange and light green areas in Fig. 10(a) correspond to the 
phase evolutions with positive and negative slopes, denoted 
by the light orange and light green lines in Fig. 10(c), respec-
tively. As � increases even more, new higher frequency solu-
tions appear denoted by the darker areas in Fig. 10(a). The 
corresponding colors in Fig. 10(c) show the phase evolution 
as a function of time. The darker color lines exhibit higher 
slopes, corresponding to higher frequency deviations from 
the frequency of the free-running oscillator.

In Fig. 10(b), the basin of attraction is not symmetrical. 
For very small � , �s is very close to zero, as can be seen by 
the almost horizontal black line for the phase evolution in 
Fig. 10(d). As � increases, the frequency varies continuously 
to negative values, without the occurrence of bifurcation, 
denoted by the light green area in Fig. 10(b). It is interesting 
to observe that there is a predominance to the attraction of 
negative frequencies. Even for a positive slope of the initial 
phase variation (as can be seen by the light green area above 

the light orange area) the solution is attracted to the nega-
tive frequency solution, as shown by the slope of the phase 
evolution denoted by light green line in Fig. 10(d). Other 
smaller frequencies solutions (higher slopes in the negative 
plane) appear in the darker color areas in Fig. 10(b), and 
the corresponding phase evolutions are shown in Fig. 10(d). 
The minimum value of � for each distinct steady state in 
Fig. 10(a) and (b), which is the tip of each colored area, 
coincide with the saddle-node bifurcations that create the 
new frequency solutions. When the amplitude is taken into 
account, there are two variables in the equations and two 
initial history functions, for phase and amplitude are needed 
to integrate the models.

We also compute basins of attraction for the cubic model 
and the class-A laser model. For both models, we use the 
same procedure used to compute the basins of attraction 
of the phase model, with the same initial history function 
for the phase. For the amplitude, We use a constant initial 
history function a = 1 , which is the amplitude value of the 
free-running oscillator (without feedback). The results, for 
� = 0 , � = 180◦ , and � = 150◦ are shown in Fig. 11. As can 
be seen, for the cubic model (left panels in Fig. 11), the 
results are very similar to those found with the phase model, 
following the same kind of structure. For the class-A laser 
model (right panels in Fig. 11), there are fewer stable steady 
states, due to the stronger nonlinearity of this model, as dis-
cussed in Sec. 5. For larger values of � , instabilities are more 
pronounced, resulting in even fewer stable steady states and 
a decreasing in size of the stability domains of the higher 
frequency deviation solutions.

Moreover, we perform an analysis for basins of attrac-
tions varying both, amplitude and phase variables for the 
case of the cubic model. These results are shown in Fig. 12, 
for � = 0◦ , � = 180◦ , and � = 150◦ . We use the same initial 
history functions used in Fig. 12. But here, we use distinct 
constant values for the initial history functions for the ampli-
tude. We compute the basins of attraction for the fixed value 
of the feedback strength � = 0.5 , to which a certain number 
of steady states coexist. In Fig. 12 we can see that there are 
not so big impacts when increasing the initial condition of 
the amplitude in the range between one and three for the 
cubic model.

7 � Influence of the Shear Parameter

As a last analysis, in this section, we briefly discuss the 
effects of the shear parameter � , which describes the cou-
pling between phase and amplitude. In laser dynamics, this 
parameter is the atomic detuning parameter, which measures 
how much the electric field is off-resonance with respect to 
the atomic frequency [68]. The shear parameter is sometimes 
incorporated in oscillator models with cubic nonlinearity 

(a) (b)

(c) (d)

Fig. 10   Basins of attraction for the initial history function 
�(i) = �0 × i , for i = 1, 2, ...,N , where N = 600 is the map dimen-
sion. The parameter values are � = 50 , and (a) � = 180◦ and (b) 
� = 150◦ . The white color represents the initial condition domain 
for the �

s
= 0 steady-state, while orange-red and green-blue shades 

represent positive and negative �
s
 , respectively. (c) and (d) show 

the phase-locked states for � = 0.01 , � = 0.2 , � = 0.32 , � = 0.4 , and 
� = 0.48 , corresponding to the points marked in (a) and (b), respec-
tively
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and class-A laser models [64, 69–71]. We observe that, in 
the case of semiconductor lasers, which are class-B lasers, 
the coupling between phase and amplitude is due to the so-
called linewidth enhancement factor, also called Henry fac-
tor or � factor [29]. This parameter is crucial to describe the 
dynamics of semiconductor lasers and sometimes it appears 
in the modeling of other class-B lasers, such as solid-state 
lasers [72]. As it is well-known, the shear parameter � is 
responsible to introduce a number of dynamical instabilities 
in laser dynamics, usually leading to chaotic and complex 
dynamics [29, 69, 73].

We first show the influence of the shear parameter in the 
cubic oscillator. The case of null shear parameter ( � = 0 ) 
has been investigated in Sec. 4. By including nonzero shear 

parameter ( � ≠ 0 ), the amplitude and phase evolutions are 
given by the following equations

(43)
ȧ = aP(1 − a2) + 𝜂a� cos(𝜃 + 𝜙 − 𝜙�),

𝜙̇ = −𝜂
a�

a
sin(𝜃 + 𝜙 − 𝜙�) + 𝛼P(1 − a2).

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 11   Basins of attraction for the cubic model (left column) and 
the class-A laser model (right column). The colors correspond to the 
value of steady-state frequencies ( �

s
 ), where the white color repre-

sents the initial condition domain for the �
s
= 0 steady-state and 

orange-red (green-blue) shades represent positive (negative) �
s
 . The 

parameters are P = 0.3 , � = 50 , and � = 0◦ (upper row), � = 180◦ 
(middle row), and � = 150◦ (bottom row). See text for details

(a) (b) (c)

Fig. 12   Basins of attraction for the cubic model varying both initial 
conditions, phase and amplitude. The colors correspond to the value 
of steady-state frequencies ( �

s
 ), where the white color represents 

the initial condition domain for the �
s
= 0 steady-state and orange-

red (green-blue) shades represent positive (negative) �
s
 . The param-

eters are P = 0.3 , � = 50 , � = 0.5 , and (a) � = 0 , � = 180◦ , and (c) 
� = 150◦ . See text for details

(a) (b)

(c) (d)

Fig. 13   Upper row: Parameter space showing the number of steady-
state amplitudes ( a

s
> 0 ) for (a) � = 1 and (b) � = 3 . The black color 

denotes the amplitude death region. Bottom row: Parameter space 
discriminating chaotic solutions (CH) in dark red color, stable steady 
states with nonzero amplitude (SS) in light gray color, amplitude 
death (AD) in black color, and periodic solutions in other colors. The 
numbers inside the colorbar indicate the amount of local maxima in 
one period of oscillation of the amplitude corresponding to the dis-
tinct colored areas in the parameter space. (c) � = 1 and (d) � = 3 . 
Other parameters are P = 0.3 and � = 180◦
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In Fig. 13, we show some numerical results obtained for 
the cubic model with nonzero shear parameter. Figure 13(a) 
and (b) show the number of amplitude solutions ( as > 0 ) of 
the steady states, computed through the Newton method, 
for � = 1 and � = 3 , respectively. For � ≠ 0 , the number of 
steady states increases greatly as the feedback parameters � 
and � increase. For this reason we limit the parameter space 
up to � = 20 , in contrast to the case � = 0 shown in Fig. 3, 
in which we have performed investigations up to � = 80 . 
As can be seen in Fig. 13(a) and (b), the regions of ampli-
tude death (denoted by the black regions) continue to exist 
for the case � ≠ 0 . Figure 13(c) and (d) show the number 
of local maxima of the amplitude computed through direct 
integration of Eq. 43, for � = 1 and � = 3 , respectively. In 
the portion of the parameter space shown by Fig. 13(c), we 
mostly find a steady state, either as > 0 in the gray area or 
as = 0 in the black area. But for a larger value of � , shown 
Fig. 13(d), more complex dynamics is found, including cha-
otic dynamics.

We briefly investigate the class-A laser model for � ≠ 0 
(the case � = 0 has been investigated in Sec. 5), which is 
described by the following equations

In Fig. 14, we show a comparison between the cubic 
model (left column) and the class-A laser model (right col-
umn), under the influence of the delayed feedback, for � = 3 . 
For the case � ≠ 0 , the number of steady states for both 
models is the same, at the same way that we have found 
for the case � = 0 . Again, the main difference is that the 
amplitudes for the class-A laser model are larger, as can be 
seen in Fig. 14(a) and (b). In these figures, the steady-state 
solutions are obtained by using the Newton method. For 
the case � ≠ 0 , we do not perform the analytical calcula-
tions of the steady states and their bifurcations, since the 
coupling between phase and amplitude, introduced by the 
nonzero shear parameter, greatly increases the complexity 
of the system of Eq. (44). Therefore, information of the sta-
bility of the steady states is not provided in Fig. 14(a) and 
(b). Stable solutions obtained by direct integration for both 

(44)
ȧ = a

(P − ca2)

1 + ca2
+ 𝜂a� cos(𝜃 + 𝜙 − 𝜙�),

𝜙̇ = −𝜂
a�

a
sin(𝜃 + 𝜙 − 𝜙�) + 𝛼

(P − ca2)

1 + ca2
.

Fig. 14   Steady states (upper 
line), bifurcation diagrams 
(middle line), and Lyapunov 
exponents (bottom line) for the 
cubic model (left column) and 
the class-A laser model (right 
column). The parameters are 
P = 0.3 , � = 15 , � = 3 , and 
� = 180◦
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models are shown in Fig. 14(c) and (d). Both models show 
regular solutions, such as steady states and periodic solu-
tions, and irregular solutions, such as chaos and hyperchaos. 
The hyperchaotic behavior is confirmed in both models 
through the calculation of the Lyapunov exponents, shown 
in Fig. 14(e) and (f), which show that for enough large feed-
back strength both models exhibit more than one positive 
Lyapunov exponent.

8 � Conclusion

We have theoretically investigated the nonlinear dynamics 
of a two-dimensional self-sustained oscillator under the 
effect of a delayed feedback. We have performed a phase 
reduction analysis and then we have considered two cases 
with amplitude variations: a cubic oscillator, representing 
a weakly nonlinear case, and a class-A laser model, repre-
senting a strongly nonlinear case.

We have investigated the emergence of the amplitude 
death phenomenon when amplitude variations are taken into 
account. The feedback phase takes a relevant role for the 
emergence of amplitude death in the cubic and class-A laser 
models. The amplitude death can only occur for the feed-
back phase in the range 90◦ < 𝜃 < 270◦ . In this situation, a 
destructive interference caused by the feedback signal can 
decrease the steady-state amplitude of the delayed-feedback 
oscillator, and, for short delays and enough large feedback 
strength, the zero-amplitude state can be stabilized over a 
region of the parameter space. This amplitude death region 
is maximized for a feedback phase equals to 180◦ . In this 
antiphase scenario, the feedback strength required to achieve 
the amplitude death regime is a global minimum, and, for 
short delays, the amplitude death regime occurs when the 
feedback strength overcomes the gain parameter responsible 
for inducing the self-sustained oscillations. For the feed-
back phase in the range 0◦ ≤ � ≤ 90◦ or 270◦ ≤ � ≤ 360◦ the 
amplitude death regime never occurs, and the steady-state 
amplitudes always increase for any value of the delay and 
feedback strength, due to constructive interference caused 
by the feedback signal.

We have analytically calculated the main codimension-
one and codimension-two bifurcations associated with the 
steady-state solutions for the phase model, cubic model, 
and the class-A laser model, for the cases in which the 
shear parameter is not taken into account. Also, an analyti-
cal expression to find the stability of the steady states has 
been calculated. We have analyzed three distinct regimes 
for the feedback phase, namely in-phase, out-of-phase, 
and antiphase configurations. For the antiphase configura-
tion, the bifurcation structure of the steady states is richer. 
In this situation, a pitchfork bifurcation appears due to 

symmetry properties of the steady-state solutions, destabi-
lizing the �s = 0 solution, which is the phase-locked solu-
tion with the same frequency of the free-running oscillator. 
Moreover, a pitchfork-Hopf codimension-two bifurcation 
has been found in the antiphase configuration. The pitch-
fork-Hopf bifurcation corresponds to the maximum delay 
value and the minimum feedback strength for which the 
amplitude death regime emerges.

We have shown that the number of steady states and the 
bifurcations associated with their appearance are the same 
for the cubic model and the class-A laser model. The main 
difference introduced by the higher-order nonlinearities 
beyond the cubic case is as follows. The stability of the 
steady states changes, the number of stable steady states 
is smaller, and the amplitude values of the steady states 
are larger in the class-A laser model. In particular, in the 
class-A laser model, steady-state amplitudes grow without 
limits when the feedback strength grows away from the 
bifurcations where they are born.

We have numerically computed basins of attraction 
for the three investigated models with delayed feedback. 
The basins of attraction have been computed for in-phase, 
out-of-phase, and antiphase configurations, for a particular 
choice of the initial history function of the investigated 
time-delay systems. The phase and cubic models show a 
good agreement in the structure of the basins, while in the 
class-A model, the attraction domains of the steady states 
are greatly reduced as the feedback strength increases.

Finally, we have briefly investigated the influence of 
the shear parameter when amplitude effects are taken into 
account. The number of steady states solutions increases 
considerably as the shear parameter increases. Also, the 
shear parameter greatly induces irregular dynamics, where 
transitions to chaos and hyperchaos have been observed in 
the cubic model and the class-A laser model with delayed 
feedback.

Appendix

A class-A laser [68] with delayed feedback is described by

where Ã ≡ Ã(t̃) and Ã� ≡ Ã(t̃ − 𝜏) represent the value of 
the electric field at the actual time and the delayed time, 
respectively. � is the delay time, � is the feedback strength, 
P is the pump parameter, � is the feedback phase, and � is 
the atomic detuning parameter. In the situation in which the 
electric field is not so large, we can approximate the first 
term of Eq. (45)

(45)̇̃A = Ã
(P − |Ã|2)
1 + |Ã|2 (1 + i𝛼) + 𝜂e−i𝜃Ã�,
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By expanding the term below in a series Taylor, we have 
at first order

By applying the earlier approximation in Eq. (46), we 
have

Therefore,

By using the earlier approximation in Eq. 45, we obtain

By redefining the electric field as

we obtain a new system of equations known as the cubic 
laser model, which is known in literature as the simplest 
laser model [68]

Here, in the cubic laser model given by Eq. (52), we 
have included the atomic detuning parameter and the 
delayed feedback. Rewriting Eq. (52) in terms of ampli-
tude and phase, we have

where the variables a = a(t) and a� ≡ a(t − �) represent 
the amplitude of the electric field at the actual time and 
the delayed time, and � ≡ �(t) and �� ≡ �(t − �) represent 
the phase of the electric field at the actual time and the 
delayed time, respectively. If the feedback strength is small, 
the amplitude of the electric field almost does not change. 
Therefore, by considering a = 1 and neglecting amplitude 
variations, the laser dynamics is described by a single phase 
equation

(46)
(P − |Ã|2)
1 + |Ã|2 =

P − |Ã|2 + 1 − 1

1 + |Ã|2 =
P + 1

1 + |Ã|2 − 1.

(47)
1

1 + |Ã|2 ≈ (1 − |Ã|2).

(48)(P + 1)(1 − |Ã|2) − 1 = P

[
1 −

(P + 1)

P
|Ã|2

]
.

(49)
P − |Ã|2
1 + |Ã|2 ≈ P

[
1 −

(P + 1)

P
|Ã|2

]
.

(50)̇̃A = ÃP

[
1 −

(P + 1)

P
|Ã|2

]
(1 + i𝛼) + 𝜂e−i𝜃Ã�.

(51)Ã =

√
P

P + 1
A, Ã� =

√
P

P + 1
A�,

(52)Ȧ = AP(1 − |A|2)(1 + i𝛼) + 𝜂e−i𝜃A�.

(53)
ȧ = aP(1 − a2) + 𝜂a� cos(𝜃 + 𝜙 − 𝜙�),

𝜙̇ = 𝛼(1 − a2) − 𝜂
a�

a
sin(𝜃 + 𝜙 − 𝜙�),

(54)𝜙̇ = −𝜂 sin(𝜃 + 𝜙 − 𝜙�).
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